parent
							
								
									2e1eaf1b10
								
							
						
					
					
						commit
						2544bb0979
					
				@ -1,5 +1,5 @@
 | 
				
			||||
# example
 | 
				
			||||
from swarms.utils.llm import LLM
 | 
				
			||||
from swarms.agents.models.llm import LLM
 | 
				
			||||
llm_instance = LLM(hf_repo_id="google/flan-t5-xl", hf_api_token="your_hf_api_token")
 | 
				
			||||
result = llm_instance.run("Who won the FIFA World Cup in 1998?")
 | 
				
			||||
print(result)
 | 
				
			||||
@ -0,0 +1 @@
 | 
				
			||||
from swarms.agents.models.llm import LLM
 | 
				
			||||
@ -0,0 +1,555 @@
 | 
				
			||||
import logging
 | 
				
			||||
import re
 | 
				
			||||
from datetime import datetime
 | 
				
			||||
from typing import Any, Dict, List, Optional, Tuple
 | 
				
			||||
 | 
				
			||||
############
 | 
				
			||||
from langchain.prompts import PromptTemplate
 | 
				
			||||
from langchain.retrievers import TimeWeightedVectorStoreRetriever
 | 
				
			||||
from langchain.schema import BaseMemory, Document
 | 
				
			||||
 | 
				
			||||
from langchain.schema.language_model import BaseLanguageModel
 | 
				
			||||
from langchain.utils import mock_now
 | 
				
			||||
from langchain import LLMChain
 | 
				
			||||
from langchain.schema.language_model import BaseLanguageModel
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
logger = logging.getLogger(__name__)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#######################
 | 
				
			||||
 | 
				
			||||
from pydantic import BaseModel, Field
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class WorkerSims(BaseMemory):
 | 
				
			||||
    llm: BaseLanguageModel
 | 
				
			||||
    """The core language model."""
 | 
				
			||||
 | 
				
			||||
    memory_retriever: TimeWeightedVectorStoreRetriever
 | 
				
			||||
    """The retriever to fetch related memories."""
 | 
				
			||||
    verbose: bool = False
 | 
				
			||||
 | 
				
			||||
    reflection_threshold: Optional[float] = None
 | 
				
			||||
    """When aggregate_importance exceeds reflection_threshold, stop to reflect."""
 | 
				
			||||
 | 
				
			||||
    current_plan: List[str] = []
 | 
				
			||||
    """The current plan of the agent."""
 | 
				
			||||
 | 
				
			||||
    # A weight of 0.15 makes this less important than it
 | 
				
			||||
    # would be otherwise, relative to salience and time
 | 
				
			||||
    importance_weight: float = 0.15
 | 
				
			||||
    """How much weight to assign the memory importance."""
 | 
				
			||||
 | 
				
			||||
    aggregate_importance: float = 0.0  # : :meta private:
 | 
				
			||||
    """Track the sum of the 'importance' of recent memories.
 | 
				
			||||
 | 
				
			||||
    Triggers reflection when it reaches reflection_threshold."""
 | 
				
			||||
 | 
				
			||||
    max_tokens_limit: int = 1200  # : :meta private:
 | 
				
			||||
    # input keys
 | 
				
			||||
    queries_key: str = "queries"
 | 
				
			||||
    most_recent_memories_token_key: str = "recent_memories_token"
 | 
				
			||||
    add_memory_key: str = "add_memory"
 | 
				
			||||
    # output keys
 | 
				
			||||
    relevant_memories_key: str = "relevant_memories"
 | 
				
			||||
    relevant_memories_simple_key: str = "relevant_memories_simple"
 | 
				
			||||
    most_recent_memories_key: str = "most_recent_memories"
 | 
				
			||||
    now_key: str = "now"
 | 
				
			||||
    reflecting: bool = False
 | 
				
			||||
 | 
				
			||||
    def chain(self, prompt: PromptTemplate) -> LLMChain:
 | 
				
			||||
        return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose)
 | 
				
			||||
 | 
				
			||||
    @staticmethod
 | 
				
			||||
    def _parse_list(text: str) -> List[str]:
 | 
				
			||||
        """Parse a newline-separated string into a list of strings."""
 | 
				
			||||
        lines = re.split(r"\n", text.strip())
 | 
				
			||||
        lines = [line for line in lines if line.strip()]  # remove empty lines
 | 
				
