From 30931f913cc27449372779876c4076be77b66081 Mon Sep 17 00:00:00 2001 From: Kye Date: Mon, 26 Jun 2023 23:34:56 -0400 Subject: [PATCH] omni --- swarms/agents/workers/omni_agent.py | 1713 +++++++++++++++++++++++++++ swarms/utils/utils.py | 61 +- 2 files changed, 1773 insertions(+), 1 deletion(-) diff --git a/swarms/agents/workers/omni_agent.py b/swarms/agents/workers/omni_agent.py index e69de29b..a74d15c5 100644 --- a/swarms/agents/workers/omni_agent.py +++ b/swarms/agents/workers/omni_agent.py @@ -0,0 +1,1713 @@ + +import base64 +import copy +from io import BytesIO +import io +import os +import random +import time +import traceback +import uuid +import requests +import re +import json +import logging +import argparse +import yaml +from PIL import Image, ImageDraw +from diffusers.utils import load_image +from pydub import AudioSegment +import threading +from queue import Queue +import flask +from flask import request, jsonify +import waitress +from flask_cors import CORS, cross_origin +from get_token_ids import get_token_ids_for_task_parsing, get_token_ids_for_choose_model, count_tokens, get_max_context_length +from huggingface_hub.inference_api import InferenceApi +from huggingface_hub.inference_api import ALL_TASKS + +parser = argparse.ArgumentParser() +parser.add_argument("--config", type=str, default="configs/config.default.yaml") +parser.add_argument("--mode", type=str, default="cli") +args = parser.parse_args() + +if __name__ != "__main__": + args.config = "configs/config.gradio.yaml" + args.mode = "gradio" + +config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader) + +os.makedirs("logs", exist_ok=True) +os.makedirs("public/images", exist_ok=True) +os.makedirs("public/audios", exist_ok=True) +os.makedirs("public/videos", exist_ok=True) + + +logger = logging.getLogger(__name__) +logger.setLevel(logging.DEBUG) + +handler = logging.StreamHandler() +formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') +handler.setFormatter(formatter) +if not config["debug"]: + handler.setLevel(logging.CRITICAL) +logger.addHandler(handler) + +log_file = config["log_file"] +if log_file: + filehandler = logging.FileHandler(log_file) + filehandler.setLevel(logging.DEBUG) + filehandler.setFormatter(formatter) + logger.addHandler(filehandler) + +LLM = config["model"] +use_completion = config["use_completion"] + +# consistent: wrong msra model name +LLM_encoding = LLM +if config["dev"] and LLM == "gpt-3.5-turbo": + LLM_encoding = "text-davinci-003" +task_parsing_highlight_ids = get_token_ids_for_task_parsing(LLM_encoding) +choose_model_highlight_ids = get_token_ids_for_choose_model(LLM_encoding) + +# ENDPOINT MODEL NAME +# /v1/chat/completions gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301 +# /v1/completions text-davinci-003, text-davinci-002, text-curie-001, text-babbage-001, text-ada-001, davinci, curie, babbage, ada + +if use_completion: + api_name = "completions" +else: + api_name = "chat/completions" + +API_TYPE = None +# priority: local > azure > openai +if "dev" in config and config["dev"]: + API_TYPE = "local" +elif "azure" in config: + API_TYPE = "azure" +elif "openai" in config: + API_TYPE = "openai" +else: + logger.warning(f"No endpoint specified in {args.config}. The endpoint will be set dynamically according to the client.") + +if args.mode in ["test", "cli"]: + assert API_TYPE, "Only server mode supports dynamic endpoint." + +API_KEY = None +API_ENDPOINT = None +if API_TYPE == "local": + API_ENDPOINT = f"{config['local']['endpoint']}/v1/{api_name}" +elif API_TYPE == "azure": + API_ENDPOINT = f"{config['azure']['base_url']}/openai/deployments/{config['azure']['deployment_name']}/{api_name}?api-version={config['azure']['api_version']}" + API_KEY = config["azure"]["api_key"] +elif API_TYPE == "openai": + API_ENDPOINT = f"https://api.openai.com/v1/{api_name}" + if config["openai"]["api_key"].startswith("sk-"): # Check for valid OpenAI key in config file + API_KEY = config["openai"]["api_key"] + elif "OPENAI_API_KEY" in os.environ and os.getenv("OPENAI_API_KEY").startswith("sk-"): # Check for environment variable OPENAI_API_KEY + API_KEY = os.getenv("OPENAI_API_KEY") + else: + raise ValueError(f"Incorrect OpenAI key. Please check your {args.config} file.") + +PROXY = None +if config["proxy"]: + PROXY = { + "https": config["proxy"], + } + +inference_mode = config["inference_mode"] + +# check the local_inference_endpoint +Model_Server = None +if inference_mode!="huggingface": + Model_Server = "http://" + config["local_inference_endpoint"]["host"] + ":" + str(config["local_inference_endpoint"]["port"]) + message = f"The server of local inference endpoints is not running, please start it first. (or using `inference_mode: huggingface` in {args.config} for a feature-limited experience)" + try: + r = requests.get(Model_Server + "/running") + if r.status_code != 200: + raise ValueError(message) + except: + raise ValueError(message) + + +parse_task_demos_or_presteps = open(config["demos_or_presteps"]["parse_task"], "r").read() +choose_model_demos_or_presteps = open(config["demos_or_presteps"]["choose_model"], "r").read() +response_results_demos_or_presteps = open(config["demos_or_presteps"]["response_results"], "r").read() + +parse_task_prompt = config["prompt"]["parse_task"] +choose_model_prompt = config["prompt"]["choose_model"] +response_results_prompt = config["prompt"]["response_results"] + +parse_task_tprompt = config["tprompt"]["parse_task"] +choose_model_tprompt = config["tprompt"]["choose_model"] +response_results_tprompt = config["tprompt"]["response_results"] + +MODELS = [json.loads(line) for line in open("data/p0_models.jsonl", "r").readlines()] +MODELS_MAP = {} +for model in MODELS: + tag = model["task"] + if tag not in MODELS_MAP: + MODELS_MAP[tag] = [] + MODELS_MAP[tag].append(model) +METADATAS = {} +for model in MODELS: + METADATAS[model["id"]] = model + +HUGGINGFACE_HEADERS = {} +if config["huggingface"]["token"] and config["huggingface"]["token"].startswith("hf_"): # Check for valid huggingface token in config file + HUGGINGFACE_HEADERS = { + "Authorization": f"Bearer {config['huggingface']['token']}", + } +elif "HUGGINGFACE_ACCESS_TOKEN" in os.environ and os.getenv("HUGGINGFACE_ACCESS_TOKEN").startswith("hf_"): # Check for environment variable HUGGINGFACE_ACCESS_TOKEN + HUGGINGFACE_HEADERS = { + "Authorization": f"Bearer {os.getenv('HUGGINGFACE_ACCESS_TOKEN')}", + } +else: + raise ValueError(f"Incorrect HuggingFace token. Please check your {args.config} file.") + +def convert_chat_to_completion(data): + messages = data.pop('messages', []) + tprompt = "" + if messages[0]['role'] == "system": + tprompt = messages[0]['content'] + messages = messages[1:] + final_prompt = "" + for message in messages: + if message['role'] == "user": + final_prompt += (""+ "user" + "\n" + message['content'] + "\n") + elif message['role'] == "assistant": + final_prompt += (""+ "assistant" + "\n" + message['content'] + "\n") + else: + final_prompt += (""+ "system" + "\n" + message['content'] + "\n") + final_prompt = tprompt + final_prompt + final_prompt = final_prompt + "assistant" + data["prompt"] = final_prompt + data['stop'] = data.get('stop', [""]) + data['max_tokens'] = data.get('max_tokens', max(get_max_context_length(LLM) - count_tokens(LLM_encoding, final_prompt), 1)) + return data + +def send_request(data): + api_key = data.pop("api_key") + api_type = data.pop("api_type") + api_endpoint = data.pop("api_endpoint") + if use_completion: + data = convert_chat_to_completion(data) + if api_type == "openai": + HEADER = { + "Authorization": f"Bearer {api_key}" + } + elif api_type == "azure": + HEADER = { + "api-key": api_key, + "Content-Type": "application/json" + } + else: + HEADER = None + response = requests.post(api_endpoint, json=data, headers=HEADER, proxies=PROXY) + if "error" in response.json(): + return response.json() + logger.debug(response.text.strip()) + if use_completion: + return response.json()["choices"][0]["text"].strip() + else: + return response.json()["choices"][0]["message"]["content"].strip() + +def replace_slot(text, entries): + for key, value in entries.items(): + if not isinstance(value, str): + value = str(value) + text = text.replace("{{" + key +"}}", value.replace('"', "'").replace('\n', "")) + return text + +def find_json(s): + s = s.replace("\'", "\"") + start = s.find("{") + end = s.rfind("}") + res = s[start:end+1] + res = res.replace("\n", "") + return res + +def field_extract(s, field): + try: + field_rep = re.compile(f'{field}.