From 4042271160d10cf3bef8dcac8ff77f2ea0ce8e5b Mon Sep 17 00:00:00 2001 From: Kye Date: Tue, 11 Jul 2023 14:35:02 -0400 Subject: [PATCH] clean up --- {swarms/agents/misc => misc}/utils.py | 0 swarms/tools/main.py | 50 ++++++++++++++++ swarms/utils/utils.py | 82 +-------------------------- 3 files changed, 52 insertions(+), 80 deletions(-) rename {swarms/agents/misc => misc}/utils.py (100%) diff --git a/swarms/agents/misc/utils.py b/misc/utils.py similarity index 100% rename from swarms/agents/misc/utils.py rename to misc/utils.py diff --git a/swarms/tools/main.py b/swarms/tools/main.py index fb21fabb..dedfafc1 100644 --- a/swarms/tools/main.py +++ b/swarms/tools/main.py @@ -1300,6 +1300,56 @@ class VisualQuestionAnswering(BaseToolSet): return answer + +#========================> handlers/image +import torch +from PIL import Image +from transformers import BlipForConditionalGeneration, BlipProcessor + +# from core.prompts.file import IMAGE_PROMPT +from swarms.prompts.prompts import IMAGE_PROMPT + +from swarms.utils.utils import BaseHandler + +class ImageCaptioning(BaseHandler): + def __init__(self, device): + print("Initializing ImageCaptioning to %s" % device) + self.device = device + self.torch_dtype = torch.float16 if "cuda" in device else torch.float32 + self.processor = BlipProcessor.from_pretrained( + "Salesforce/blip-image-captioning-base" + ) + self.model = BlipForConditionalGeneration.from_pretrained( + "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype + ).to(self.device) + + def handle(self, filename: str): + img = Image.open(filename) + width, height = img.size + ratio = min(512 / width, 512 / height) + width_new, height_new = (round(width * ratio), round(height * ratio)) + img = img.resize((width_new, height_new)) + img = img.convert("RGB") + img.save(filename, "PNG") + print(f"Resize image form {width}x{height} to {width_new}x{height_new}") + + inputs = self.processor(Image.open(filename), return_tensors="pt").to( + self.device, self.torch_dtype + ) + out = self.model.generate(**inputs) + description = self.processor.decode(out[0], skip_special_tokens=True) + print( + f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}" + ) + + return IMAGE_PROMPT.format(filename=filename, description=description) + + + + + + + #segment anything: ########################### MODELS diff --git a/swarms/utils/utils.py b/swarms/utils/utils.py index 6cf1a56e..8fde50bb 100644 --- a/swarms/utils/utils.py +++ b/swarms/utils/utils.py @@ -225,7 +225,7 @@ class AbstractUploader(ABC): #========================= upload s3 -import os + import boto3 @@ -262,7 +262,6 @@ class S3Uploader(AbstractUploader): #========================= upload s3 #========================> upload/static -import os import shutil from pathlib import Path @@ -291,11 +290,9 @@ class StaticUploader(AbstractUploader): #========================> handlers/base -import os -import shutil + import uuid from enum import Enum -from pathlib import Path from typing import Dict import requests @@ -402,7 +399,6 @@ class FileHandler: #############===========================> -import pandas as pd from swarms.prompts.prompts import DATAFRAME_PROMPT @@ -425,77 +421,3 @@ class CsvToDataframe(BaseHandler): - -#========================> handlers/image -import torch -from PIL import Image -from transformers import BlipForConditionalGeneration, BlipProcessor - -# from core.prompts.file import IMAGE_PROMPT -from swarms.prompts.prompts import IMAGE_PROMPT - - - -class ImageCaptioning(BaseHandler): - def __init__(self, device): - print("Initializing ImageCaptioning to %s" % device) - self.device = device - self.torch_dtype = torch.float16 if "cuda" in device else torch.float32 - self.processor = BlipProcessor.from_pretrained( - "Salesforce/blip-image-captioning-base" - ) - self.model = BlipForConditionalGeneration.from_pretrained( - "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype - ).to(self.device) - - def handle(self, filename: str): - img = Image.open(filename) - width, height = img.size - ratio = min(512 / width, 512 / height) - width_new, height_new = (round(width * ratio), round(height * ratio)) - img = img.resize((width_new, height_new)) - img = img.convert("RGB") - img.save(filename, "PNG") - print(f"Resize image form {width}x{height} to {width_new}x{height_new}") - - inputs = self.processor(Image.open(filename), return_tensors="pt").to( - self.device, self.torch_dtype - ) - out = self.model.generate(**inputs) - description = self.processor.decode(out[0], skip_special_tokens=True) - print( - f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}" - ) - - return IMAGE_PROMPT.format(filename=filename, description=description) - - - - -# from autogpt.agent import Agent -# from swarms.agents.swarms import worker_node - -# class MultiAgent(worker_node): - -# def __init__( -# self, -# ai_name, -# memory, -# full_message_history, -# prompt, -# user_input, -# agent_id -# ): -# super().__init__( -# ai_name=ai_name, -# memory=memory, -# full_message_history=full_message_history, -# next_action_count=0, -# prompt=prompt, -# user_input=user_input, -# ) -# self.agent_id = agent_id -# self.auditory_buffer = [] # contains the non processed parts of the conversation - -# def receive_message(self, speaker, message): -# self.auditory_buffer.append((speaker.ai_name, message)) \ No newline at end of file