			||||
        return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
 | 
				
			||||
 | 
				
			||||
    def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]:
 | 
				
			||||
        """Return the 3 most salient high-level questions about recent observations."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "{observations}\n\n"
 | 
				
			||||
            "Given only the information above, what are the 3 most salient "
 | 
				
			||||
            "high-level questions we can answer about the subjects in the statements?\n"
 | 
				
			||||
            "Provide each question on a new line."
 | 
				
			||||
        )
 | 
				
			||||
        observations = self.memory_retriever.memory_stream[-last_k:]
 | 
				
			||||
        observation_str = "\n".join(
 | 
				
			||||
            [self._format_memory_detail(o) for o in observations]
 | 
				
			||||
        )
 | 
				
			||||
        result = self.chain(prompt).run(observations=observation_str)
 | 
				
			||||
        return self._parse_list(result)
 | 
				
			||||
 | 
				
			||||
    def _get_insights_on_topic(
 | 
				
			||||
        self, topic: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> List[str]:
 | 
				
			||||
        """Generate 'insights' on a topic of reflection, based on pertinent memories."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "Statements relevant to: '{topic}'\n"
 | 
				
			||||
            "---\n"
 | 
				
			||||
            "{related_statements}\n"
 | 
				
			||||
            "---\n"
 | 
				
			||||
            "What 5 high-level novel insights can you infer from the above statements "
 | 
				
			||||
            "that are relevant for answering the following question?\n"
 | 
				
			||||
            "Do not include any insights that are not relevant to the question.\n"
 | 
				
			||||
            "Do not repeat any insights that have already been made.\n\n"
 | 
				
			||||
            "Question: {topic}\n\n"
 | 
				
			||||
            "(example format: insight (because of 1, 5, 3))\n"
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
        related_memories = self.fetch_memories(topic, now=now)
 | 
				
			||||
        related_statements = "\n".join(
 | 
				
			||||
            [
 | 
				
			||||
                self._format_memory_detail(memory, prefix=f"{i+1}. ")
 | 
				
			||||
                for i, memory in enumerate(related_memories)
 | 
				
			||||
            ]
 | 
				
			||||
        )
 | 
				
			||||
        result = self.chain(prompt).run(
 | 
				
			||||
            topic=topic, related_statements=related_statements
 | 
				
			||||
        )
 | 
				
			||||
        # TODO: Parse the connections between memories and insights
 | 
				
			||||
        return self._parse_list(result)
 | 
				
			||||
 | 
				
			||||
    def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]:
 | 
				
			||||
        """Reflect on recent observations and generate 'insights'."""
 | 
				
			||||
        if self.verbose:
 | 
				
			||||
            logger.info("Character is reflecting")
 | 
				
			||||
        new_insights = []
 | 
				
			||||
        topics = self._get_topics_of_reflection()
 | 
				
			||||
        for topic in topics:
 | 
				
			||||
            insights = self._get_insights_on_topic(topic, now=now)
 | 
				
			||||
            for insight in insights:
 | 
				
			||||
                self.add_memory(insight, now=now)
 | 
				
			||||
            new_insights.extend(insights)
 | 
				
			||||
        return new_insights
 | 
				
			||||
 | 
				
			||||
    def _score_memory_importance(self, memory_content: str) -> float:
 | 
				
			||||
        """Score the absolute importance of the given memory."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "On the scale of 1 to 10, where 1 is purely mundane"
 | 
				