*?:.*?"(.*?)"', re.IGNORECASE) + extracted = field_rep.search(s).group(1).replace("\"", "\'") + except: + field_rep = re.compile(f'{field}:\ *"(.*?)"', re.IGNORECASE) + extracted = field_rep.search(s).group(1).replace("\"", "\'") + return extracted + +def get_id_reason(choose_str): + reason = field_extract(choose_str, "reason") + id = field_extract(choose_str, "id") + choose = {"id": id, "reason": reason} + return id.strip(), reason.strip(), choose + +def record_case(success, **args): + if success: + f = open("logs/log_success.jsonl", "a") + else: + f = open("logs/log_fail.jsonl", "a") + log = args + f.write(json.dumps(log) + "\n") + f.close() + +def image_to_bytes(img_url): + img_byte = io.BytesIO() + type = img_url.split(".")[-1] + load_image(img_url).save(img_byte, format="png") + img_data = img_byte.getvalue() + return img_data + +def resource_has_dep(command): + args = command["args"] + for _, v in args.items(): + if "" in v: + return True + return False + +def fix_dep(tasks): + for task in tasks: + args = task["args"] + task["dep"] = [] + for k, v in args.items(): + if "" in v: + dep_task_id = int(v.split("-")[1]) + if dep_task_id not in task["dep"]: + task["dep"].append(dep_task_id) + if len(task["dep"]) == 0: + task["dep"] = [-1] + return tasks + +def unfold(tasks): + flag_unfold_task = False + try: + for task in tasks: + for key, value in task["args"].items(): + if "" in value: + generated_items = value.split(",") + if len(generated_items) > 1: + flag_unfold_task = True + for item in generated_items: + new_task = copy.deepcopy(task) + dep_task_id = int(item.split("-")[1]) + new_task["dep"] = [dep_task_id] + new_task["args"][key] = item + tasks.append(new_task) + tasks.remove(task) + except Exception as e: + print(e) + traceback.print_exc() + logger.debug("unfold task failed.") + + if flag_unfold_task: + logger.debug(f"unfold tasks: {tasks}") + + return tasks + +def chitchat(messages, api_key, api_type, api_endpoint): + data = { + "model": LLM, + "messages": messages, + "api_key": api_key, + "api_type": api_type, + "api_endpoint": api_endpoint + } + return send_request(data) + +def parse_task(context, input, api_key, api_type, api_endpoint): + demos_or_presteps = parse_task_demos_or_presteps + messages = json.loads(demos_or_presteps) + messages.insert(0, {"role": "system", "content": parse_task_tprompt}) + + # cut chat logs + start = 0 + while start <= len(context): + history = context[start:] + prompt = replace_slot(parse_task_prompt, { + "input": input, + "context": history + }) + messages.append({"role": "user", "content": prompt}) + history_text = "\nuser".join([m["content"] for m in messages]) + num = count_tokens(LLM_encoding, history_text) + if get_max_context_length(LLM) - num > 800: + break + messages.pop() + start += 2 + + logger.debug(messages) + data = { + "model": LLM, + "messages": messages, + "temperature": 0, + "logit_bias": {item: config["logit_bias"]["parse_task"] for item in task_parsing_highlight_ids}, + "api_key": api_key, + "api_type": api_type, + "api_endpoint": api_endpoint + } + return send_request(data) + +def choose_model(input, task, metas, api_key, api_type, api_endpoint): + prompt = replace_slot(choose_model_prompt, { + "input": input, + "task": task, + "metas": metas, + }) + demos_or_presteps = replace_slot(choose_model_demos_or_presteps, { + "input": input, + "task": task, + "metas": metas + }) + messages = json.loads(demos_or_presteps) + messages.insert(0, {"role": "system", "content": choose_model_tprompt}) + messages.append({"role": "user", "content": prompt}) + logger.debug(messages) + data = { + "model": LLM, + "messages": messages, + "temperature": 0, + "logit_bias": {item: config["logit_bias"]["choose_model"] for item in choose_model_highlight_ids}, # 5 + "api_key": api_key, + "api_type": api_type, + "api_endpoint": api_endpoint + } + return send_request(data) + + +def response_results(input, results, api_key, api_type, api_endpoint): + results = [v for k, v in sorted(results.items(), key=lambda item: item[0])] + prompt = replace_slot(response_results_prompt, { + "input": input, + }) + demos_or_presteps = replace_slot(response_results_demos_or_presteps, { + "input": input, + "processes": results + }) + messages = json.loads(demos_or_presteps) + messages.insert(0, {"role": "system", "content": response_results_tprompt}) + messages.append({"role": "user", "content": prompt}) + logger.debug(messages) + data = { + "model": LLM, + "messages": messages, + "temperature": 0, + "api_key": api_key, + "api_type": api_type, + "api_endpoint": api_endpoint + } + return send_request(data) + +def huggingface_model_inference(model_id, data, task): + task_url = f"https://api-inference.huggingface.co/models/{model_id}" # InferenceApi does not yet support some tasks + inference = InferenceApi(repo_id=model_id, token=config["huggingface"]["token"]) + + # NLP tasks + if task == "question-answering": + inputs = {"question": data["text"], "context": (data["context"] if "context" in data else "" )} + result = inference(inputs) + if task == "sentence-similarity": + inputs = {"source_sentence": data["text1"], "target_sentence": data["text2"]} + result = inference(inputs) + if task in ["text-classification", "token-classification", "text2text-generation", "summarization", "translation", "conversational", "text-generation"]: + inputs = data["text"] + result = inference(inputs) + + # CV tasks + if task == "visual-question-answering" or task == "document-question-answering": + img_url = data["image"] + text = data["text"] + img_data = image_to_bytes(img_url) + img_base64 = base64.b64encode(img_data).decode("utf-8") + json_data = {} + json_data["inputs"] = {} + json_data["inputs"]["question"] = text + json_data["inputs"]["image"] = img_base64 + result = requests.post(task_url, headers=HUGGINGFACE_HEADERS, json=json_data).json() + # result = inference(inputs) # not support + + if task == "image-to-image": + img_url = data["image"] + img_data = image_to_bytes(img_url) + # result = inference(data=img_data) # not support + HUGGINGFACE_HEADERS["Content-Length"] = str(len(img_data)) + r = requests.post(task_url, headers=HUGGINGFACE_HEADERS, data=img_data) + result = r.json() + if "path" in result: + result["generated image"] = result.pop("path") + + if task == "text-to-image": + inputs = data["text"] + img = inference(inputs) + name = str(uuid.uuid4())[:4] + img.save(f"public/images/{name}.png") + result = {} + result["generated image"] = f"/images/{name}.png" + + if task == "image-segmentation": + img_url = data["image"] + img_data = image_to_bytes(img_url) + image = Image.open(BytesIO(img_data)) + predicted = inference(data=img_data) + colors = [] + for i in range(len(predicted)): + colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 155)) + for i, pred in enumerate(predicted): + label = pred["label"] + mask = pred.pop("mask").encode("utf-8") + mask = base64.b64decode(mask) + mask = Image.open(BytesIO(mask), mode='r') + mask = mask.convert('L') + + layer = Image.new('RGBA', mask.size, colors[i]) + image.paste(layer, (0, 0), mask) + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + result = {} + result["generated image"] = f"/images/{name}.jpg" + result["predicted"] = predicted + + if task == "object-detection": + img_url = data["image"] + img_data = image_to_bytes(img_url) + predicted = inference(data=img_data) + image = Image.open(BytesIO(img_data)) + draw = ImageDraw.Draw(image) + labels = list(item['label'] for item in predicted) + color_map = {} + for label in labels: + if label not in color_map: + color_map[label] = (random.randint(0, 255), random.randint(0, 100), random.randint(0, 255)) + for label in predicted: + box = label["box"] + draw.rectangle(((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])), outline=color_map[label["label"]], width=2) + draw.text((box["xmin"]+5, box["ymin"]-15), label["label"], fill=color_map[label["label"]]) + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + result = {} + result["generated image"] = f"/images/{name}.jpg" + result["predicted"] = predicted + + if task in ["image-classification"]: + img_url = data["image"] + img_data = image_to_bytes(img_url) + result = inference(data=img_data) + + if task == "image-to-text": + img_url = data["image"] + img_data = image_to_bytes(img_url) + HUGGINGFACE_HEADERS["Content-Length"] = str(len(img_data)) + r = requests.post(task_url, headers=HUGGINGFACE_HEADERS, data=img_data, proxies=PROXY) + result = {} + if "generated_text" in r.json()[0]: + result["generated text"] = r.json()[0].pop("generated_text") + + # AUDIO tasks + if task == "text-to-speech": + inputs = data["text"] + response = inference(inputs, raw_response=True) + # response = requests.post(task_url, headers=HUGGINGFACE_HEADERS, json={"inputs": text}) + name = str(uuid.uuid4())[:4] + with open(f"public/audios/{name}.flac", "wb") as f: + f.write(response.content) + result = {"generated audio": f"/audios/{name}.flac"} + if task in ["automatic-speech-recognition", "audio-to-audio", "audio-classification"]: + audio_url = data["audio"] + audio_data = requests.get(audio_url, timeout=10).content + response = inference(data=audio_data, raw_response=True) + result = response.json() + if task == "audio-to-audio": + content = None + type = None + for k, v in result[0].items(): + if k == "blob": + content = base64.b64decode(v.encode("utf-8")) + if k == "content-type": + type = "audio/flac".split("/")[-1] + audio = AudioSegment.from_file(BytesIO(content)) + name = str(uuid.uuid4())[:4] + audio.export(f"public/audios/{name}.{type}", format=type) + result = {"generated audio": f"/audios/{name}.{type}"} + return result + +def local_model_inference(model_id, data, task): + task_url = f"{Model_Server}/models/{model_id}" + + # contronlet + if model_id.startswith("lllyasviel/sd-controlnet-"): + img_url = data["image"] + text = data["text"] + response = requests.post(task_url, json={"img_url": img_url, "text": text}) + results = response.json() + if "path" in results: + results["generated image"] = results.pop("path") + return results + if model_id.endswith("-control"): + img_url = data["image"] + response = requests.post(task_url, json={"img_url": img_url}) + results = response.json() + if "path" in results: + results["generated image"] = results.pop("path") + return results + + if task == "text-to-video": + response = requests.post(task_url, json=data) + results = response.json() + if "path" in results: + results["generated video"] = results.pop("path") + return results + + # NLP tasks + if task == "question-answering" or task == "sentence-similarity": + response = requests.post(task_url, json=data) + return response.json() + if task in ["text-classification", "token-classification", "text2text-generation", "summarization", "translation", "conversational", "text-generation"]: + response = requests.post(task_url, json=data) + return response.json() + + # CV tasks + if task == "depth-estimation": + img_url = data["image"] + response = requests.post(task_url, json={"img_url": img_url}) + results = response.json() + if "path" in results: + results["generated image"] = results.pop("path") + return results + if task == "image-segmentation": + img_url = data["image"] + response = requests.post(task_url, json={"img_url": img_url}) + results = response.json() + results["generated image"] = results.pop("path") + return results + if task == "image-to-image": + img_url = data["image"] + response = requests.post(task_url, json={"img_url": img_url}) + results = response.json() + if "path" in results: + results["generated image"] = results.pop("path") + return results + if task == "text-to-image": + response = requests.post(task_url, json=data) + results = response.json() + if "path" in results: + results["generated image"] = results.pop("path") + return results + if task == "object-detection": + img_url = data["image"] + response = requests.post(task_url, json={"img_url": img_url}) + predicted = response.json() + if "error" in predicted: + return predicted + image = load_image(img_url) + draw = ImageDraw.Draw(image) + labels = list(item['label'] for item in predicted) + color_map = {} + for label in labels: + if label not in color_map: + color_map[label] = (random.randint(0, 255), random.randint(0, 100), random.randint(0, 255)) + for label in predicted: + box = label["box"] + draw.rectangle(((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])), outline=color_map[label["label"]], width=2) + draw.text((box["xmin"]+5, box["ymin"]-15), label["label"], fill=color_map[label["label"]]) + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + results = {} + results["generated image"] = f"/images/{name}.jpg" + results["predicted"] = predicted + return results + if task in ["image-classification", "image-to-text", "document-question-answering", "visual-question-answering"]: + img_url = data["image"] + text = None + if "text" in data: + text = data["text"] + response = requests.post(task_url, json={"img_url": img_url, "text": text}) + results = response.json() + return results + # AUDIO tasks + if task == "text-to-speech": + response = requests.post(task_url, json=data) + results = response.json() + if "path" in results: + results["generated audio"] = results.pop("path") + return results + if task in ["automatic-speech-recognition", "audio-to-audio", "audio-classification"]: + audio_url = data["audio"] + response = requests.post(task_url, json={"audio_url": audio_url}) + return response.json() + + +def model_inference(model_id, data, hosted_on, task): + if hosted_on == "unknown": + localStatusUrl = f"{Model_Server}/status/{model_id}" + r = requests.get(localStatusUrl) + logger.debug("Local Server Status: " + str(r.json())) + if r.status_code == 200 and "loaded" in r.json() and r.json()["loaded"]: + hosted_on = "local" + else: + huggingfaceStatusUrl = f"https://api-inference.huggingface.co/status/{model_id}" + r = requests.get(huggingfaceStatusUrl, headers=HUGGINGFACE_HEADERS, proxies=PROXY) + logger.debug("Huggingface Status: " + str(r.json())) + if r.status_code == 200 and "loaded" in r.json() and r.json()["loaded"]: + hosted_on = "huggingface" + try: + if hosted_on == "local": + inference_result = local_model_inference(model_id, data, task) + elif hosted_on == "huggingface": + inference_result = huggingface_model_inference(model_id, data, task) + except Exception as e: + print(e) + traceback.print_exc() + inference_result = {"error":{"message": str(e)}} + return inference_result + + +def get_model_status(model_id, url, headers, queue = None): + endpoint_type = "huggingface" if "huggingface" in url else "local" + if "huggingface" in url: + r = requests.get(url, headers=headers, proxies=PROXY) + else: + r = requests.get(url) + if r.status_code == 200 and "loaded" in r.json() and r.json()["loaded"]: + if queue: + queue.put((model_id, True, endpoint_type)) + return True + else: + if queue: + queue.put((model_id, False, None)) + return False + +def get_avaliable_models(candidates, topk=5): + all_available_models = {"local": [], "huggingface": []} + threads = [] + result_queue = Queue() + + for candidate in candidates: + model_id = candidate["id"] + + if inference_mode != "local": + huggingfaceStatusUrl = f"https://api-inference.huggingface.co/status/{model_id}" + thread = threading.Thread(target=get_model_status, args=(model_id, huggingfaceStatusUrl, HUGGINGFACE_HEADERS, result_queue)) + threads.append(thread) + thread.start() + + if inference_mode != "huggingface" and config["local_deployment"] != "minimal": + localStatusUrl = f"{Model_Server}/status/{model_id}" + thread = threading.Thread(target=get_model_status, args=(model_id, localStatusUrl, {}, result_queue)) + threads.append(thread) + thread.start() + + result_count = len(threads) + while result_count: + model_id, status, endpoint_type = result_queue.get() + if status and model_id not in all_available_models: + all_available_models[endpoint_type].append(model_id) + if len(all_available_models["local"] + all_available_models["huggingface"]) >= topk: + break + result_count -= 1 + + for thread in threads: + thread.join() + + return all_available_models + +def collect_result(command, choose, inference_result): + result = {"task": command} + result["inference result"] = inference_result + result["choose model result"] = choose + logger.debug(f"inference result: {inference_result}") + return result + + +def run_task(input, command, results, api_key, api_type, api_endpoint): + id = command["id"] + args = command["args"] + task = command["task"] + deps = command["dep"] + if deps[0] != -1: + dep_tasks = [results[dep] for dep in deps] + else: + dep_tasks = [] + + logger.debug(f"Run task: {id} - {task}") + logger.debug("Deps: " + json.dumps(dep_tasks)) + + if deps[0] != -1: + if "image" in args and "-" in args["image"]: + resource_id = int(args["image"].split("-")[1]) + if "generated image" in results[resource_id]["inference result"]: + args["image"] = results[resource_id]["inference result"]["generated image"] + if "audio" in args and "-" in args["audio"]: + resource_id = int(args["audio"].split("-")[1]) + if "generated audio" in results[resource_id]["inference result"]: + args["audio"] = results[resource_id]["inference result"]["generated audio"] + if "text" in args and "-" in args["text"]: + resource_id = int(args["text"].split("-")[1]) + if "generated text" in results[resource_id]["inference result"]: + args["text"] = results[resource_id]["inference result"]["generated text"] + + text = image = audio = None + for dep_task in dep_tasks: + if "generated text" in dep_task["inference result"]: + text = dep_task["inference result"]["generated text"] + logger.debug("Detect the generated text of dependency task (from results):" + text) + elif "text" in dep_task["task"]["args"]: + text = dep_task["task"]["args"]["text"] + logger.debug("Detect the text of dependency task (from args): " + text) + if "generated image" in dep_task["inference result"]: + image = dep_task["inference result"]["generated image"] + logger.debug("Detect the generated image of dependency task (from results): " + image) + elif "image" in dep_task["task"]["args"]: + image = dep_task["task"]["args"]["image"] + logger.debug("Detect the image of dependency task (from args): " + image) + if "generated audio" in dep_task["inference result"]: + audio = dep_task["inference result"]["generated audio"] + logger.debug("Detect the generated audio of dependency task (from results): " + audio) + elif "audio" in dep_task["task"]["args"]: + audio = dep_task["task"]["args"]["audio"] + logger.debug("Detect the audio of dependency task (from args): " + audio) + + if "image" in args and "" in args["image"]: + if image: + args["image"] = image + if "audio" in args and "" in args["audio"]: + if audio: + args["audio"] = audio + if "text" in args and "" in args["text"]: + if text: + args["text"] = text + + for resource in ["image", "audio"]: + if resource in args and not args[resource].startswith("public/") and len(args[resource]) > 0 and not args[resource].startswith("http"): + args[resource] = f"public/{args[resource]}" + + if "-text-to-image" in command['task'] and "text" not in args: + logger.debug("control-text-to-image task, but text is empty, so we use control-generation instead.") + control = task.split("-")[0] + + if control == "seg": + task = "image-segmentation" + command['task'] = task + elif control == "depth": + task = "depth-estimation" + command['task'] = task + else: + task = f"{control}-control" + + command["args"] = args + logger.debug(f"parsed task: {command}") + + if task.endswith("-text-to-image") or task.endswith("-control"): + if inference_mode != "huggingface": + if task.endswith("-text-to-image"): + control = task.split("-")[0] + best_model_id = f"lllyasviel/sd-controlnet-{control}" + else: + best_model_id = task + hosted_on = "local" + reason = "ControlNet is the best model for this task." + choose = {"id": best_model_id, "reason": reason} + logger.debug(f"chosen model: {choose}") + else: + logger.warning(f"Task {command['task']} is not available. ControlNet need to be deployed locally.") + record_case(success=False, **{"input": input, "task": command, "reason": f"Task {command['task']} is not available. ControlNet need to be deployed locally.", "op":"message"}) + inference_result = {"error": f"service related to ControlNet is not available."} + results[id] = collect_result(command, "", inference_result) + return False + elif task in ["summarization", "translation", "conversational", "text-generation", "text2text-generation"]: # ChatGPT Can do + best_model_id = "ChatGPT" + reason = "ChatGPT performs well on some NLP tasks as well." + choose = {"id": best_model_id, "reason": reason} + messages = [{ + "role": "user", + "content": f"[ {input} ] contains a task in JSON format {command}. Now you are a {command['task']} system, the arguments are {command['args']}. Just help me do {command['task']} and give me the result. The result must be in text form without any urls." + }] + response = chitchat(messages, api_key, api_type, api_endpoint) + results[id] = collect_result(command, choose, {"response": response}) + return True + else: + if task not in MODELS_MAP: + logger.warning(f"no available models on {task} task.") + record_case(success=False, **{"input": input, "task": command, "reason": f"task not support: {command['task']}", "op":"message"}) + inference_result = {"error": f"{command['task']} not found in available tasks."} + results[id] = collect_result(command, "", inference_result) + return False + + candidates = MODELS_MAP[task][:10] + all_avaliable_models = get_avaliable_models(candidates, config["num_candidate_models"]) + all_avaliable_model_ids = all_avaliable_models["local"] + all_avaliable_models["huggingface"] + logger.debug(f"avaliable models on {command['task']}: {all_avaliable_models}") + + if len(all_avaliable_model_ids) == 0: + logger.warning(f"no available models on {command['task']}") + record_case(success=False, **{"input": input, "task": command, "reason": f"no available models: {command['task']}", "op":"message"}) + inference_result = {"error": f"no available models on {command['task']} task."} + results[id] = collect_result(command, "", inference_result) + return False + + if len(all_avaliable_model_ids) == 1: + best_model_id = all_avaliable_model_ids[0] + hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface" + reason = "Only one model available." + choose = {"id": best_model_id, "reason": reason} + logger.debug(f"chosen model: {choose}") + else: + cand_models_info = [ + { + "id": model["id"], + "inference endpoint": all_avaliable_models.get( + "local" if model["id"] in all_avaliable_models["local"] else "huggingface" + ), + "likes": model.get("likes"), + "description": model.get("description", "")[:config["max_description_length"]], + # "language": model.get("meta").get("language") if model.get("meta") else None, + "tags": model.get("meta").get("tags") if model.get("meta") else None, + } + for model in candidates + if model["id"] in all_avaliable_model_ids + ] + + choose_str = choose_model(input, command, cand_models_info, api_key, api_type, api_endpoint) + logger.debug(f"chosen model: {choose_str}") + try: + choose = json.loads(choose_str) + reason = choose["reason"] + best_model_id = choose["id"] + hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface" + except Exception as e: + logger.warning(f"the response [ {choose_str} ] is not a valid JSON, try to find the model id and reason in the response.") + choose_str = find_json(choose_str) + best_model_id, reason, choose = get_id_reason(choose_str) + hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface" + inference_result = model_inference(best_model_id, args, hosted_on, command['task']) + + if "error" in inference_result: + logger.warning(f"Inference error: {inference_result['error']}") + record_case(success=False, **{"input": input, "task": command, "reason": f"inference error: {inference_result['error']}", "op":"message"}) + results[id] = collect_result(command, choose, inference_result) + return False + + results[id] = collect_result(command, choose, inference_result) + return True + +def chat_huggingface(messages, api_key, api_type, api_endpoint, return_planning = False, return_results = False): + start = time.time() + context = messages[:-1] + input = messages[-1]["content"] + logger.info("*"*80) + logger.info(f"input: {input}") + + task_str = parse_task(context, input, api_key, api_type, api_endpoint) + + if "error" in task_str: + record_case(success=False, **{"input": input, "task": task_str, "reason": f"task parsing error: {task_str['error']['message']}", "op":"report message"}) + return {"message": task_str["error"]["message"]} + + task_str = task_str.strip() + logger.info(task_str) + + try: + tasks = json.loads(task_str) + except Exception as e: + logger.debug(e) + response = chitchat(messages, api_key, api_type, api_endpoint) + record_case(success=False, **{"input": input, "task": task_str, "reason": "task parsing fail", "op":"chitchat"}) + return {"message": response} + + if task_str == "[]": # using LLM response for empty task + record_case(success=False, **{"input": input, "task": [], "reason": "task parsing fail: empty", "op": "chitchat"}) + response = chitchat(messages, api_key, api_type, api_endpoint) + return {"message": response} + + if len(tasks) == 1 and tasks[0]["task"] in ["summarization", "translation", "conversational", "text-generation", "text2text-generation"]: + record_case(success=True, **{"input": input, "task": tasks, "reason": "chitchat tasks", "op": "chitchat"}) + response = chitchat(messages, api_key, api_type, api_endpoint) + return {"message": response} + + tasks = unfold(tasks) + tasks = fix_dep(tasks) + logger.debug(tasks) + + if return_planning: + return tasks + + results = {} + threads = [] + tasks = tasks[:] + d = dict() + retry = 0 + while True: + num_thread = len(threads) + for task in tasks: + # logger.debug(f"d.keys(): {d.keys()}, dep: {dep}") + for dep_id in task["dep"]: + if dep_id >= task["id"]: + task["dep"] = [-1] + break + dep = task["dep"] + if dep[0] == -1 or len(list(set(dep).intersection(d.keys()))) == len(dep): + tasks.remove(task) + thread = threading.Thread(target=run_task, args=(input, task, d, api_key, api_type, api_endpoint)) + thread.start() + threads.append(thread) + if num_thread == len(threads): + time.sleep(0.5) + retry += 1 + if retry > 160: + logger.debug("User has waited too long, Loop break.") + break + if len(tasks) == 0: + break + for thread in threads: + thread.join() + + results = d.copy() + + logger.debug(results) + if return_results: + return results + + response = response_results(input, results, api_key, api_type, api_endpoint).strip() + + end = time.time() + during = end - start + + answer = {"message": response} + record_case(success=True, **{"input": input, "task": task_str, "results": results, "response": response, "during": during, "op":"response"}) + logger.info(f"response: {response}") + return answer + +def test(): + # single round examples + inputs = [ + "Given a collection of image A: /examples/a.jpg, B: /examples/b.jpg, C: /examples/c.jpg, please tell me how many zebras in these picture?" + "Can you give me a picture of a small bird flying in the sky with trees and clouds. Generate a high definition image if possible.", + "Please answer all the named entities in the sentence: Iron Man is a superhero appearing in American comic books published by Marvel Comics. The character was co-created by writer and editor Stan Lee, developed by scripter Larry Lieber, and designed by artists Don Heck and Jack Kirby.", + "please dub for me: 'Iron Man is a superhero appearing in American comic books published by Marvel Comics. The character was co-created by writer and editor Stan Lee, developed by scripter Larry Lieber, and designed by artists Don Heck and Jack Kirby.'" + "Given an image: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg, please answer the question: What is on top of the building?", + "Please generate a canny image based on /examples/f.jpg" + ] + + for input in inputs: + messages = [{"role": "user", "content": input}] + chat_huggingface(messages, API_KEY, API_TYPE, API_ENDPOINT, return_planning = False, return_results = False) + + # multi rounds example + messages = [ + {"role": "user", "content": "Please generate a canny image based on /examples/f.jpg"}, + {"role": "assistant", "content": """Sure. I understand your request. Based on the inference results of the models, I have generated a canny image for you. The workflow I used is as follows: First, I used the image-to-text model (nlpconnect/vit-gpt2-image-captioning) to convert the image /examples/f.jpg to text. The generated text is "a herd of giraffes and zebras grazing in a field". Second, I used the canny-control model (canny-control) to generate a canny image from the text. Unfortunately, the model failed to generate the canny image. Finally, I used the canny-text-to-image model (lllyasviel/sd-controlnet-canny) to generate a canny image from the text. The generated image is located at /images/f16d.png. I hope this answers your request. Is there anything else I can help you with?"""}, + {"role": "user", "content": """then based on the above canny image and a prompt "a photo of a zoo", generate a new image."""}, + ] + chat_huggingface(messages, API_KEY, API_TYPE, API_ENDPOINT, return_planning = False, return_results = False) + +def cli(): + messages = [] + print("Welcome to Jarvis! A collaborative system that consists of an LLM as the controller and numerous expert models as collaborative executors. Jarvis can plan tasks, schedule Hugging Face models, generate friendly responses based on your requests, and help you with many things. Please enter your request (`exit` to exit).") + while True: + message = input("[ User ]: ") + if message == "exit": + break + messages.append({"role": "user", "content": message}) + answer = chat_huggingface(messages, API_KEY, API_TYPE, API_ENDPOINT, return_planning=False, return_results=False) + print("[ Jarvis ]: ", answer["message"]) + messages.append({"role": "assistant", "content": answer["message"]}) + + +def server(): + http_listen = config["http_listen"] + host = http_listen["host"] + port = http_listen["port"] + + app = flask.Flask(__name__, static_folder="public", static_url_path="/") + app.config['DEBUG'] = False + CORS(app) + + @cross_origin() + @app.route('/tasks', methods=['POST']) + def tasks(): + data = request.get_json() + messages = data["messages"] + api_key = data.get("api_key", API_KEY) + api_endpoint = data.get("api_endpoint", API_ENDPOINT) + api_type = data.get("api_type", API_TYPE) + if api_key is None or api_type is None or api_endpoint is None: + return jsonify({"error": "Please provide api_key, api_type and api_endpoint"}) + response = chat_huggingface(messages, api_key, api_type, api_endpoint, return_planning=True) + return jsonify(response) + + @cross_origin() + @app.route('/results', methods=['POST']) + def results(): + data = request.get_json() + messages = data["messages"] + api_key = data.get("api_key", API_KEY) + api_endpoint = data.get("api_endpoint", API_ENDPOINT) + api_type = data.get("api_type", API_TYPE) + if api_key is None or api_type is None or api_endpoint is None: + return jsonify({"error": "Please provide api_key, api_type and api_endpoint"}) + response = chat_huggingface(messages, api_key, api_type, api_endpoint, return_results=True) + return jsonify(response) + + @cross_origin() + @app.route('/hugginggpt', methods=['POST']) + def chat(): + data = request.get_json() + messages = data["messages"] + api_key = data.get("api_key", API_KEY) + api_endpoint = data.get("api_endpoint", API_ENDPOINT) + api_type = data.get("api_type", API_TYPE) + if api_key is None or api_type is None or api_endpoint is None: + return jsonify({"error": "Please provide api_key, api_type and api_endpoint"}) + response = chat_huggingface(messages, api_key, api_type, api_endpoint) + return jsonify(response) + print("server running...") + waitress.serve(app, host=host, port=port) + +if __name__ == "__main__": + if args.mode == "test": + test() + elif args.mode == "server": + server() + elif args.mode == "cli": + cli() +########################## => awesome chat + + + + +########################## => models server +import argparse +import logging +import random +import uuid +import numpy as np +from transformers import pipeline +from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler +from diffusers.utils import load_image +from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler +from diffusers.utils import export_to_video +from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5ForSpeechToSpeech +from transformers import BlipProcessor, BlipForConditionalGeneration +from transformers import TrOCRProcessor, VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer +from datasets import load_dataset +from PIL import Image +import flask +from flask import request, jsonify +import waitress +from flask_cors import CORS +import io +from torchvision import transforms +import torch +import torchaudio +from speechbrain.pretrained import WaveformEnhancement +import joblib +from huggingface_hub import hf_hub_url, cached_download +from transformers import AutoImageProcessor, TimesformerForVideoClassification +from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation, AutoFeatureExtractor +from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector, CannyDetector, MidasDetector +from controlnet_aux.open_pose.body import Body +from controlnet_aux.