parent
ba1b292ce7
commit
36a78e2561
@ -0,0 +1,79 @@
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
|
||||
class MultiModalLlava:
|
||||
"""
|
||||
LLava Model
|
||||
|
||||
Args:
|
||||
model_name_or_path: The model name or path to the model
|
||||
revision: The revision of the model to use
|
||||
device: The device to run the model on
|
||||
max_new_tokens: The maximum number of tokens to generate
|
||||
do_sample: Whether or not to use sampling
|
||||
temperature: The temperature of the sampling
|
||||
top_p: The top p value for sampling
|
||||
top_k: The top k value for sampling
|
||||
repetition_penalty: The repetition penalty for sampling
|
||||
device_map: The device map to use
|
||||
|
||||
Methods:
|
||||
__call__: Call the model
|
||||
chat: Interactive chat in terminal
|
||||
|
||||
Example:
|
||||
>>> from swarms.models.llava import LlavaModel
|
||||
>>> model = LlavaModel(device="cpu")
|
||||
>>> model("Hello, I am a robot.")
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model_name_or_path="TheBloke/llava-v1.5-13B-GPTQ",
|
||||
revision="main",
|
||||
device="cuda",
|
||||
max_new_tokens=512,
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
top_p=0.95,
|
||||
top_k=40,
|
||||
repetition_penalty=1.1,
|
||||
device_map: str = "auto"
|
||||
):
|
||||
self.device = device
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
device_map=device_map,
|
||||
trust_remote_code=False,
|
||||
revision=revision,
|
||||
).to(self.device)
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path, use_fast=True
|
||||
)
|
||||
self.pipe = pipeline(
|
||||
"text-generation",
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=do_sample,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
repetition_penalty=repetition_penalty,
|
||||
device=0 if self.device == "cuda" else -1,
|
||||
)
|
||||
|
||||
def __call__(self, prompt):
|
||||
"""Call the model"""
|
||||
return self.pipe(prompt)[0]["generated_text"]
|
||||
|
||||
def chat(self):
|
||||
"""Interactive chat in terminal"""
|
||||
print("Starting chat with LlavaModel. Type 'exit' to end the session.")
|
||||
while True:
|
||||
user_input = input("You: ")
|
||||
if user_input.lower() == "exit":
|
||||
break
|
||||
response = self(user_input)
|
||||
print(f"Model: {response}")
|
||||
|
Loading…
Reference in new issue