			||||
            + " (e.g., brushing teeth, making bed) and 10 is"
 | 
				
			||||
            + " extremely poignant (e.g., a break up, college"
 | 
				
			||||
            + " acceptance), rate the likely poignancy of the"
 | 
				
			||||
            + " following piece of memory. Respond with a single integer."
 | 
				
			||||
            + "\nMemory: {memory_content}"
 | 
				
			||||
            + "\nRating: "
 | 
				
			||||
        )
 | 
				
			||||
        score = self.chain(prompt).run(memory_content=memory_content).strip()
 | 
				
			||||
        if self.verbose:
 | 
				
			||||
            logger.info(f"Importance score: {score}")
 | 
				
			||||
        match = re.search(r"^\D*(\d+)", score)
 | 
				
			||||
        if match:
 | 
				
			||||
            return (float(match.group(1)) / 10) * self.importance_weight
 | 
				
			||||
        else:
 | 
				
			||||
            return 0.0
 | 
				
			||||
 | 
				
			||||
    def _score_memories_importance(self, memory_content: str) -> List[float]:
 | 
				
			||||
        """Score the absolute importance of the given memory."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "On the scale of 1 to 10, where 1 is purely mundane"
 | 
				
			||||
            + " (e.g., brushing teeth, making bed) and 10 is"
 | 
				
			||||
            + " extremely poignant (e.g., a break up, college"
 | 
				
			||||
            + " acceptance), rate the likely poignancy of the"
 | 
				
			||||
            + " following piece of memory. Always answer with only a list of numbers."
 | 
				
			||||
            + " If just given one memory still respond in a list."
 | 
				
			||||
            + " Memories are separated by semi colans (;)"
 | 
				
			||||
            + "\Memories: {memory_content}"
 | 
				
			||||
            + "\nRating: "
 | 
				
			||||
        )
 | 
				
			||||
        scores = self.chain(prompt).run(memory_content=memory_content).strip()
 | 
				
			||||
 | 
				
			||||
        if self.verbose:
 | 
				
			||||
            logger.info(f"Importance scores: {scores}")
 | 
				
			||||
 | 
				
			||||
        # Split into list of strings and convert to floats
 | 
				
			||||
        scores_list = [float(x) for x in scores.split(";")]
 | 
				
			||||
 | 
				
			||||
        return scores_list
 | 
				
			||||
 | 
				
			||||
    def add_memories(
 | 
				
			||||
        self, memory_content: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> List[str]:
 | 
				
			||||
        """Add an observations or memories to the agent's memory."""
 | 
				
			||||
        importance_scores = self._score_memories_importance(memory_content)
 | 
				
			||||
 | 
				
			||||
        self.aggregate_importance += max(importance_scores)
 | 
				
			||||
        memory_list = memory_content.split(";")
 | 
				
			||||
        documents = []
 | 
				
			||||
 | 
				
			||||
        for i in range(len(memory_list)):
 | 
				
			||||
            documents.append(
 | 
				
			||||
                Document(
 | 
				
			||||
                    page_content=memory_list[i],
 | 
				
			||||
                    metadata={"importance": importance_scores[i]},
 | 
				
			||||
                )
 | 
				
			||||
            )
 | 
				
			||||
 | 
				
			||||
        result = self.memory_retriever.add_documents(documents, current_time=now)
 | 
				
			||||
 | 
				
			||||
        # After an agent has processed a certain amount of memories (as measured by
 | 
				
			||||
        # aggregate importance), it is time to reflect on recent events to add
 | 
				
			||||
        # more synthesized memories to the agent's memory stream.
 | 
				
			||||
        if (
 | 
				
			||||
            self.reflection_threshold is not None
 | 
				
			||||
            and self.aggregate_importance > self.reflection_threshold
 | 
				
			||||
            and not self.reflecting
 | 
				
			||||
        ):
 | 
				
			||||
            self.reflecting = True
 | 
				
			||||
            self.pause_to_reflect(now=now)
 | 
				
			||||
            # Hack to clear the importance from reflection
 | 
				
			||||
            self.aggregate_importance = 0.0
 | 
				
			||||
            self.reflecting = False
 | 
				
			||||
        return result
 | 
				
			||||
 | 
				
			||||
    def add_memory(
 | 
				
			||||
        self, memory_content: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> List[str]:
 | 
				
