pull/30/head
Kye 2 years ago
parent 50a8f63e05
commit 32388a1f67

@ -41,6 +41,7 @@ class HierarchicalSwarm:
embedding_size: Optional[int] = None,
use_async: Optional[bool] = True,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
verbose: Optional[bool] = False,
human_in_the_loop: Optional[bool] = True,
boss_prompt: Optional[str] = "You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n",
@ -64,6 +65,9 @@ class HierarchicalSwarm:
self.max_iterations = max_iterations
self.logging_enabled = logging_enabled
self.verbose = verbose
self.logger = logging.getLogger()
if not logging_enabled:
self.logger.disabled = True
@ -143,7 +147,7 @@ class HierarchicalSwarm:
logging.error(f"Failed to initialize worker node: {e}")
raise
def initialize_boss_node(self, vectorstore, worker_node, llm_class=OpenAI, max_iterations=None, verbose=False):
def initialize_boss_node(self, vectorstore, worker_node, llm_class=OpenAI):
"""
Init BossNode
@ -176,7 +180,7 @@ class HierarchicalSwarm:
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=self.verbose)
return BossNode(llm, vectorstore,
agent_executor, max_iterations=self.max_iterations)
except Exception as e:

@ -1,4 +1,5 @@
import logging
from typing import Optional, List, Union
import faiss
from langchain.agents import Tool
@ -25,46 +26,63 @@ ROOT_DIR = "./data/"
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class WorkerNodeInitializer:
"""Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
def __init__(self, llm, tools, vectorstore):
if not llm or not tools or not vectorstore:
logging.error("llm, tools, and vectorstore cannot be None.")
raise ValueError("llm, tools, and vectorstore cannot be None.")
def __init__(self,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
vectorstore: Optional[FAISS] = None,
ai_name: str = "Swarm Worker AI Assistant",
ai_role: str = "Assistant",
human_in_the_loop: bool = False,
search_kwargs: dict = {},
verbose: bool = False,
chat_history_file: str = "chat_history.txt"):
self.llm = llm
self.tools = tools
self.vectorstore = vectorstore
self.agent = None
self.llm = llm if llm is not None else ChatOpenAI()
self.tools = tools if tools is not None else [ReadFileTool(), WriteFileTool()]
self.vectorstore = vectorstore if vectorstore is not None else FAISS(faiss.IndexFlatIP(512))
# Initializing agent in the constructor
self.ai_name = ai_name
self.ai_role = ai_role
self.human_in_the_loop = human_in_the_loop
self.search_kwargs = search_kwargs
self.verbose = verbose
self.chat_history_file = chat_history_file
self.create_agent()
def create_agent(self, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
def create_agent(self):
logging.info("Creating agent in WorkerNode")
try:
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
ai_name=self.ai_name,
ai_role=self.ai_role,
tools=self.tools,
llm=self.llm,
memory=self.vectorstore.as_retriever(search_kwargs=search_kwargs),
human_in_the_loop=human_in_the_loop,
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
memory=self.vectorstore.as_retriever(search_kwargs=self.search_kwargs),
human_in_the_loop=self.human_in_the_loop,
chat_history_memory=FileChatMessageHistory(self.chat_history_file),
)
# self.agent.chain.verbose = verbose
except Exception as e:
logging.error(f"Error while creating agent: {str(e)}")
raise e
def add_tool(self, tool: Tool):
def add_tool(self, tool: Optional[Tool] = None):
if tool is None:
tool = DuckDuckGoSearchRun()
if not isinstance(tool, Tool):
logging.error("Tool must be an instance of Tool.")
raise TypeError("Tool must be an instance of Tool.")
self.tools.append(tool)
def run(self, prompt: str) -> str:
def run(self, prompt) -> str:
if not isinstance(prompt, str):
logging.error("Prompt must be a string.")
raise TypeError("Prompt must be a string.")
@ -80,9 +98,6 @@ class WorkerNodeInitializer:
logging.error(f"While running the agent: {str(e)}")
raise e
class WorkerNode:
def __init__(self, openai_api_key):

Loading…
Cancel
Save