diff --git a/docs/best_practices.md b/docs/best_practices.md
new file mode 100644
index 00000000..0ada3238
--- /dev/null
+++ b/docs/best_practices.md
@@ -0,0 +1,241 @@
+---
+title: Best Practices for Multi-Agent Systems
+description: A comprehensive guide to building and managing multi-agent systems
+---
+
+# Best Practices for Multi-Agent Systems
+
+## Overview
+
+This guide provides comprehensive best practices for designing, implementing, and managing multi-agent systems. It covers key aspects from architecture selection to performance optimization and security considerations.
+
+```mermaid
+graph TD
+ A[Multi-Agent System] --> B[Architecture]
+ A --> C[Implementation]
+ A --> D[Management]
+ A --> E[Security]
+
+ B --> B1[HHCS]
+ B --> B2[Auto Agent Builder]
+ B --> B3[SwarmRouter]
+
+ C --> C1[Agent Design]
+ C --> C2[Communication]
+ C --> C3[Error Handling]
+
+ D --> D1[Monitoring]
+ D --> D2[Scaling]
+ D --> D3[Performance]
+
+ E --> E1[Data Privacy]
+ E --> E2[Access Control]
+ E --> E3[Audit Logging]
+```
+
+## Why Multi-Agent Systems?
+
+Individual agents face several limitations that multi-agent systems can overcome:
+
+```mermaid
+graph LR
+ A[Individual Agent Limitations] --> B[Context Window Limits]
+ A --> C[Single Task Execution]
+ A --> D[Hallucination]
+ A --> E[No Collaboration]
+
+ F[Multi-Agent Solutions] --> G[Distributed Processing]
+ F --> H[Parallel Task Execution]
+ F --> I[Cross-Verification]
+ F --> J[Collaborative Intelligence]
+```
+
+### Key Benefits
+
+1. **Enhanced Reliability**
+ - Cross-verification between agents
+ - Redundancy and fault tolerance
+ - Consensus-based decision making
+
+2. **Improved Efficiency**
+ - Parallel processing capabilities
+ - Specialized agent roles
+ - Resource optimization
+
+3. **Better Accuracy**
+ - Multiple verification layers
+ - Collaborative fact-checking
+ - Consensus-driven outputs
+
+## Architecture Selection
+
+Choose the appropriate architecture based on your needs:
+
+| Architecture | Best For | Key Features |
+|--------------|----------|--------------|
+| HHCS | Complex, multi-domain tasks | - Clear task routing
- Specialized handling
- Parallel processing |
+| Auto Agent Builder | Dynamic, evolving tasks | - Self-organizing
- Flexible scaling
- Adaptive creation |
+| SwarmRouter | Varied task types | - Multiple workflows
- Simple configuration
- Flexible deployment |
+
+## Implementation Best Practices
+
+### 1. Agent Design
+
+```mermaid
+graph TD
+ A[Agent Design] --> B[Clear Role Definition]
+ A --> C[Focused System Prompts]
+ A --> D[Error Handling]
+ A --> E[Memory Management]
+
+ B --> B1[Specialized Tasks]
+ B --> B2[Defined Responsibilities]
+
+ C --> C1[Task-Specific Instructions]
+ C --> C2[Communication Guidelines]
+
+ D --> D1[Retry Mechanisms]
+ D --> D2[Fallback Strategies]
+
+ E --> E1[Context Management]
+ E --> E2[History Tracking]
+```
+
+### 2. Communication Protocols
+
+- **State Alignment**
+ - Begin with shared understanding
+ - Regular status updates
+ - Clear task progression
+
+- **Information Sharing**
+ - Transparent decision making
+ - Explicit acknowledgments
+ - Structured data formats
+
+### 3. Error Handling
+
+```python
+try:
+ result = router.route_task(task)
+except Exception as e:
+ logger.error(f"Task routing failed: {str(e)}")
+ # Implement retry or fallback strategy
+```
+
+## Performance Optimization
+
+### 1. Resource Management
+
+```mermaid
+graph LR
+ A[Resource Management] --> B[Memory Usage]
+ A --> C[CPU Utilization]
+ A --> D[API Rate Limits]
+
+ B --> B1[Caching]
+ B --> B2[Cleanup]
+
+ C --> C1[Load Balancing]
+ C --> C2[Concurrent Processing]
+
+ D --> D1[Rate Limiting]
+ D --> D2[Request Batching]
+```
+
+### 2. Scaling Strategies
+
+1. **Horizontal Scaling**
+ - Add more agents for parallel processing
+ - Distribute workload across instances
+ - Balance resource utilization
+
+2. **Vertical Scaling**
+ - Optimize individual agent performance
+ - Enhance memory management