			||||
        """Add an observation or memory to the agent's memory."""
 | 
				
			||||
        importance_score = self._score_memory_importance(memory_content)
 | 
				
			||||
        self.aggregate_importance += importance_score
 | 
				
			||||
        document = Document(
 | 
				
			||||
            page_content=memory_content, metadata={"importance": importance_score}
 | 
				
			||||
        )
 | 
				
			||||
        result = self.memory_retriever.add_documents([document], current_time=now)
 | 
				
			||||
 | 
				
			||||
        # After an agent has processed a certain amount of memories (as measured by
 | 
				
			||||
        # aggregate importance), it is time to reflect on recent events to add
 | 
				
			||||
        # more synthesized memories to the agent's memory stream.
 | 
				
			||||
        if (
 | 
				
			||||
            self.reflection_threshold is not None
 | 
				
			||||
            and self.aggregate_importance > self.reflection_threshold
 | 
				
			||||
            and not self.reflecting
 | 
				
			||||
        ):
 | 
				
			||||
            self.reflecting = True
 | 
				
			||||
            self.pause_to_reflect(now=now)
 | 
				
			||||
            # Hack to clear the importance from reflection
 | 
				
			||||
            self.aggregate_importance = 0.0
 | 
				
			||||
            self.reflecting = False
 | 
				
			||||
        return result
 | 
				
			||||
 | 
				
			||||
    def fetch_memories(
 | 
				
			||||
        self, observation: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> List[Document]:
 | 
				
			||||
        """Fetch related memories."""
 | 
				
			||||
        if now is not None:
 | 
				
			||||
            with mock_now(now):
 | 
				
			||||
                return self.memory_retriever.get_relevant_documents(observation)
 | 
				
			||||
        else:
 | 
				
			||||
            return self.memory_retriever.get_relevant_documents(observation)
 | 
				
			||||
 | 
				
			||||
    def format_memories_detail(self, relevant_memories: List[Document]) -> str:
 | 
				
			||||
        content = []
 | 
				
			||||
        for mem in relevant_memories:
 | 
				
			||||
            content.append(self._format_memory_detail(mem, prefix="- "))
 | 
				
			||||
        return "\n".join([f"{mem}" for mem in content])
 | 
				
			||||
 | 
				
			||||
    def _format_memory_detail(self, memory: Document, prefix: str = "") -> str:
 | 
				
			||||
        created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p")
 | 
				
			||||
        return f"{prefix}[{created_time}] {memory.page_content.strip()}"
 | 
				
			||||
 | 
				
			||||
    def format_memories_simple(self, relevant_memories: List[Document]) -> str:
 | 
				
			||||
        return "; ".join([f"{mem.page_content}" for mem in relevant_memories])
 | 
				
