parent
3f1d078dd9
commit
2cf86acd6d
@ -0,0 +1,111 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from playground.demos.plant_biologist_swarm.prompts import (
|
||||
diagnoser_agent,
|
||||
disease_detector_agent,
|
||||
growth_predictor_agent,
|
||||
harvester_agent,
|
||||
treatment_recommender_agent,
|
||||
)
|
||||
|
||||
from swarms import Agent, GPT4VisionAPI, ConcurrentWorkflow
|
||||
|
||||
|
||||
# Load the OpenAI API key from the .env file
|
||||
load_dotenv()
|
||||
|
||||
# Initialize the OpenAI API key
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
|
||||
# llm = llm,
|
||||
llm = GPT4VisionAPI(
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
# Initialize Diagnoser Agent
|
||||
diagnoser_agent = Agent(
|
||||
agent_name="Diagnoser Agent",
|
||||
system_prompt=diagnoser_agent(),
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
# saved_state_path="diagnoser.json",
|
||||
multi_modal=True,
|
||||
autosave=True,
|
||||
)
|
||||
|
||||
# Initialize Harvester Agent
|
||||
harvester_agent = Agent(
|
||||
agent_name="Harvester Agent",
|
||||
system_prompt=harvester_agent(),
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
# saved_state_path="harvester.json",
|
||||
multi_modal=True,
|
||||
autosave=True,
|
||||
)
|
||||
|
||||
# Initialize Growth Predictor Agent
|
||||
growth_predictor_agent = Agent(
|
||||
agent_name="Growth Predictor Agent",
|
||||
system_prompt=growth_predictor_agent(),
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
# saved_state_path="growth_predictor.json",
|
||||
multi_modal=True,
|
||||
autosave=True,
|
||||
)
|
||||
|
||||
# Initialize Treatment Recommender Agent
|
||||
treatment_recommender_agent = Agent(
|
||||
agent_name="Treatment Recommender Agent",
|
||||
system_prompt=treatment_recommender_agent(),
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
# saved_state_path="treatment_recommender.json",
|
||||
multi_modal=True,
|
||||
autosave=True,
|
||||
)
|
||||
|
||||
# Initialize Disease Detector Agent
|
||||
disease_detector_agent = Agent(
|
||||
agent_name="Disease Detector Agent",
|
||||
system_prompt=disease_detector_agent(),
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
# saved_state_path="disease_detector.json",
|
||||
multi_modal=True,
|
||||
autosave=True,
|
||||
)
|
||||
agents = [
|
||||
diagnoser_agent,
|
||||
disease_detector_agent,
|
||||
treatment_recommender_agent,
|
||||
growth_predictor_agent,
|
||||
harvester_agent,
|
||||
]
|
||||
|
||||
|
||||
# Create the Concurrent workflow
|
||||
workflow = ConcurrentWorkflow(
|
||||
agents=agents,
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
workflow.run("Diagnose the plant disease.")
|
Loading…
Reference in new issue