diff --git a/swarms/hivemind.py b/swarms/hivemind.py index b8033641..96ca8f70 100644 --- a/swarms/hivemind.py +++ b/swarms/hivemind.py @@ -1,2 +1,47 @@ # many boss + workers in unison -#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)` \ No newline at end of file +#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)` + +import concurrent.futures +import logging + +from swarms.swarms import Swarms +from swarms.tools.agent_tools import * + +logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') + + + +class HiveMind: + def __init__(self, openai_api_key="", num_swarms=1, max_workers=None): + self.openai_api_key = openai_api_key + self.num_swarms = num_swarms + self.swarms = [Swarms(openai_api_key) for _ in range(num_swarms)] + self.vectorstore = self.initialize_vectorstore() + self.max_workers = max_workers if max_workers else min(32, num_swarms) + + def initialize_vectorstore(self): + try: + embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) + embedding_size = 1536 + index = faiss.IndexFlatL2(embedding_size) + return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) + except Exception as e: + logging.error(f"Failed to initialize vector store: {e}") + raise + + def run_swarm(self, swarm, objective): + try: + return swarm.run_swarms(objective) + except Exception as e: + logging.error(f"An error occurred in run_swarms: {e}") + + def run_swarms(self, objective, timeout=None): + with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor: + futures = {executor.submit(self.run_swarm, swarm, objective) for swarm in self.swarms} + results = [] + for future in concurrent.futures.as_completed(futures, timeout=timeout): + try: + results.append(future.result()) + except Exception as e: + logging.error(f"An error occurred in a swarm: {e}") + return results \ No newline at end of file