			||||
 | 
				
			||||
    def _get_memories_until_limit(self, consumed_tokens: int) -> str:
 | 
				
			||||
        """Reduce the number of tokens in the documents."""
 | 
				
			||||
        result = []
 | 
				
			||||
        for doc in self.memory_retriever.memory_stream[::-1]:
 | 
				
			||||
            if consumed_tokens >= self.max_tokens_limit:
 | 
				
			||||
                break
 | 
				
			||||
            consumed_tokens += self.llm.get_num_tokens(doc.page_content)
 | 
				
			||||
            if consumed_tokens < self.max_tokens_limit:
 | 
				
			||||
                result.append(doc)
 | 
				
			||||
        return self.format_memories_simple(result)
 | 
				
			||||
 | 
				
			||||
    @property
 | 
				
			||||
    def memory_variables(self) -> List[str]:
 | 
				
			||||
        """Input keys this memory class will load dynamically."""
 | 
				
			||||
        return []
 | 
				
			||||
 | 
				
			||||
    def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
 | 
				
			||||
        """Return key-value pairs given the text input to the chain."""
 | 
				
			||||
        queries = inputs.get(self.queries_key)
 | 
				
			||||
        now = inputs.get(self.now_key)
 | 
				
			||||
        if queries is not None:
 | 
				
			||||
            relevant_memories = [
 | 
				
			||||
                mem for query in queries for mem in self.fetch_memories(query, now=now)
 | 
				
			||||
            ]
 | 
				
			||||
            return {
 | 
				
			||||
                self.relevant_memories_key: self.format_memories_detail(
 | 
				
			||||
                    relevant_memories
 | 
				
			||||
                ),
 | 
				
			||||
                self.relevant_memories_simple_key: self.format_memories_simple(
 | 
				
			||||
                    relevant_memories
 | 
				
			||||
                ),
 | 
				
			||||
            }
 | 
				
			||||
 | 
				
			||||
        most_recent_memories_token = inputs.get(self.most_recent_memories_token_key)
 | 
				
			||||
        if most_recent_memories_token is not None:
 | 
				
			||||
            return {
 | 
				
			||||
                self.most_recent_memories_key: self._get_memories_until_limit(
 | 
				
			||||
                    most_recent_memories_token
 | 
				
			||||
                )
 | 
				
			||||
            }
 | 
				
			||||
        return {}
 | 
				
			||||
 | 
				
			||||
    def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
 | 
				
			||||
        """Save the context of this model run to memory."""
 | 
				
			||||
        # TODO: fix the save memory key
 | 
				
			||||
        mem = outputs.get(self.add_memory_key)
 | 
				
			||||
        now = outputs.get(self.now_key)
 | 
				
			||||
        if mem:
 | 
				
			||||
            self.add_memory(mem, now=now)
 | 
				
			||||
 | 
				
			||||
    def clear(self) -> None:
 | 
				
			||||
        """Clear memory contents."""
 | 
				
			||||
        # TODO
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
####################### MAIN CLASS
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class WorkerSimsAgent(BaseModel):
 | 
				
			||||
    """A character with memory and innate characteristics."""
 | 
				
			||||
 | 
				
			||||
    name: str
 | 
				
			||||
    """The character's name."""
 | 
				
			||||
 | 
				
			||||
    age: Optional[int] = None
 | 
				
			||||
    """The optional age of the character."""
 | 
				
			||||
    traits: str = "N/A"
 | 
				
			||||
    """Permanent traits to ascribe to the character."""
 | 
				
			||||
    status: str
 | 
				
			||||
    """The traits of the character you wish not to change."""
 | 
				
			||||
    memory: WorkerSims
 | 
				
			||||
    """The memory object that combines relevance, recency, and 'importance'."""
 | 
				
			||||
    llm: BaseLanguageModel
 | 
				
			||||
    """The underlying language model."""
 | 
				
			||||
    verbose: bool = False
 | 
				
			||||
    summary: str = ""  #: :meta private:
 | 
				
			||||
    """Stateful self-summary generated via reflection on the character's memory."""
 | 
				
			||||
 | 
				
			||||
    summary_refresh_seconds: int = 3600  #: :meta private:
 | 
				
			||||
    """How frequently to re-generate the summary."""
 | 
				
			||||
 | 
				
			||||
    last_refreshed: datetime = Field(default_factory=datetime.now)  # : :meta private:
 | 
				
			||||
    """The last time the character's summary was regenerated."""
 | 
				
			||||
 | 
				
			||||
    daily_summaries: List[str] = Field(default_factory=list)  # : :meta private:
 | 
				