+ - Improve processing efficiency
+
+## Security Considerations
+
+### 1. Data Privacy
+
+- Implement encryption for sensitive data
+- Secure communication channels
+- Regular security audits
+
+### 2. Access Control
+
+```mermaid
+graph TD
+ A[Access Control] --> B[Authentication]
+ A --> C[Authorization]
+ A --> D[Audit Logging]
+
+ B --> B1[Identity Verification]
+ B --> B2[Token Management]
+
+ C --> C1[Role-Based Access]
+ C --> C2[Permission Management]
+
+ D --> D1[Activity Tracking]
+ D --> D2[Compliance Monitoring]
+```
+
+## Monitoring and Maintenance
+
+### 1. Key Metrics
+
+- Response times
+- Success rates
+- Error rates
+- Resource utilization
+- API usage
+
+### 2. Logging Best Practices
+
+```python
+# Structured logging example
+logger.info({
+ 'event': 'task_completion',
+ 'task_id': task.id,
+ 'duration': duration,
+ 'agents_involved': agent_count,
+ 'status': 'success'
+})
+```
+
+### 3. Alert Configuration
+
+Set up alerts for:
+- Critical errors
+- Performance degradation
+- Resource constraints
+- Security incidents
+
+## Getting Started
+
+1. **Start Small**
+ - Begin with a pilot project
+ - Test with limited scope
+ - Gather metrics and feedback
+
+2. **Scale Gradually**
+ - Increase complexity incrementally
+ - Add agents as needed
+ - Monitor performance impact
+
+3. **Maintain Documentation**
+ - Keep system diagrams updated
+ - Document configuration changes
+ - Track performance optimizations
+
+## Conclusion
+
+Building effective multi-agent systems requires careful consideration of architecture, implementation, security, and maintenance practices. By following these guidelines, you can create robust, efficient, and secure multi-agent systems that effectively overcome the limitations of individual agents.
+
+!!! tip "Remember"
+ - Start with clear objectives
+ - Choose appropriate architecture
+ - Implement proper security measures
+ - Monitor and optimize performance
+ - Document everything
\ No newline at end of file
diff --git a/docs/concepts/limitations.md b/docs/concepts/limitations.md
new file mode 100644
index 00000000..b0d27f9f
--- /dev/null
+++ b/docs/concepts/limitations.md
@@ -0,0 +1,160 @@
+# Limitations of Individual Agents
+
+This section explores the fundamental limitations of individual AI agents and why multi-agent systems are necessary for complex tasks. Understanding these limitations is crucial for designing effective multi-agent architectures.
+
+## Overview
+
+```mermaid
+graph TD
+ A[Individual Agent Limitations] --> B[Context Window Limits]
+ A --> C[Hallucination]
+ A --> D[Single Task Execution]
+ A --> E[Lack of Collaboration]
+ A --> F[Accuracy Issues]
+ A --> G[Processing Speed]
+```
+
+## 1. Context Window Limits
+
+### The Challenge
+Individual agents are constrained by fixed context windows, limiting their ability to process large amounts of information simultaneously.
+
+```mermaid
+graph LR
+ subgraph "Context Window Limitation"
+ Input[Large Document] --> Truncation[Truncation]
+ Truncation --> ProcessedPart[Processed Part]
+ Truncation --> UnprocessedPart[Unprocessed Part]
+ end
+```
+
+### Impact
+- Limited understanding of large documents
+- Fragmented processing of long conversations
+- Inability to maintain extended context
+- Loss of important information
+
+## 2. Hallucination
+
+### The Challenge
+Individual agents may generate plausible-sounding but incorrect information, especially when dealing with ambiguous or incomplete data.
+
+```mermaid
+graph TD
+ Input[Ambiguous Input] --> Agent[AI Agent]
+ Agent --> Valid[Valid Output]
+ Agent --> Hallucination[Hallucinated Output]
+ style Hallucination fill:#ff9999
+```
+
+### Impact
+- Unreliable information generation
+- Reduced trust in system outputs
+- Potential for misleading decisions
+- Need for extensive verification
+
+## 3. Single Task Execution
+
+### The Challenge
+Most individual agents are optimized for specific tasks and struggle with multi-tasking or adapting to new requirements.