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large +from controlnet_aux.hed import Network +from transformers import DPTForDepthEstimation, DPTFeatureExtractor +import warnings +import time +from espnet2.bin.tts_inference import Text2Speech +import soundfile as sf +from asteroid.models import BaseModel +import traceback +import os +import yaml + +warnings.filterwarnings("ignore") + +parser = argparse.ArgumentParser() +parser.add_argument("--config", type=str, default="configs/config.default.yaml") +args = parser.parse_args() + +logger = logging.getLogger(__name__) +logger.setLevel(logging.INFO) +handler = logging.StreamHandler() +handler.setLevel(logging.INFO) +formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') +handler.setFormatter(formatter) +logger.addHandler(handler) + +config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader) + +# host = config["local_inference_endpoint"]["host"] +port = config["local_inference_endpoint"]["port"] + +local_deployment = config["local_deployment"] +device = config.get("device", "cuda:0") + +PROXY = None +if config["proxy"]: + PROXY = { + "https": config["proxy"], + } + +app = flask.Flask(__name__) +CORS(app) + +start = time.time() + +local_fold = "models" +# if args.config.endswith(".dev"): +# local_fold = "models_dev" + + +def load_pipes(local_deployment): + other_pipes = {} + standard_pipes = {} + controlnet_sd_pipes = {} + if local_deployment in ["full"]: + other_pipes = { + "nlpconnect/vit-gpt2-image-captioning":{ + "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"), + "feature_extractor": ViTImageProcessor.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"), + "tokenizer": AutoTokenizer.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"), + "device": device + }, + # "Salesforce/blip-image-captioning-large": { + # "model": BlipForConditionalGeneration.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"), + # "processor": BlipProcessor.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"), + # "device": device + # }, + "damo-vilab/text-to-video-ms-1.7b": { + "model": DiffusionPipeline.from_pretrained(f"{local_fold}/damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"), + "device": device + }, + # "facebook/maskformer-swin-large-ade": { + # "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-large-ade"), + # "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"), + # "device": device + # }, + # "microsoft/trocr-base-printed": { + # "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"), + # "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"), + # "device": device + # }, + # "microsoft/trocr-base-handwritten": { + # "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"), + # "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"), + # "device": device + # }, + "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": { + "model": BaseModel.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"), + "device": device + }, + "espnet/kan-bayashi_ljspeech_vits": { + "model": Text2Speech.from_pretrained(f"espnet/kan-bayashi_ljspeech_vits"), + "device": device + }, + "lambdalabs/sd-image-variations-diffusers": { + "model": DiffusionPipeline.from_pretrained(f"{local_fold}/lambdalabs/sd-image-variations-diffusers"), #torch_dtype=torch.float16 + "device": device + }, + # "CompVis/stable-diffusion-v1-4": { + # "model": DiffusionPipeline.from_pretrained(f"{local_fold}/CompVis/stable-diffusion-v1-4"), + # "device": device + # }, + # "stabilityai/stable-diffusion-2-1": { + # "model": DiffusionPipeline.from_pretrained(f"{local_fold}/stabilityai/stable-diffusion-2-1"), + # "device": device + # }, + "runwayml/stable-diffusion-v1-5": { + "model": DiffusionPipeline.from_pretrained(f"{local_fold}/runwayml/stable-diffusion-v1-5"), + "device": device + }, + # "microsoft/speecht5_tts":{ + # "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"), + # "model": SpeechT5ForTextToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"), + # "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"), + # "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"), + # "device": device + # }, + # "speechbrain/mtl-mimic-voicebank": { + # "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"), + # "device": device + # }, + "microsoft/speecht5_vc":{ + "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"), + "model": SpeechT5ForSpeechToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"), + "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"), + "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"), + "device": device + }, + # "julien-c/wine-quality": { + # "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib"))) + # }, + # "facebook/timesformer-base-finetuned-k400": { + # "processor": AutoImageProcessor.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"), + # "model": TimesformerForVideoClassification.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"), + # "device": device + # }, + "facebook/maskformer-swin-base-coco": { + "feature_extractor": MaskFormerFeatureExtractor.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"), + "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"), + "device": device + }, + "Intel/dpt-hybrid-midas": { + "model": DPTForDepthEstimation.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas", low_cpu_mem_usage=True), + "feature_extractor": DPTFeatureExtractor.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas"), + "device": device + } + } + + if local_deployment in ["full", "standard"]: + standard_pipes = { + # "superb/wav2vec2-base-superb-ks": { + # "model": pipeline(task="audio-classification", model=f"{local_fold}/superb/wav2vec2-base-superb-ks"), + # "device": device + # }, + "openai/whisper-base": { + "model": pipeline(task="automatic-speech-recognition", model=f"{local_fold}/openai/whisper-base"), + "device": device + }, + "microsoft/speecht5_asr": { + "model": pipeline(task="automatic-speech-recognition", model=f"{local_fold}/microsoft/speecht5_asr"), + "device": device + }, + "Intel/dpt-large": { + "model": pipeline(task="depth-estimation", model=f"{local_fold}/Intel/dpt-large"), + "device": device + }, + # "microsoft/beit-base-patch16-224-pt22k-ft22k": { + # "model": pipeline(task="image-classification", model=f"{local_fold}/microsoft/beit-base-patch16-224-pt22k-ft22k"), + # "device": device + # }, + "facebook/detr-resnet-50-panoptic": { + "model": pipeline(task="image-segmentation", model=f"{local_fold}/facebook/detr-resnet-50-panoptic"), + "device": device + }, + "facebook/detr-resnet-101": { + "model": pipeline(task="object-detection", model=f"{local_fold}/facebook/detr-resnet-101"), + "device": device + }, + # "openai/clip-vit-large-patch14": { + # "model": pipeline(task="zero-shot-image-classification", model=f"{local_fold}/openai/clip-vit-large-patch14"), + # "device": device + # }, + "google/owlvit-base-patch32": { + "model": pipeline(task="zero-shot-object-detection", model=f"{local_fold}/google/owlvit-base-patch32"), + "device": device + }, + # "microsoft/DialoGPT-medium": { + # "model": pipeline(task="conversational", model=f"{local_fold}/microsoft/DialoGPT-medium"), + # "device": device + # }, + # "bert-base-uncased": { + # "model": pipeline(task="fill-mask", model=f"{local_fold}/bert-base-uncased"), + # "device": device + # }, + # "deepset/roberta-base-squad2": { + # "model": pipeline(task = "question-answering", model=f"{local_fold}/deepset/roberta-base-squad2"), + # "device": device + # }, + # "facebook/bart-large-cnn": { + # "model": pipeline(task="summarization", model=f"{local_fold}/facebook/bart-large-cnn"), + # "device": device + # }, + # "google/tapas-base-finetuned-wtq": { + # "model": pipeline(task="table-question-answering", model=f"{local_fold}/google/tapas-base-finetuned-wtq"), + # "device": device + # }, + # "distilbert-base-uncased-finetuned-sst-2-english": { + # "model": pipeline(task="text-classification", model=f"{local_fold}/distilbert-base-uncased-finetuned-sst-2-english"), + # "device": device + # }, + # "gpt2": { + # "model": pipeline(task="text-generation", model="gpt2"), + # "device": device + # }, + # "mrm8488/t5-base-finetuned-question-generation-ap": { + # "model": pipeline(task="text2text-generation", model=f"{local_fold}/mrm8488/t5-base-finetuned-question-generation-ap"), + # "device": device + # }, + # "Jean-Baptiste/camembert-ner": { + # "model": pipeline(task="token-classification", model=f"{local_fold}/Jean-Baptiste/camembert-ner", aggregation_strategy="simple"), + # "device": device + # }, + # "t5-base": { + # "model": pipeline(task="translation", model=f"{local_fold}/t5-base"), + # "device": device + # }, + "impira/layoutlm-document-qa": { + "model": pipeline(task="document-question-answering", model=f"{local_fold}/impira/layoutlm-document-qa"), + "device": device + }, + "ydshieh/vit-gpt2-coco-en": { + "model": pipeline(task="image-to-text", model=f"{local_fold}/ydshieh/vit-gpt2-coco-en"), + "device": device + }, + "dandelin/vilt-b32-finetuned-vqa": { + "model": pipeline(task="visual-question-answering", model=f"{local_fold}/dandelin/vilt-b32-finetuned-vqa"), + "device": device + } + } + + if local_deployment in ["full", "standard", "minimal"]: + controlnet = ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) + controlnetpipe = StableDiffusionControlNetPipeline.from_pretrained( + f"{local_fold}/runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 + ) + + def mlsd_control_network(): + model = MobileV2_MLSD_Large() + model.load_state_dict(torch.load(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/mlsd_large_512_fp32.pth"), strict=True) + return MLSDdetector(model) + + + hed_network = Network(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/network-bsds500.pth") + + controlnet_sd_pipes = { + "openpose-control": { + "model": OpenposeDetector(Body(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth")) + }, + "mlsd-control": { + "model": mlsd_control_network() + }, + "hed-control": { + "model": HEDdetector(hed_network) + }, + "scribble-control": { + "model": HEDdetector(hed_network) + }, + "midas-control": { + "model": MidasDetector(model_path=f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt") + }, + "canny-control": { + "model": CannyDetector() + }, + "lllyasviel/sd-controlnet-canny":{ + "control": controlnet, + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-depth":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-hed":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-hed", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-mlsd":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-mlsd", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-openpose":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-scribble":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + }, + "lllyasviel/sd-controlnet-seg":{ + "control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16), + "model": controlnetpipe, + "device": device + } + } + pipes = {**standard_pipes, **other_pipes, **controlnet_sd_pipes} + return pipes + +pipes = load_pipes(local_deployment) + +end = time.time() +during = end - start + +print(f"[ ready ] {during}s") + +@app.route('/running', methods=['GET']) +def running(): + return jsonify({"running": True}) + +@app.route('/status/', methods=['GET']) +def status(model_id): + disabled_models = ["microsoft/trocr-base-printed", "microsoft/trocr-base-handwritten"] + if model_id in pipes.keys() and model_id not in disabled_models: + print(f"[ check {model_id} ] success") + return jsonify({"loaded": True}) + else: + print(f"[ check {model_id} ] failed") + return jsonify({"loaded": False}) + +@app.route('/models/', methods=['POST']) +def models(model_id): + while "using" in pipes[model_id] and pipes[model_id]["using"]: + print(f"[ inference {model_id} ] waiting") + time.sleep(0.1) + pipes[model_id]["using"] = True + print(f"[ inference {model_id} ] start") + + start = time.time() + + pipe = pipes[model_id]["model"] + + if "device" in pipes[model_id]: + try: + pipe.to(pipes[model_id]["device"]) + except: + pipe.device = torch.device(pipes[model_id]["device"]) + pipe.model.to(pipes[model_id]["device"]) + + result = None + try: + # text to video + if model_id == "damo-vilab/text-to-video-ms-1.7b": + pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) + # pipe.enable_model_cpu_offload() + prompt = request.get_json()["text"] + video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames + video_path = export_to_video(video_frames) + file_name = str(uuid.uuid4())[:4] + os.system(f"LD_LIBRARY_PATH=/usr/local/lib /usr/local/bin/ffmpeg -i {video_path} -vcodec libx264 public/videos/{file_name}.mp4") + result = {"path": f"/videos/{file_name}.mp4"} + + # controlnet + if model_id.startswith("lllyasviel/sd-controlnet-"): + pipe.controlnet.to('cpu') + pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"]) + pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) + control_image = load_image(request.get_json()["img_url"]) + # generator = torch.manual_seed(66) + out_image: Image = pipe(request.get_json()["text"], num_inference_steps=20, image=control_image).images[0] + file_name = str(uuid.uuid4())[:4] + out_image.save(f"public/images/{file_name}.png") + result = {"path": f"/images/{file_name}.png"} + + if model_id.endswith("-control"): + image = load_image(request.get_json()["img_url"]) + if "scribble" in model_id: + control = pipe(image, scribble = True) + elif "canny" in model_id: + control = pipe(image, low_threshold=100, high_threshold=200) + else: + control = pipe(image) + file_name = str(uuid.uuid4())[:4] + control.save(f"public/images/{file_name}.png") + result = {"path": f"/images/{file_name}.png"} + + # image to image + if model_id == "lambdalabs/sd-image-variations-diffusers": + im = load_image(request.get_json()["img_url"]) + file_name = str(uuid.uuid4())[:4] + with open(f"public/images/{file_name}.png", "wb") as f: + f.write(request.data) + tform = transforms.Compose([ + transforms.ToTensor(), + transforms.Resize( + (224, 224), + interpolation=transforms.InterpolationMode.BICUBIC, + antialias=False, + ), + transforms.Normalize( + [0.48145466, 0.4578275, 0.40821073], + [0.26862954, 0.26130258, 0.27577711]), + ]) + inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0) + out = pipe(inp, guidance_scale=3) + out["images"][0].save(f"public/images/{file_name}.jpg") + result = {"path": f"/images/{file_name}.jpg"} + + # image to text + if model_id == "Salesforce/blip-image-captioning-large": + raw_image = load_image(request.get_json()["img_url"]).convert('RGB') + text = request.get_json()["text"] + inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"]) + out = pipe.generate(**inputs) + caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True) + result = {"generated text": caption} + if model_id == "ydshieh/vit-gpt2-coco-en": + img_url = request.get_json()["img_url"] + generated_text = pipe(img_url)[0]['generated_text'] + result = {"generated text": generated_text} + if model_id == "nlpconnect/vit-gpt2-image-captioning": + image = load_image(request.get_json()["img_url"]).convert("RGB") + pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values + pixel_values = pixel_values.to(pipes[model_id]["device"]) + generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1}) + generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0] + result = {"generated text": generated_text} + # image to text: OCR + if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten": + image = load_image(request.get_json()["img_url"]).convert("RGB") + pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values + pixel_values = pixel_values.to(pipes[model_id]["device"]) + generated_ids = pipe.generate(pixel_values) + generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0] + result = {"generated text": generated_text} + + # text to image + if model_id == "runwayml/stable-diffusion-v1-5": + file_name = str(uuid.uuid4())[:4] + text = request.get_json()["text"] + out = pipe(prompt=text) + out["images"][0].save(f"public/images/{file_name}.jpg") + result = {"path": f"/images/{file_name}.jpg"} + + # object detection + if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101": + img_url = request.get_json()["img_url"] + open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"] + result = pipe(img_url, candidate_labels=open_types) + + # VQA + if model_id == "dandelin/vilt-b32-finetuned-vqa": + question = request.get_json()["text"] + img_url = request.get_json()["img_url"] + result = pipe(question=question, image=img_url) + + #DQA + if model_id == "impira/layoutlm-document-qa": + question = request.get_json()["text"] + img_url = request.get_json()["img_url"] + result = pipe(img_url, question) + + # depth-estimation + if model_id == "Intel/dpt-large": + output = pipe(request.get_json()["img_url"]) + image = output['depth'] + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + result = {"path": f"/images/{name}.jpg"} + + if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large": + image = load_image(request.get_json()["img_url"]) + inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt") + with torch.no_grad(): + outputs = pipe(**inputs) + predicted_depth = outputs.predicted_depth + prediction = torch.nn.functional.interpolate( + predicted_depth.unsqueeze(1), + size=image.size[::-1], + mode="bicubic", + align_corners=False, + ) + output = prediction.squeeze().cpu().numpy() + formatted = (output * 255 / np.max(output)).astype("uint8") + image = Image.fromarray(formatted) + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + result = {"path": f"/images/{name}.jpg"} + + # TTS + if model_id == "espnet/kan-bayashi_ljspeech_vits": + text = request.get_json()["text"] + wav = pipe(text)["wav"] + name = str(uuid.uuid4())[:4] + sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16") + result = {"path": f"/audios/{name}.wav"} + + if model_id == "microsoft/speecht5_tts": + text = request.get_json()["text"] + inputs = pipes[model_id]["processor"](text=text, return_tensors="pt") + embeddings_dataset = pipes[model_id]["embeddings_dataset"] + speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"]) + pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) + speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) + name = str(uuid.uuid4())[:4] + sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) + result = {"path": f"/audios/{name}.wav"} + + # ASR + if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr": + audio_url = request.get_json()["audio_url"] + result = { "text": pipe(audio_url)["text"]} + + # audio to audio + if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": + audio_url = request.get_json()["audio_url"] + wav, sr = torchaudio.load(audio_url) + with torch.no_grad(): + result_wav = pipe(wav.to(pipes[model_id]["device"])) + name = str(uuid.uuid4())[:4] + sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr) + result = {"path": f"/audios/{name}.wav"} + + if model_id == "microsoft/speecht5_vc": + audio_url = request.get_json()["audio_url"] + wav, sr = torchaudio.load(audio_url) + inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt") + embeddings_dataset = pipes[model_id]["embeddings_dataset"] + speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) + pipes[model_id]["vocoder"].to(pipes[model_id]["device"]) + speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"]) + name = str(uuid.uuid4())[:4] + sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000) + result = {"path": f"/audios/{name}.wav"} + + # segmentation + if model_id == "facebook/detr-resnet-50-panoptic": + result = [] + segments = pipe(request.get_json()["img_url"]) + image = load_image(request.get_json()["img_url"]) + + colors = [] + for i in range(len(segments)): + colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50)) + + for segment in segments: + mask = segment["mask"] + mask = mask.convert('L') + layer = Image.new('RGBA', mask.size, colors[i]) + image.paste(layer, (0, 0), mask) + name = str(uuid.uuid4())[:4] + image.save(f"public/images/{name}.jpg") + result = {"path": f"/images/{name}.jpg"} + + if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade": + image = load_image(request.get_json()["img_url"]) + inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"]) + outputs = pipe(**inputs) + result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] + predicted_panoptic_map = result["segmentation"].cpu().numpy() + predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8)) + name = str(uuid.uuid4())[:4] + predicted_panoptic_map.save(f"public/images/{name}.jpg") + result = {"path": f"/images/{name}.jpg"} + + except Exception as e: + print(e) + traceback.print_exc() + result = {"error": {"message": "Error when running the model inference."}} + + if "device" in pipes[model_id]: + try: + pipe.to("cpu") + torch.cuda.empty_cache() + except: + pipe.device = torch.device("cpu") + pipe.model.to("cpu") + torch.cuda.empty_cache() + + pipes[model_id]["using"] = False + + if result is None: + result = {"error": {"message": "model not found"}} + + end = time.time() + during = end - start + print(f"[ complete {model_id} ] {during}s") + print(f"[ result {model_id} ] {result}") + + return jsonify(result) + + +if __name__ == '__main__': + # temp folders + if not os.path.exists("public/audios"): + os.makedirs("public/audios") + if not os.path.exists("public/images"): + os.makedirs("public/images") + if not os.path.exists("public/videos"): + os.makedirs("public/videos") + + waitress.serve(app, host="0.0.0.0", port=port) +########################## => models server end diff --git a/swarms/utils/utils.py b/swarms/utils/utils.py index 44775bd7..722169e3 100644 --- a/swarms/utils/utils.py +++ b/swarms/utils/utils.py @@ -470,4 +470,63 @@ class ImageCaptioning(BaseHandler): f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}" ) - return IMAGE_PROMPT.format(filename=filename, description=description) \ No newline at end of file + return IMAGE_PROMPT.format(filename=filename, description=description) + + + + +################# server/get token ids +import tiktoken + +encodings = { + "gpt-4": tiktoken.get_encoding("cl100k_base"), + "gpt-4-32k": tiktoken.get_encoding("cl100k_base"), + "gpt-3.5-turbo": tiktoken.get_encoding("cl100k_base"), + "gpt-3.5-turbo-0301": tiktoken.get_encoding("cl100k_base"), + "text-davinci-003": tiktoken.get_encoding("p50k_base"), + "text-davinci-002": tiktoken.get_encoding("p50k_base"), + "text-davinci-001": tiktoken.get_encoding("r50k_base"), + "text-curie-001": tiktoken.get_encoding("r50k_base"), + "text-babbage-001": tiktoken.get_encoding("r50k_base"), + "text-ada-001": tiktoken.get_encoding("r50k_base"), + "davinci": tiktoken.get_encoding("r50k_base"), + "curie": tiktoken.get_encoding("r50k_base"), + "babbage": tiktoken.get_encoding("r50k_base"), + "ada": tiktoken.get_encoding("r50k_base"), +} + +max_length = { + "gpt-4": 8192, + "gpt-4-32k": 32768, + "gpt-3.5-turbo": 4096, + "gpt-3.5-turbo-0301": 4096, + "text-davinci-003": 4096, + "text-davinci-002": 4096, + "text-davinci-001": 2049, + "text-curie-001": 2049, + "text-babbage-001": 2049, + "text-ada-001": 2049, + "davinci": 2049, + "curie": 2049, + "babbage": 2049, + "ada": 2049 +} + +def count_tokens(model_name, text): + return len(encodings[model_name].encode(text)) + +def get_max_context_length(model_name): + return max_length[model_name] + +def get_token_ids_for_task_parsing(model_name): + text = '''{"task": "text-classification", "token-classification", "text2text-generation", "summarization", "translation", "question-answering", "conversational", "text-generation", "sentence-similarity", "tabular-classification", "object-detection", "image-classification", "image-to-image", "image-to-text", "text-to-image", "visual-question-answering", "document-question-answering", "image-segmentation", "text-to-speech", "text-to-video", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "canny-control", "hed-control", "mlsd-control", "normal-control", "openpose-control", "canny-text-to-image", "depth-text-to-image", "hed-text-to-image", "mlsd-text-to-image", "normal-text-to-image", "openpose-text-to-image", "seg-text-to-image", "args", "text", "path", "dep", "id", "-"}''' + res = encodings[model_name].encode(text) + res = list(set(res)) + return res + +def get_token_ids_for_choose_model(model_name): + text = '''{"id": "reason"}''' + res = encodings[model_name].encode(text) + res = list(set(res)) + return res +################# END