			||||
    """Summary of the events in the plan that the agent took."""
 | 
				
			||||
 | 
				
			||||
    class Config:
 | 
				
			||||
        """Configuration for this pydantic object."""
 | 
				
			||||
 | 
				
			||||
        arbitrary_types_allowed = True
 | 
				
			||||
 | 
				
			||||
    # LLM-related methods
 | 
				
			||||
    @staticmethod
 | 
				
			||||
    def _parse_list(text: str) -> List[str]:
 | 
				
			||||
        """Parse a newline-separated string into a list of strings."""
 | 
				
			||||
        lines = re.split(r"\n", text.strip())
 | 
				
			||||
        return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
 | 
				
			||||
 | 
				
			||||
    def chain(self, prompt: PromptTemplate) -> LLMChain:
 | 
				
			||||
        return LLMChain(
 | 
				
			||||
            llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
    def _get_entity_from_observation(self, observation: str) -> str:
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "What is the observed entity in the following observation? {observation}"
 | 
				
			||||
            + "\nEntity="
 | 
				
			||||
        )
 | 
				
			||||
        return self.chain(prompt).run(observation=observation).strip()
 | 
				
			||||
 | 
				
			||||
    def _get_entity_action(self, observation: str, entity_name: str) -> str:
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "What is the {entity} doing in the following observation? {observation}"
 | 
				
			||||
            + "\nThe {entity} is"
 | 
				
			||||
        )
 | 
				
			||||
        return (
 | 
				
			||||
            self.chain(prompt).run(entity=entity_name, observation=observation).strip()
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
    def summarize_related_memories(self, observation: str) -> str:
 | 
				
			||||
        """Summarize memories that are most relevant to an observation."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            """
 | 
				
			||||
{q1}?
 | 
				
			||||
Context from memory:
 | 
				
			||||
{relevant_memories}
 | 
				
			||||
Relevant context: 
 | 
				
			||||
"""
 | 
				
			||||
        )
 | 
				
			||||
        entity_name = self._get_entity_from_observation(observation)
 | 
				
			||||
        entity_action = self._get_entity_action(observation, entity_name)
 | 
				
			||||
        q1 = f"What is the relationship between {self.name} and {entity_name}"
 | 
				
			||||
        q2 = f"{entity_name} is {entity_action}"
 | 
				
			||||
        return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip()
 | 
				
			||||
 | 
				
			||||
    def _generate_reaction(
 | 
				
			||||
        self, observation: str, suffix: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> str:
 | 
				
			||||
        """React to a given observation or dialogue act."""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "{agent_summary_description}"
 | 
				
			||||
            + "\nIt is {current_time}."
 | 
				
			||||
            + "\n{agent_name}'s status: {agent_status}"
 | 
				
			||||
            + "\nSummary of relevant context from {agent_name}'s memory:"
 | 
				
			||||
            + "\n{relevant_memories}"
 | 
				
			||||
            + "\nMost recent observations: {most_recent_memories}"
 | 
				
			||||
            + "\nObservation: {observation}"
 | 
				
			||||
            + "\n\n"
 | 
				
			||||
            + suffix
 | 
				
			||||
        )
 | 
				
			||||
        agent_summary_description = self.get_summary(now=now)
 | 
				
			||||
        relevant_memories_str = self.summarize_related_memories(observation)
 | 
				