+
+```mermaid
+graph LR
+ Task1[Task A] --> Agent1[Agent A]
+ Task2[Task B] --> Agent2[Agent B]
+ Task3[Task C] --> Agent3[Agent C]
+ Agent1 --> Output1[Output A]
+ Agent2 --> Output2[Output B]
+ Agent3 --> Output3[Output C]
+```
+
+### Impact
+- Limited flexibility
+- Inefficient resource usage
+- Complex integration requirements
+- Reduced adaptability
+
+## 4. Lack of Collaboration
+
+### The Challenge
+Individual agents operate in isolation, unable to share insights or coordinate actions with other agents.
+
+```mermaid
+graph TD
+ A1[Agent 1] --> O1[Output 1]
+ A2[Agent 2] --> O2[Output 2]
+ A3[Agent 3] --> O3[Output 3]
+ style A1 fill:#f9f,stroke:#333
+ style A2 fill:#f9f,stroke:#333
+ style A3 fill:#f9f,stroke:#333
+```
+
+### Impact
+- No knowledge sharing
+- Duplicate effort
+- Missed optimization opportunities
+- Limited problem-solving capabilities
+
+## 5. Accuracy Issues
+
+### The Challenge
+Individual agents may produce inaccurate results due to:
+- Limited training data
+- Model biases
+- Lack of cross-validation
+- Incomplete context understanding
+
+```mermaid
+graph LR
+ Input[Input Data] --> Processing[Processing]
+ Processing --> Accurate[Accurate Output]
+ Processing --> Inaccurate[Inaccurate Output]
+ style Inaccurate fill:#ff9999
+```
+
+## 6. Processing Speed Limitations
+
+### The Challenge
+Individual agents may experience:
+- Slow response times
+- Resource constraints
+- Limited parallel processing
+- Bottlenecks in complex tasks
+
+```mermaid
+graph TD
+ Input[Input] --> Queue[Processing Queue]
+ Queue --> Processing[Sequential Processing]
+ Processing --> Delay[Processing Delay]
+ Delay --> Output[Delayed Output]
+```
+
+## Best Practices for Mitigation
+
+1. **Use Multi-Agent Systems**
+ - Distribute tasks across agents
+ - Enable parallel processing
+ - Implement cross-validation
+ - Foster collaboration
+
+2. **Implement Verification**
+ - Cross-check results
+ - Use consensus mechanisms
+ - Monitor accuracy metrics
+ - Track performance
+
+3. **Optimize Resource Usage**
+ - Balance load distribution
+ - Cache frequent operations
+ - Implement efficient queuing
+ - Monitor system health
+
+## Conclusion
+
+Understanding these limitations is crucial for:
+- Designing robust multi-agent systems
+- Implementing effective mitigation strategies
+- Optimizing system performance
+- Ensuring reliable outputs
+
+The next section explores how [Multi-Agent Architecture](architecture.md) addresses these limitations through collaborative approaches and specialized agent roles.
\ No newline at end of file
diff --git a/docs/index.md b/docs/index.md
index 171a88b4..9d8bbc54 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -1,3 +1,89 @@
+---
+title: Multi-Agent LLM Systems Best Practices Guide
+description: A comprehensive guide to building and managing multi-agent Large Language Model (LLM) systems
+---
+
+# Multi-Agent LLM Systems Best Practices Guide
+
+Welcome to the comprehensive guide on building and managing multi-agent Large Language Model (LLM) systems. This documentation provides tactical insights, best practices, and practical solutions for implementing reliable and efficient multi-agent systems.
+
+## Overview
+
+Multi-agent LLM systems represent a paradigm shift in artificial intelligence, enabling complex problem-solving through collaborative intelligence. This guide will help you understand:
+
+- Why multi-agent systems are necessary
+- Common limitations and how to overcome them
+- Best practices for implementation
+- Communication protocols and error handling
+- Performance optimization techniques
+
+## Quick Navigation
+
+```mermaid
+graph LR
+ A[Start Here] --> B[Core Concepts]
+ A --> C[Best Practices]
+ A --> D[FAQ]
+ B --> E[Why Multi-Agent?]
+ B --> F[Limitations]
+ B --> G[Architecture]
+ C --> H[Implementation]
+ C --> I[Communication]
+ C --> J[Error Handling]
+ C --> K[Performance]
+```
+
+## Key Features
+
+- 🚀 **Comprehensive Coverage**: From basic concepts to advanced implementation details
+- 🔧 **Practical Examples**: Real-world scenarios and solutions
+- 📈 **Performance Optimization**: Tips and techniques for scaling
+- 🛡️ **Error Handling**: Robust protocols for system reliability
+- 🤝 **Communication Patterns**: Effective agent collaboration strategies
+
+## Getting Started
+
+1. Start with [Why Multi-Agent Systems?](concepts/why-multi-agent.md) to understand the fundamentals
+2. Review [Limitations of Individual Agents](concepts/limitations.md) to learn about common challenges
+3. Explore [Implementation Guide](best-practices/implementation.md) for practical setup instructions
+4. Check the [FAQ](faq.md) for quick answers to common questions
+
+## Core Principles
+
+1. **Reliability Through Collaboration**
+ - Multiple agents working together
+ - Cross-verification of results
+ - Redundancy for critical tasks
+
+2. **Efficient Communication**
+ - Clear protocols
+ - Minimal overhead
+ - Effective coordination
+
+3. **Scalable Architecture**
+ - Modular design
+ - Flexible deployment
+ - Resource optimization
+
+4. **Robust Error Handling**
+ - Graceful failure recovery
+ - Systematic error detection
+ - Proactive monitoring
+
+## Contributing
+
+We welcome contributions to this guide! Please see our [contribution guidelines](contributing.md) for more information on how to help improve this documentation.
+
+## Support
+
+If you need help or have questions:
+
+1. Check the [FAQ](faq.md) section
+2. Review [Tips & Troubleshooting](tips.md)
+3. Raise an issue on our GitHub repository
+
+Let's build better multi-agent systems together! 🚀
+
# Welcome to Swarms Docs Home
[](https://discord.gg/jM3Z6M9uMq) [](https://www.youtube.com/@kyegomez3242) [](https://www.linkedin.com/in/kye-g-38759a207/) [](https://x.com/kyegomezb)
diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml
index b08e0de0..52c47599 100644
--- a/docs/mkdocs.yml
+++ b/docs/mkdocs.yml
@@ -330,6 +330,7 @@ nav:
- Swarms API Pricing in Chinese: "swarms_cloud/chinese_api_pricing.md"
- Swarm Types: "swarms_cloud/swarm_types.md"
- Swarms Cloud Subscription Tiers: "swarms_cloud/subscription_tiers.md"
+ - Swarms API Best Practices: "swarms_cloud/best_practices.md"
- Swarm Ecosystem APIs:
- MCS API: "swarms_cloud/mcs_api.md"
# - CreateNow API: "swarms_cloud/create_api.md"
diff --git a/docs/swarms_cloud/best_practices.md b/docs/swarms_cloud/best_practices.md
new file mode 100644
index 00000000..49d22345
--- /dev/null
+++ b/docs/swarms_cloud/best_practices.md
@@ -0,0 +1,231 @@
+# Swarms API Best Practices Guide
+
+This comprehensive guide outlines production-grade best practices for using the Swarms API effectively. Learn how to choose the right swarm architecture, optimize costs, and implement robust error handling.
