pull/64/head
Kye 1 year ago
parent 8469a679d4
commit 37d63776c9

@ -1,4 +1,3 @@
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
@ -9,8 +8,8 @@ import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from swarms.logo import logo
print(logo)
from swarms import agents

@ -9,4 +9,4 @@ from swarms.agents.message import Message
from swarms.agents.stream_response import stream
from swarms.agents.base import AbstractAgent
from swarms.agents.registry import Registry
from swarms.agents.idea_to_image_agent import Idea2Image
from swarms.agents.idea_to_image_agent import Idea2Image

@ -380,7 +380,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(self, input="", **self._invocation_params,)[
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)[
"data"
][0]["embedding"]
else:

@ -1,4 +1,4 @@
from swarms.memory.vector_stores.pinecone import PineconeVector
from swarms.memory.vector_stores.base import BaseVectorStore
from swarms.memory.vector_stores.pg import PgVectorVectorStore
from swarms.memory.ocean import OceanDB
from swarms.memory.ocean import OceanDB

@ -2,3 +2,4 @@ from swarms.models.anthropic import Anthropic
from swarms.models.petals import Petals
from swarms.models.mistral import Mistral
from swarms.models.openai_models import OpenAI, AzureOpenAI, OpenAIChat
from swarms.models.fuyu import Fuyu

@ -0,0 +1,65 @@
"""Fuyu model by Kye"""
from transformers import (
FuyuForCausalLM,
AutoTokenizer,
FuyuProcessor,
FuyuImageProcessor,
)
from PIL import Image
class Fuyu:
"""
Fuyu model by Adept
Parameters
----------
pretrained_path : str
Path to the pretrained model
device_map : str
Device to use for the model
max_new_tokens : int
Maximum number of tokens to generate
Examples
--------
>>> fuyu = Fuyu()
>>> fuyu("Hello, my name is", "path/to/image.png")
"""
def __init__(
self,
pretrained_path: str = "adept/fuyu-8b",
device_map: str = "cuda",
max_new_tokens: int = 7,
):
self.pretrained_path = pretrained_path
self.device_map = device_map
self.max_new_tokens = max_new_tokens
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
self.image_processor = FuyuImageProcessor()
self.processor = FuyuProcessor(
image_procesor=self.image_processor, tokenizer=self.tokenizer
)
self.model = FuyuForCausalLM.from_pretrained(
pretrained_path, device_map=device_map
)
def __call__(self, text, img_path):
"""Call the model"""
image_pil = Image.open(img_path)
model_inputs = self.processor(
text=text, images=[image_pil], device=self.device_map
)
for k, v in model_inputs.items():
model_inputs[k] = v.to(self.device_map)
output = self.model.generate(
**model_inputs, max_new_tokens=self.fmax_new_tokens
)
text = self.processor.batch_decode(output[:, -7:], skip_special_tokens=True)

@ -1 +1 @@
from swarms.prompts.code_interpreter import CODE_INTERPRETER
from swarms.prompts.code_interpreter import CODE_INTERPRETER

@ -1,2 +1,2 @@
from swarms.structs.workflow import Workflow
from swarms.structs.task import Task
from swarms.structs.task import Task

@ -4,4 +4,4 @@ from swarms.swarms.orchestrate import Orchestrator
from swarms.swarms.god_mode import GodMode
from swarms.swarms.simple_swarm import SimpleSwarm
from swarms.swarms.multi_agent_debate import MultiAgentDebate, select_speaker
from swarms.swarms.groupchat import GroupChat, GroupChatManager
from swarms.swarms.groupchat import GroupChat, GroupChatManager

@ -1,3 +1,2 @@
from swarms.utils.display_markdown import display_markdown_message
from swarms.utils.futures import execute_futures_dict
from swarms.utils.futures import execute_futures_dict

@ -1,2 +1,2 @@
from swarms.workers.worker import Worker
from swarms.workers.base import AbstractWorker
from swarms.workers.base import AbstractWorker

@ -54,9 +54,9 @@ def test_query():
def test_create_index():
with patch("pinecone.init"), patch(
"pinecone.Index"
), patch("pinecone.create_index") as MockCreateIndex:
with patch("pinecone.init"), patch("pinecone.Index"), patch(
"pinecone.create_index"
) as MockCreateIndex:
store = PineconeVectorStore(
api_key=api_key, index_name="test_index", environment="test_env"
)

Loading…
Cancel
Save