			||||
        current_time_str = (
 | 
				
			||||
            datetime.now().strftime("%B %d, %Y, %I:%M %p")
 | 
				
			||||
            if now is None
 | 
				
			||||
            else now.strftime("%B %d, %Y, %I:%M %p")
 | 
				
			||||
        )
 | 
				
			||||
        kwargs: Dict[str, Any] = dict(
 | 
				
			||||
            agent_summary_description=agent_summary_description,
 | 
				
			||||
            current_time=current_time_str,
 | 
				
			||||
            relevant_memories=relevant_memories_str,
 | 
				
			||||
            agent_name=self.name,
 | 
				
			||||
            observation=observation,
 | 
				
			||||
            agent_status=self.status,
 | 
				
			||||
        )
 | 
				
			||||
        consumed_tokens = self.llm.get_num_tokens(
 | 
				
			||||
            prompt.format(most_recent_memories="", **kwargs)
 | 
				
			||||
        )
 | 
				
			||||
        kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
 | 
				
			||||
        return self.chain(prompt=prompt).run(**kwargs).strip()
 | 
				
			||||
 | 
				
			||||
    def _clean_response(self, text: str) -> str:
 | 
				
			||||
        return re.sub(f"^{self.name} ", "", text.strip()).strip()
 | 
				
			||||
 | 
				
			||||
    def generate_reaction(
 | 
				
			||||
        self, observation: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> Tuple[bool, str]:
 | 
				
			||||
        """React to a given observation."""
 | 
				
			||||
        call_to_action_template = (
 | 
				
			||||
            "Should {agent_name} react to the observation, and if so,"
 | 
				
			||||
            + " what would be an appropriate reaction? Respond in one line."
 | 
				
			||||
            + ' If the action is to engage in dialogue, write:\nSAY: "what to say"'
 | 
				
			||||
            + "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)."
 | 
				
			||||
            + "\nEither do nothing, react, or say something but not both.\n\n"
 | 
				
			||||
        )
 | 
				
			||||
        full_result = self._generate_reaction(
 | 
				
			||||
            observation, call_to_action_template, now=now
 | 
				
			||||
        )
 | 
				
			||||
        result = full_result.strip().split("\n")[0]
 | 
				
			||||
        # AAA
 | 
				
			||||
        self.memory.save_context(
 | 
				
			||||
            {},
 | 
				
			||||
            {
 | 
				
			||||
                self.memory.add_memory_key: f"{self.name} observed "
 | 
				
			||||
                f"{observation} and reacted by {result}",
 | 
				
			||||
                self.memory.now_key: now,
 | 
				
			||||
            },
 | 
				
			||||
        )
 | 
				
			||||
        if "REACT:" in result:
 | 
				
			||||
            reaction = self._clean_response(result.split("REACT:")[-1])
 | 
				
			||||
            return False, f"{self.name} {reaction}"
 | 
				
			||||
        if "SAY:" in result:
 | 
				
			||||
            said_value = self._clean_response(result.split("SAY:")[-1])
 | 
				
			||||
            return True, f"{self.name} said {said_value}"
 | 
				
			||||
        else:
 | 
				
			||||
            return False, result
 | 
				
			||||
 | 
				
			||||
    def generate_dialogue_response(
 | 
				
			||||
        self, observation: str, now: Optional[datetime] = None
 | 
				
			||||
    ) -> Tuple[bool, str]:
 | 
				
			||||
        """React to a given observation."""
 | 
				
			||||
        call_to_action_template = (
 | 
				
			||||
            "What would {agent_name} say? To end the conversation, write:"
 | 
				
			||||
            ' GOODBYE: "what to say". Otherwise to continue the conversation,'
 | 
				
			||||
            ' write: SAY: "what to say next"\n\n'
 | 
				
			||||
        )
 | 
				
			||||
        full_result = self._generate_reaction(
 | 
				
			||||
            observation, call_to_action_template, now=now
 | 
				
			||||
        )
 | 
				
			||||
        result = full_result.strip().split("\n")[0]
 | 
				
			||||
        if "GOODBYE:" in result:
 | 
				
			||||
            farewell = self._clean_response(result.split("GOODBYE:")[-1])
 | 
				
			||||
            self.memory.save_context(
 | 
				
			||||
                {},
 | 
				
			||||
                {
 | 
				
			||||
                    self.memory.add_memory_key: f"{self.name} observed "
 | 
				
			||||
                    f"{observation} and said {farewell}",
 | 
				
			||||
                    self.memory.now_key: now,
 | 
				
			||||
                },
 | 
				
			||||
            )
 | 
				
			||||
            return False, f"{self.name} said {farewell}"
 | 
				
			||||
        if "SAY:" in result:
 | 
				
			||||
            response_text = self._clean_response(result.split("SAY:")[-1])
 | 
				