+
+## Quick Reference Cards
+
+=== "Swarm Types"
+
+ !!! info "Available Swarm Architectures"
+
+ | Swarm Type | Best For | Use Cases |
+ |------------|----------|------------|
+ | `AgentRearrange` | Dynamic workflows | - Complex task decomposition
- Adaptive processing
- Multi-stage analysis |
+ | `MixtureOfAgents` | Diverse expertise | - Cross-domain problems
- Comprehensive analysis
- Multi-perspective tasks |
+ | `SpreadSheetSwarm` | Data processing | - Financial analysis
- Data transformation
- Batch calculations |
+ | `SequentialWorkflow` | Linear processes | - Document processing
- Step-by-step analysis
- Quality control |
+ | `ConcurrentWorkflow` | Parallel tasks | - Batch processing
- Independent analyses
- High-throughput needs |
+ | `GroupChat` | Collaborative solving | - Brainstorming
- Decision making
- Problem solving |
+ | `MultiAgentRouter` | Task distribution | - Load balancing
- Specialized processing
- Resource optimization |
+ | `AutoSwarmBuilder` | Automated setup | - Quick prototyping
- Simple tasks
- Testing |
+ | `HiearchicalSwarm` | Complex organization | - Project management
- Research analysis
- Enterprise workflows |
+ | `MajorityVoting` | Consensus needs | - Quality assurance
- Decision validation
- Risk assessment |
+
+=== "Cost Optimization"
+
+ !!! tip "Cost Management Strategies"
+
+ | Strategy | Implementation | Impact |
+ |----------|----------------|---------|
+ | Batch Processing | Group related tasks | 20-30% cost reduction |
+ | Off-peak Usage | Schedule for 8 PM - 6 AM PT | 15-25% cost reduction |
+ | Token Optimization | Precise prompts, focused tasks | 10-20% cost reduction |
+ | Caching | Store reusable results | 30-40% cost reduction |
+ | Agent Optimization | Use minimum required agents | 15-25% cost reduction |
+
+=== "Error Handling"
+
+ !!! warning "Error Management Best Practices"
+
+ | Error Code | Strategy | Implementation |
+ |------------|----------|----------------|
+ | 400 | Input Validation | Pre-request parameter checks |
+ | 401 | Auth Management | Regular key rotation, secure storage |
+ | 429 | Rate Limiting | Exponential backoff, request queuing |
+ | 500 | Resilience | Retry with backoff, fallback logic |
+ | 503 | High Availability | Multi-region setup, redundancy |
+
+## Choosing the Right Swarm Architecture
+
+### Decision Framework
+
+Use this framework to select the optimal swarm architecture for your use case:
+
+1. **Task Complexity Analysis**
+ - Simple tasks → `AutoSwarmBuilder`
+
+ - Complex tasks → `HiearchicalSwarm` or `MultiAgentRouter`
+
+ - Dynamic tasks → `AgentRearrange`
+
+2. **Workflow Pattern**
+
+ - Linear processes → `SequentialWorkflow`
+
+ - Parallel operations → `ConcurrentWorkflow`
+
+ - Collaborative tasks → `GroupChat`
+
+3. **Domain Requirements**
+
+ - Multi-domain expertise → `MixtureOfAgents`
+
+ - Data processing → `SpreadSheetSwarm`
+
+ - Quality assurance → `MajorityVoting`
+
+### Industry-Specific Recommendations
+
+=== "Finance"
+
+ !!! example "Financial Applications"
+
+
+ - Risk Analysis: `HiearchicalSwarm`
+
+ - Market Research: `MixtureOfAgents`
+
+ - Trading Strategies: `ConcurrentWorkflow`
+
+ - Portfolio Management: `SpreadSheetSwarm`
+
+=== "Healthcare"
+
+ !!! example "Healthcare Applications"
+
+
+ - Patient Analysis: `SequentialWorkflow`
+
+ - Research Review: `MajorityVoting`
+
+ - Treatment Planning: `GroupChat`
+
+ - Medical Records: `MultiAgentRouter`
+
+=== "Legal"
+
+ !!! example "Legal Applications"
+
+
+ - Document Review: `SequentialWorkflow`
+
+ - Case Analysis: `MixtureOfAgents`
+
+ - Compliance Check: `HiearchicalSwarm`
+
+ - Contract Analysis: `ConcurrentWorkflow`
+
+## Production Implementation Guide
+
+### Authentication Best Practices
+
+```python
+import os
+from dotenv import load_dotenv
+
+# Load environment variables
+load_dotenv()
+
+# Secure API key management
+API_KEY = os.getenv("SWARMS_API_KEY")
+if not API_KEY:
+ raise EnvironmentError("API key not found")
+
+# Headers with retry capability
+headers = {
+ "x-api-key": API_KEY,
+ "Content-Type": "application/json",
+}
+```
+
+### Robust Error Handling
+
+```python
+import backoff
+import requests
+from typing import Dict, Any
+
+class SwarmsAPIError(Exception):
+ """Custom exception for Swarms API errors"""
+ pass
+
+@backoff.on_exception(
+ backoff.expo,
+ (requests.exceptions.RequestException, SwarmsAPIError),
+ max_tries=5
+)
+def execute_swarm(payload: Dict[str, Any]) -> Dict[str, Any]:
+ """
+ Execute swarm with robust error handling and retries
+ """
+ try:
+ response = requests.post(
+ f"{BASE_URL}/v1/swarm/completions",
+ headers=headers,
+ json=payload,
+ timeout=30
+ )
+
+ response.raise_for_status()
+ return response.json()
+
+ except requests.exceptions.RequestException as e:
+ if e.response is not None:
+ if e.response.status_code == 429:
+ # Rate limit exceeded
+ raise SwarmsAPIError("Rate limit exceeded")
+ elif e.response.status_code == 401:
+ # Authentication error
+ raise SwarmsAPIError("Invalid API key")
+ raise SwarmsAPIError(f"API request failed: {str(e)}")
+```
+
+
+## Appendix
+
+### Common Patterns and Anti-patterns
+
+!!! success "Recommended Patterns"
+
+ - Use appropriate swarm types for tasks
+
+ - Implement robust error handling
+
+ - Monitor and log executions
+
+ - Cache repeated results
+
+ - Rotate API keys regularly
+
+!!! danger "Anti-patterns to Avoid"
+
+
+ - Hardcoding API keys
+
+ - Ignoring rate limits
+
+ - Missing error handling
+
+
+ - Excessive agent count
+
+ - Inadequate monitoring
+
+### Performance Benchmarks
+
+!!! note "Typical Performance Metrics"
+
+ | Metric | Target Range | Warning Threshold |
+ |--------|--------------|-------------------|
+ | Response Time | < 2s | > 5s |
+ | Success Rate | > 99% | < 95% |
+ | Cost per Task | < $0.05 | > $0.10 |
+ | Cache Hit Rate | > 80% | < 60% |
+ | Error Rate | < 1% | > 5% |
+
+### Additional Resources
+
+!!! info "Useful Links"
+
+ - [Swarms API Documentation](https://docs.swarms.world)
+ - [API Dashboard](https://swarms.world/platform/api-keys)
\ No newline at end of file
diff --git a/mkdocs.yml b/mkdocs.yml
new file mode 100644
index 00000000..dc4bb0b5
--- /dev/null
+++ b/mkdocs.yml
@@ -0,0 +1,83 @@
+site_name: Multi-Agent LLM Systems Best Practices
+site_description: Comprehensive guide for building and managing multi-agent systems
+site_author: Swarms Team
+
+theme:
+ name: material
+ features:
+ - navigation.tabs
+ - navigation.sections
+ - navigation.expand
+ - navigation.top
+ - search.suggest
+ - search.highlight
+ - content.tabs.link
+ - content.code.annotation
+ - content.code.copy
+ language: en
+ palette:
+ - scheme: default
+ toggle:
+ icon: material/toggle-switch-off-outline
+ name: Switch to dark mode
+ primary: teal
+ accent: purple
+ - scheme: slate
+ toggle:
+ icon: material/toggle-switch
+ name: Switch to light mode
+ primary: teal
+ accent: lime
+ font:
+ text: Roboto
+ code: Roboto Mono
+ icon:
+ repo: fontawesome/brands/github
+
+markdown_extensions:
+ - pymdownx.highlight:
+ anchor_linenums: true
+ - pymdownx.inlinehilite
+ - pymdownx.snippets
+ - admonition
+ - pymdownx.arithmatex:
+ generic: true
+ - footnotes
+ - pymdownx.details
+ - pymdownx.superfences:
+ custom_fences:
+ - name: mermaid
+ class: mermaid
+ format: !!python/name:pymdownx.superfences.fence_code_format
+ - pymdownx.mark
+ - attr_list
+ - pymdownx.emoji:
+ emoji_index: !!python/name:materialx.emoji.twemoji
+ emoji_generator: !!python/name:materialx.emoji.to_svg
+
+plugins:
+ - search
+ - minify:
+ minify_html: true
+
+extra:
+ social:
+ - icon: fontawesome/brands/github-alt
+ link: https://github.com/yourusername/multi-agent-best-practices
+
+nav:
+ - Home: index.md
+ - Core Concepts:
+ - Why Multi-Agent Systems?: concepts/why-multi-agent.md
+ - Limitations of Individual Agents: concepts/limitations.md
+ - Multi-Agent Architecture: concepts/architecture.md
+ - Best Practices:
+ - Implementation Guide: best-practices/implementation.md
+ - Communication Protocols: best-practices/communication.md
+ - Error Handling: best-practices/error-handling.md
+ - Performance Optimization: best-practices/performance.md
+ - FAQ: faq.md
+ - Tips & Troubleshooting: tips.md
+ - Glossary: swarms/glossary.md
+
+copyright: Copyright © 2024 Multi-Agent LLM Systems
\ No newline at end of file