diff --git a/docs/swarms/RAG/qdrant_rag.md b/docs/swarms/RAG/qdrant_rag.md index 858fcfbe..d223ddfe 100644 --- a/docs/swarms/RAG/qdrant_rag.md +++ b/docs/swarms/RAG/qdrant_rag.md @@ -19,13 +19,13 @@ pip install qdrant-client fastembed swarms-memory litellm ## Tutorial Steps -1. First, install the latest version of Swarms: +1. **Install Swarms**: First, install the latest version of Swarms: ```bash pip3 install -U swarms ``` -2. Set up your environment variables in a `.env` file: +2. **Environment Setup**: Set up your environment variables in a `.env` file: ```plaintext OPENAI_API_KEY="your-api-key-here" @@ -34,16 +34,16 @@ pip install qdrant-client fastembed swarms-memory litellm WORKSPACE_DIR="agent_workspace" ``` -3. Choose your Qdrant deployment option: +3. **Choose Deployment**: Select your Qdrant deployment option: - **In-memory**: For testing and development (data is not persisted) - **Local server**: For production deployments with persistent storage - **Qdrant Cloud**: Managed cloud service (recommended for production) -4. Configure the vector database wrapper with your preferred embedding model and collection settings +4. **Configure Database**: Set up the vector database wrapper with your preferred embedding model and collection settings -5. Add documents using individual or batch processing methods +5. **Add Documents**: Load documents using individual or batch processing methods -6. Create your agent with RAG capabilities and start querying +6. **Create Agent**: Initialize your agent with RAG capabilities and start querying ## Code