diff --git a/playground/models/miqu.py b/playground/models/miqu.py new file mode 100644 index 00000000..f6518a5f --- /dev/null +++ b/playground/models/miqu.py @@ -0,0 +1,13 @@ +from swarms import Mistral + + +# Initialize the model +model = Mistral( + model_name="mistralai/Mistral-7B-v0.1", + max_length=500, + use_flash_attention=True, + load_in_4bit=True +) + +# Run the model +result = model.run("What is the meaning of life?") \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml index 6e3cdc7f..5128ab33 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "4.0.5" +version = "4.0.9" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] diff --git a/swarms/__init__.py b/swarms/__init__.py index 2a682f5b..3a28d980 100644 --- a/swarms/__init__.py +++ b/swarms/__init__.py @@ -1,13 +1,8 @@ # from swarms.telemetry.main import Telemetry # noqa: E402, F403 from swarms.telemetry.bootup import bootup # noqa: E402, F403 -from swarms.telemetry.user_utils import ( - get_user_device_data, -) # noqa: E402, F403 bootup() -get_user_device_data() - from swarms.agents import * # noqa: E402, F403 from swarms.structs import * # noqa: E402, F403 from swarms.models import * # noqa: E402, F403 diff --git a/swarms/memory/chroma_db.py b/swarms/memory/chroma_db.py index 3d355b4f..155acf43 100644 --- a/swarms/memory/chroma_db.py +++ b/swarms/memory/chroma_db.py @@ -5,7 +5,7 @@ from typing import Optional, Callable, List import chromadb from dotenv import load_dotenv -from chromadb.utils.data_loaders import ImageLoader +# from chromadb.utils.data import ImageLoader from chromadb.utils.embedding_functions import ( OpenCLIPEmbeddingFunction, ) @@ -75,7 +75,7 @@ class ChromaDB: if data_loader: self.data_loader = data_loader else: - self.data_loader = ImageLoader() + self.data_loader = None # Embedding model if embedding_function: diff --git a/swarms/models/mistral.py b/swarms/models/mistral.py index aeeb37a8..d0146ef5 100644 --- a/swarms/models/mistral.py +++ b/swarms/models/mistral.py @@ -2,9 +2,9 @@ import torch from transformers import AutoModelForCausalLM, AutoTokenizer from swarms.structs.message import Message +from swarms.models.base_llm import AbstractLLM - -class Mistral: +class Mistral(AbstractLLM): """ Mistral is an all-new llm @@ -38,7 +38,10 @@ class Mistral: temperature: float = 1.0, max_length: int = 100, do_sample: bool = True, + *args, + **kwargs ): + super().__init__() self.ai_name = ai_name self.system_prompt = system_prompt self.model_name = model_name @@ -46,6 +49,7 @@ class Mistral: self.use_flash_attention = use_flash_attention self.temperature = temperature self.max_length = max_length + self.do_sample = do_sample # Check if the specified device is available if not torch.cuda.is_available() and device == "cuda": @@ -54,49 +58,18 @@ class Mistral: " device." ) - # Load the model and tokenizer - self.model = None - self.tokenizer = None - self.load_model() - self.history = [] - def load_model(self): - try: - self.model = AutoModelForCausalLM.from_pretrained( - self.model_name - ) - self.tokenizer = AutoTokenizer.from_pretrained( - self.model_name - ) - self.model.to(self.device) - except Exception as e: - raise ValueError( - f"Error loading the Mistral model: {str(e)}" - ) + self.model = AutoModelForCausalLM.from_pretrained( + self.model_name, *args, **kwargs + ) + self.tokenizer = AutoTokenizer.from_pretrained( + self.model_name, *args, **kwargs + ) + + self.model.to(self.device) - def run(self, task: str): - """Run the model on a given task.""" - - try: - model_inputs = self.tokenizer( - [task], return_tensors="pt" - ).to(self.device) - generated_ids = self.model.generate( - **model_inputs, - max_length=self.max_length, - do_sample=self.do_sample, - temperature=self.temperature, - max_new_tokens=self.max_length, - ) - output_text = self.tokenizer.batch_decode(generated_ids)[ - 0 - ] - return output_text - except Exception as e: - raise ValueError(f"Error running the model: {str(e)}") - - def __call__(self, task: str): + def run(self, task: str, *args, **kwargs): """Run the model on a given task.""" try: @@ -109,6 +82,7 @@ class Mistral: do_sample=self.do_sample, temperature=self.temperature, max_new_tokens=self.max_length, + **kwargs ) output_text = self.tokenizer.batch_decode(generated_ids)[ 0 @@ -158,17 +132,4 @@ class Mistral: # add error to history self.history.append(Message("Agent", error_message)) - return error_message - - def _stream_response(self, response: str = None): - """ - Yield the response token by token (word by word) - - Usage: - -------------- - for token in _stream_response(response): - print(token) - - """ - for token in response.split(): - yield token + return error_message \ No newline at end of file