			||||
            self.memory.save_context(
 | 
				
			||||
                {},
 | 
				
			||||
                {
 | 
				
			||||
                    self.memory.add_memory_key: f"{self.name} observed "
 | 
				
			||||
                    f"{observation} and said {response_text}",
 | 
				
			||||
                    self.memory.now_key: now,
 | 
				
			||||
                },
 | 
				
			||||
            )
 | 
				
			||||
            return True, f"{self.name} said {response_text}"
 | 
				
			||||
        else:
 | 
				
			||||
            return False, result
 | 
				
			||||
 | 
				
			||||
    ######################################################
 | 
				
			||||
    # Agent stateful' summary methods.                   #
 | 
				
			||||
    # Each dialog or response prompt includes a header   #
 | 
				
			||||
    # summarizing the agent's self-description. This is  #
 | 
				
			||||
    # updated periodically through probing its memories  #
 | 
				
			||||
    ######################################################
 | 
				
			||||
    def _compute_agent_summary(self) -> str:
 | 
				
			||||
        """"""
 | 
				
			||||
        prompt = PromptTemplate.from_template(
 | 
				
			||||
            "How would you summarize {name}'s core characteristics given the"
 | 
				
			||||
            + " following statements:\n"
 | 
				
			||||
            + "{relevant_memories}"
 | 
				
			||||
            + "Do not embellish."
 | 
				
			||||
            + "\n\nSummary: "
 | 
				
			||||
        )
 | 
				
			||||
        # The agent seeks to think about their core characteristics.
 | 
				
			||||
        return (
 | 
				
			||||
            self.chain(prompt)
 | 
				
			||||
            .run(name=self.name, queries=[f"{self.name}'s core characteristics"])
 | 
				
			||||
            .strip()
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
    def get_summary(
 | 
				
			||||
        self, force_refresh: bool = False, now: Optional[datetime] = None
 | 
				
			||||
    ) -> str:
 | 
				
			||||
        """Return a descriptive summary of the agent."""
 | 
				
			||||
        current_time = datetime.now() if now is None else now
 | 
				
			||||
        since_refresh = (current_time - self.last_refreshed).seconds
 | 
				
			||||
        if (
 | 
				
			||||
            not self.summary
 | 
				
			||||
            or since_refresh >= self.summary_refresh_seconds
 | 
				
			||||
            or force_refresh
 | 
				
			||||
        ):
 | 
				
			||||
            self.summary = self._compute_agent_summary()
 | 
				
			||||
            self.last_refreshed = current_time
 | 
				
			||||
        age = self.age if self.age is not None else "N/A"
 | 
				
			||||
        return (
 | 
				
			||||
            f"Name: {self.name} (age: {age})"
 | 
				
			||||
            + f"\nInnate traits: {self.traits}"
 | 
				
			||||
            + f"\n{self.summary}"
 | 
				
			||||
        )
 | 
				
			||||
 | 
				
			||||
    def get_full_header(
 | 
				
			||||
        self, force_refresh: bool = False, now: Optional[datetime] = None
 | 
				
			||||
    ) -> str:
 | 
				
			||||
        """Return a full header of the agent's status, summary, and current time."""
 | 
				
			||||
        now = datetime.now() if now is None else now
 | 
				
			||||
        summary = self.get_summary(force_refresh=force_refresh, now=now)
 | 
				
			||||
        current_time_str = now.strftime("%B %d, %Y, %I:%M %p")
 | 
				
			||||
        return (
 | 
				
			||||
            f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}"
 | 
				
			||||
        )
 | 
				
			||||
@ -0,0 +1 @@
 | 
				
			||||
from swarms.utils.embeddings.base import Embeddings
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue