diff --git a/api/agent_api_test.py b/api/agent_api_test.py index b8008697..f95e08d1 100644 --- a/api/agent_api_test.py +++ b/api/agent_api_test.py @@ -3,9 +3,8 @@ from loguru import logger import time from typing import Dict, Optional, Tuple from uuid import UUID -import sys -BASE_URL = "http://localhost:8000/v1" +BASE_URL = "http://0.0.0.0:8000/v1" def check_api_server() -> bool: @@ -199,6 +198,7 @@ def test_completion(session: TestSession, agent_id: UUID) -> bool: if response.status_code == 200: completion_data = response.json() + print(completion_data) logger.success( f"Got completion, used {completion_data['token_usage']['total_tokens']} tokens" ) @@ -317,4 +317,4 @@ def run_test_workflow(): if __name__ == "__main__": success = run_test_workflow() - sys.exit(0 if success else 1) + print(success) diff --git a/api/main.py b/api/main.py index 9c3c94be..5d0c178e 100644 --- a/api/main.py +++ b/api/main.py @@ -24,7 +24,7 @@ from fastapi.middleware.cors import CORSMiddleware from loguru import logger from pydantic import BaseModel, Field -from swarms import Agent +from swarms.structs.agent import Agent # Load environment variables load_dotenv() @@ -127,8 +127,8 @@ class AgentUpdate(BaseModel): description: Optional[str] = None system_prompt: Optional[str] = None - temperature: Optional[float] = None - max_loops: Optional[int] = None + temperature: Optional[float] = 0.5 + max_loops: Optional[int] = 1 tags: Optional[List[str]] = None status: Optional[AgentStatus] = None @@ -167,7 +167,7 @@ class CompletionRequest(BaseModel): max_tokens: Optional[int] = Field( None, description="Maximum tokens to generate" ) - temperature_override: Optional[float] = None + temperature_override: Optional[float] = 0.5 stream: bool = Field( default=False, description="Enable streaming response" ) @@ -267,7 +267,7 @@ class AgentStore: autosave=config.autosave, dashboard=config.dashboard, verbose=config.verbose, - dynamic_temperature_enabled=config.dynamic_temperature_enabled, + dynamic_temperature_enabled=True, saved_state_path=f"states/{config.agent_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", user_name=config.user_name, retry_attempts=config.retry_attempts, @@ -328,8 +328,6 @@ class AgentStore: if update.system_prompt: agent.system_prompt = update.system_prompt - if update.temperature is not None: - agent.llm.temperature = update.temperature if update.max_loops is not None: agent.max_loops = update.max_loops if update.tags is not None: @@ -434,8 +432,8 @@ class AgentStore: agent_name=new_name, description=f"Clone of {original_agent.agent_name}", system_prompt=original_agent.system_prompt, - model_name=original_agent.llm.model_name, - temperature=original_agent.llm.temperature, + model_name=original_agent.model_name, + temperature=0.5, max_loops=original_agent.max_loops, tags=original_metadata["tags"], ) @@ -476,18 +474,9 @@ class AgentStore: metadata["status"] = AgentStatus.PROCESSING metadata["last_used"] = start_time - # Apply temporary overrides if specified - original_temp = agent.llm.temperature - if temperature_override is not None: - agent.llm.temperature = temperature_override - # Process the completion response = agent.run(prompt) - # Reset overrides - if temperature_override is not None: - agent.llm.temperature = original_temp - # Update metrics processing_time = ( datetime.utcnow() - start_time @@ -518,8 +507,8 @@ class AgentStore: response=response, metadata={ "agent_name": agent.agent_name, - "model_name": agent.llm.model_name, - "temperature": agent.llm.temperature, + # "model_name": agent.llm.model_name, + # "temperature": 0.5, }, timestamp=datetime.utcnow(), processing_time=processing_time, @@ -790,7 +779,7 @@ class SwarmsAPI: request.prompt, request.agent_id, request.max_tokens, - request.temperature_override, + 0.5, ) # Schedule background cleanup diff --git a/api/test_api.py b/api/test_api.py index 1153d946..cf903652 100644 --- a/api/test_api.py +++ b/api/test_api.py @@ -2,7 +2,7 @@ import requests import json from time import sleep -BASE_URL = "http://api.swarms.ai:8000" +BASE_URL = "http://swarms-api-893767232.us-east-2.elb.amazonaws.com" def make_request(method, endpoint, data=None): diff --git a/async_workflow_example.py b/async_workflow_example.py index b1daf233..72207449 100644 --- a/async_workflow_example.py +++ b/async_workflow_example.py @@ -1,4 +1,3 @@ - import asyncio from typing import List @@ -18,16 +17,16 @@ from swarms.structs.agent import Agent async def create_specialized_agents() -> List[Agent]: """Create a set of specialized agents for financial analysis""" - + # Base model configuration model = OpenAIChat(model_name="gpt-4o") - + # Financial Analysis Agent financial_agent = Agent( agent_name="Financial-Analysis-Agent", agent_description="Personal finance advisor agent", - system_prompt=FINANCIAL_AGENT_SYS_PROMPT + - "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", + system_prompt=FINANCIAL_AGENT_SYS_PROMPT + + "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", max_loops=1, llm=model, dynamic_temperature_enabled=True, @@ -42,7 +41,7 @@ async def create_specialized_agents() -> List[Agent]: saved_state_path="financial_agent.json", interactive=False, ) - + # Risk Assessment Agent risk_agent = Agent( agent_name="Risk-Assessment-Agent", @@ -60,7 +59,7 @@ async def create_specialized_agents() -> List[Agent]: saved_state_path="risk_agent.json", interactive=False, ) - + # Market Research Agent research_agent = Agent( agent_name="Market-Research-Agent", @@ -78,20 +77,21 @@ async def create_specialized_agents() -> List[Agent]: saved_state_path="research_agent.json", interactive=False, ) - + return [financial_agent, risk_agent, research_agent] + async def main(): # Create specialized agents agents = await create_specialized_agents() - + # Create workflow with group chat enabled workflow = create_default_workflow( agents=agents, name="AI-Investment-Analysis-Workflow", - enable_group_chat=True + enable_group_chat=True, ) - + # Configure speaker roles workflow.speaker_system.add_speaker( SpeakerConfig( @@ -99,28 +99,28 @@ async def main(): agent=agents[0], # Financial agent as coordinator priority=1, concurrent=False, - required=True + required=True, ) ) - + workflow.speaker_system.add_speaker( SpeakerConfig( role=SpeakerRole.CRITIC, agent=agents[1], # Risk agent as critic priority=2, - concurrent=True + concurrent=True, ) ) - + workflow.speaker_system.add_speaker( SpeakerConfig( role=SpeakerRole.EXECUTOR, agent=agents[2], # Research agent as executor priority=2, - concurrent=True + concurrent=True, ) ) - + # Investment analysis task investment_task = """ Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities: @@ -130,24 +130,22 @@ async def main(): 4. Provide market trend analysis Present the results in a structured markdown format. """ - + try: # Run workflow with retry result = await run_workflow_with_retry( - workflow=workflow, - task=investment_task, - max_retries=3 + workflow=workflow, task=investment_task, max_retries=3 ) - + print("\nWorkflow Results:") print("================") - + # Process and display agent outputs for output in result.agent_outputs: print(f"\nAgent: {output.agent_name}") print("-" * (len(output.agent_name) + 8)) print(output.output) - + # Display group chat history if enabled if workflow.enable_group_chat: print("\nGroup Chat Discussion:") @@ -155,7 +153,7 @@ async def main(): for msg in workflow.speaker_system.message_history: print(f"\n{msg.role} ({msg.agent_name}):") print(msg.content) - + # Save detailed results if result.metadata.get("shared_memory_keys"): print("\nShared Insights:") @@ -165,13 +163,14 @@ async def main(): if value: print(f"\n{key}:") print(value) - + except Exception as e: print(f"Workflow failed: {str(e)}") - + finally: await workflow.cleanup() + if __name__ == "__main__": # Run the example - asyncio.run(main()) \ No newline at end of file + asyncio.run(main()) diff --git a/docs/swarms/structs/async_workflow.md b/docs/swarms/structs/async_workflow.md index 387a6bd9..425ceba7 100644 --- a/docs/swarms/structs/async_workflow.md +++ b/docs/swarms/structs/async_workflow.md @@ -93,88 +93,186 @@ print(results) ## Production-Grade Financial Example: Multiple Agents ### Example: Stock Analysis and Investment Strategy ```python + import asyncio -from swarms import Agent, AsyncWorkflow -from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT - -# Initialize multiple Financial Agents -portfolio_analysis_agent = Agent( - agent_name="Portfolio-Analysis-Agent", - system_prompt=FINANCIAL_AGENT_SYS_PROMPT, - model_name="gpt-4o-mini", - autosave=True, - verbose=True, -) +from typing import List -stock_strategy_agent = Agent( - agent_name="Stock-Strategy-Agent", - system_prompt=FINANCIAL_AGENT_SYS_PROMPT, - model_name="gpt-4o-mini", - autosave=True, - verbose=True, -) +from swarm_models import OpenAIChat -risk_management_agent = Agent( - agent_name="Risk-Management-Agent", - system_prompt=FINANCIAL_AGENT_SYS_PROMPT, - model_name="gpt-4o-mini", - autosave=True, - verbose=True, +from swarms.structs.async_workflow import ( + SpeakerConfig, + SpeakerRole, + create_default_workflow, + run_workflow_with_retry, ) - -# Create a workflow with multiple agents -workflow = AsyncWorkflow( - name="Financial-Workflow", - agents=[portfolio_analysis_agent, stock_strategy_agent, risk_management_agent], - verbose=True, +from swarms.prompts.finance_agent_sys_prompt import ( + FINANCIAL_AGENT_SYS_PROMPT, ) +from swarms.structs.agent import Agent + + +async def create_specialized_agents() -> List[Agent]: + """Create a set of specialized agents for financial analysis""" + + # Base model configuration + model = OpenAIChat(model_name="gpt-4o") + + # Financial Analysis Agent + financial_agent = Agent( + agent_name="Financial-Analysis-Agent", + agent_description="Personal finance advisor agent", + system_prompt=FINANCIAL_AGENT_SYS_PROMPT + + "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", + max_loops=1, + llm=model, + dynamic_temperature_enabled=True, + user_name="Kye", + retry_attempts=3, + context_length=8192, + return_step_meta=False, + output_type="str", + auto_generate_prompt=False, + max_tokens=4000, + stopping_token="", + saved_state_path="financial_agent.json", + interactive=False, + ) + + # Risk Assessment Agent + risk_agent = Agent( + agent_name="Risk-Assessment-Agent", + agent_description="Investment risk analysis specialist", + system_prompt="Analyze investment risks and provide risk scores. Output when analysis is complete.", + max_loops=1, + llm=model, + dynamic_temperature_enabled=True, + user_name="Kye", + retry_attempts=3, + context_length=8192, + output_type="str", + max_tokens=4000, + stopping_token="", + saved_state_path="risk_agent.json", + interactive=False, + ) + + # Market Research Agent + research_agent = Agent( + agent_name="Market-Research-Agent", + agent_description="AI and tech market research specialist", + system_prompt="Research AI market trends and growth opportunities. Output when research is complete.", + max_loops=1, + llm=model, + dynamic_temperature_enabled=True, + user_name="Kye", + retry_attempts=3, + context_length=8192, + output_type="str", + max_tokens=4000, + stopping_token="", + saved_state_path="research_agent.json", + interactive=False, + ) + + return [financial_agent, risk_agent, research_agent] + -# Run the workflow async def main(): - task = "Analyze the current stock market trends and provide an investment strategy with risk assessment." - results = await workflow.run(task) - for agent_result in results: - print(agent_result) + # Create specialized agents + agents = await create_specialized_agents() + + # Create workflow with group chat enabled + workflow = create_default_workflow( + agents=agents, + name="AI-Investment-Analysis-Workflow", + enable_group_chat=True, + ) + + # Configure speaker roles + workflow.speaker_system.add_speaker( + SpeakerConfig( + role=SpeakerRole.COORDINATOR, + agent=agents[0], # Financial agent as coordinator + priority=1, + concurrent=False, + required=True, + ) + ) + + workflow.speaker_system.add_speaker( + SpeakerConfig( + role=SpeakerRole.CRITIC, + agent=agents[1], # Risk agent as critic + priority=2, + concurrent=True, + ) + ) + + workflow.speaker_system.add_speaker( + SpeakerConfig( + role=SpeakerRole.EXECUTOR, + agent=agents[2], # Research agent as executor + priority=2, + concurrent=True, + ) + ) + + # Investment analysis task + investment_task = """ + Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities: + 1. Identify high-growth AI ETFs and index funds + 2. Analyze risks and potential returns + 3. Create a diversified portfolio allocation + 4. Provide market trend analysis + Present the results in a structured markdown format. + """ + + try: + # Run workflow with retry + result = await run_workflow_with_retry( + workflow=workflow, task=investment_task, max_retries=3 + ) + + print("\nWorkflow Results:") + print("================") + + # Process and display agent outputs + for output in result.agent_outputs: + print(f"\nAgent: {output.agent_name}") + print("-" * (len(output.agent_name) + 8)) + print(output.output) + + # Display group chat history if enabled + if workflow.enable_group_chat: + print("\nGroup Chat Discussion:") + print("=====================") + for msg in workflow.speaker_system.message_history: + print(f"\n{msg.role} ({msg.agent_name}):") + print(msg.content) + + # Save detailed results + if result.metadata.get("shared_memory_keys"): + print("\nShared Insights:") + print("===============") + for key in result.metadata["shared_memory_keys"]: + value = workflow.shared_memory.get(key) + if value: + print(f"\n{key}:") + print(value) + + except Exception as e: + print(f"Workflow failed: {str(e)}") + + finally: + await workflow.cleanup() + + +if __name__ == "__main__": + # Run the example + asyncio.run(main()) -asyncio.run(main()) -``` -**Output**: ``` -INFO: Agent Portfolio-Analysis-Agent processing task: Analyze the current stock market trends and provide an investment strategy with risk assessment. -INFO: Agent Stock-Strategy-Agent processing task: Analyze the current stock market trends and provide an investment strategy with risk assessment. -INFO: Agent Risk-Management-Agent processing task: Analyze the current stock market trends and provide an investment strategy with risk assessment. -INFO: Agent Portfolio-Analysis-Agent completed task -INFO: Agent Stock-Strategy-Agent completed task -INFO: Agent Risk-Management-Agent completed task -Results: -- Detailed portfolio analysis... -- Stock investment strategies... -- Risk assessment insights... -``` - ---- - -## Notes -1. **Autosave**: The autosave functionality is a placeholder. Users can implement custom logic to save `self.results`. -2. **Error Handling**: Exceptions raised by agents are logged and returned as part of the results. -3. **Dashboard**: The `dashboard` feature is currently not implemented but can be extended for visualization. - ---- -## Dependencies -- `asyncio`: Python's asynchronous I/O framework. -- `loguru`: Logging utility for better log management. -- `swarms`: Base components (`BaseWorkflow`, `Agent`). --- - -## Future Extensions -- **Dashboard**: Implement a real-time dashboard for monitoring agent performance. -- **Autosave**: Add persistent storage support for task results. -- **Task Management**: Extend task pooling and scheduling logic to support dynamic workloads. - ---- - -## License -This class is part of the `swarms` framework and follows the framework's licensing terms. diff --git a/example.py b/example.py index 362c4f59..96670e1b 100644 --- a/example.py +++ b/example.py @@ -2,10 +2,6 @@ from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) -from swarm_models import OpenAIChat - -model = OpenAIChat(model_name="gpt-4o") - # Initialize the agent agent = Agent( @@ -14,7 +10,7 @@ agent = Agent( system_prompt=FINANCIAL_AGENT_SYS_PROMPT + "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", max_loops=1, - llm=model, + model_name="gpt-4o", dynamic_temperature_enabled=True, user_name="Kye", retry_attempts=3, diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index c1a9982a..2f1f380f 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -572,7 +572,7 @@ class Agent: # Telemetry Processor to log agent data threading.Thread(target=self.log_agent_data).start() - if self.llm is not None and self.model_name is not None: + if self.llm is None and self.model_name is not None: self.llm = self.llm_handling() def llm_handling(self): @@ -2406,21 +2406,38 @@ class Agent: **kwargs: Arbitrary keyword arguments. Returns: - The result of the method call on the `llm` object. + str: The result of the method call on the `llm` object. + Raises: + AttributeError: If no suitable method is found in the llm object. + TypeError: If task is not a string or llm object is None. + ValueError: If task is empty. """ - if hasattr(self.llm, "__call__"): - return self.llm(task, *args, **kwargs) - elif hasattr(self.llm, "run"): - return self.llm.run(task, *args, **kwargs) - elif hasattr(self.llm, "generate"): - return self.llm.generate(task, *args, **kwargs) - elif hasattr(self.llm, "invoke"): - return self.llm.invoke(task, *args, **kwargs) - else: - raise AttributeError( - "No suitable method found in the llm object." - ) + if not isinstance(task, str): + raise TypeError("Task must be a string") + + if not task.strip(): + raise ValueError("Task cannot be empty") + + if self.llm is None: + raise TypeError("LLM object cannot be None") + + # Define common method names for LLM interfaces + method_names = ["run", "__call__", "generate", "invoke"] + + for method_name in method_names: + if hasattr(self.llm, method_name): + try: + method = getattr(self.llm, method_name) + return method(task, *args, **kwargs) + except Exception as e: + raise RuntimeError( + f"Error calling {method_name}: {str(e)}" + ) + + raise AttributeError( + f"No suitable method found in the llm object. Expected one of: {method_names}" + ) def handle_sop_ops(self): # If the user inputs a list of strings for the sop then join them and set the sop diff --git a/swarms/structs/async_workflow.py b/swarms/structs/async_workflow.py index 92d29596..e10ad6a5 100644 --- a/swarms/structs/async_workflow.py +++ b/swarms/structs/async_workflow.py @@ -12,11 +12,7 @@ from logging.handlers import RotatingFileHandler from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field -from swarm_models import OpenAIChat -from swarms.prompts.finance_agent_sys_prompt import ( - FINANCIAL_AGENT_SYS_PROMPT, -) from swarms.structs.agent import Agent from swarms.structs.base_workflow import BaseWorkflow from swarms.utils.loguru_logger import initialize_logger @@ -24,6 +20,7 @@ from swarms.utils.loguru_logger import initialize_logger # Base logger initialization logger = initialize_logger("async_workflow") + # Pydantic models for structured data class AgentOutput(BaseModel): agent_id: str @@ -36,6 +33,7 @@ class AgentOutput(BaseModel): status: str error: Optional[str] = None + class WorkflowOutput(BaseModel): workflow_id: str workflow_name: str @@ -47,6 +45,7 @@ class WorkflowOutput(BaseModel): agent_outputs: List[AgentOutput] metadata: Dict[str, Any] = Field(default_factory=dict) + class SpeakerRole(str, Enum): COORDINATOR = "coordinator" CRITIC = "critic" @@ -54,6 +53,7 @@ class SpeakerRole(str, Enum): VALIDATOR = "validator" DEFAULT = "default" + class SpeakerMessage(BaseModel): role: SpeakerRole content: Any @@ -61,6 +61,7 @@ class SpeakerMessage(BaseModel): agent_name: str metadata: Dict[str, Any] = Field(default_factory=dict) + class GroupChatConfig(BaseModel): max_turns: int = 10 timeout_per_turn: float = 30.0 @@ -68,6 +69,7 @@ class GroupChatConfig(BaseModel): allow_concurrent: bool = True save_history: bool = True + @dataclass class SharedMemoryItem: key: str @@ -76,6 +78,7 @@ class SharedMemoryItem: author: str metadata: Dict[str, Any] = None + @dataclass class SpeakerConfig: role: SpeakerRole @@ -85,22 +88,30 @@ class SpeakerConfig: timeout: float = 30.0 required: bool = False + class SharedMemory: """Thread-safe shared memory implementation with persistence""" + def __init__(self, persistence_path: Optional[str] = None): self._memory = {} self._lock = threading.Lock() self._persistence_path = persistence_path self._load_from_disk() - def set(self, key: str, value: Any, author: str, metadata: Dict[str, Any] = None) -> None: + def set( + self, + key: str, + value: Any, + author: str, + metadata: Dict[str, Any] = None, + ) -> None: with self._lock: item = SharedMemoryItem( key=key, value=value, timestamp=datetime.utcnow(), author=author, - metadata=metadata or {} + metadata=metadata or {}, ) self._memory[key] = item self._persist_to_disk() @@ -110,57 +121,64 @@ class SharedMemory: item = self._memory.get(key) return item.value if item else None - def get_with_metadata(self, key: str) -> Optional[SharedMemoryItem]: + def get_with_metadata( + self, key: str + ) -> Optional[SharedMemoryItem]: with self._lock: return self._memory.get(key) def _persist_to_disk(self) -> None: if self._persistence_path: - with open(self._persistence_path, 'w') as f: - json.dump({k: asdict(v) for k, v in self._memory.items()}, f) + with open(self._persistence_path, "w") as f: + json.dump( + {k: asdict(v) for k, v in self._memory.items()}, f + ) def _load_from_disk(self) -> None: - if self._persistence_path and os.path.exists(self._persistence_path): - with open(self._persistence_path, 'r') as f: + if self._persistence_path and os.path.exists( + self._persistence_path + ): + with open(self._persistence_path, "r") as f: data = json.load(f) self._memory = { k: SharedMemoryItem(**v) for k, v in data.items() } + class SpeakerSystem: """Manages speaker interactions and group chat functionality""" + def __init__(self, default_timeout: float = 30.0): self.speakers: Dict[SpeakerRole, SpeakerConfig] = {} self.message_history: List[SpeakerMessage] = [] self.default_timeout = default_timeout self._lock = threading.Lock() - + def add_speaker(self, config: SpeakerConfig) -> None: with self._lock: self.speakers[config.role] = config - + def remove_speaker(self, role: SpeakerRole) -> None: with self._lock: self.speakers.pop(role, None) async def _execute_speaker( - self, - config: SpeakerConfig, + self, + config: SpeakerConfig, input_data: Any, - context: Dict[str, Any] = None + context: Dict[str, Any] = None, ) -> SpeakerMessage: try: result = await asyncio.wait_for( - config.agent.arun(input_data), - timeout=config.timeout + config.agent.arun(input_data), timeout=config.timeout ) - + return SpeakerMessage( role=config.role, content=result, timestamp=datetime.utcnow(), agent_name=config.agent.agent_name, - metadata={"context": context or {}} + metadata={"context": context or {}}, ) except asyncio.TimeoutError: return SpeakerMessage( @@ -168,7 +186,7 @@ class SpeakerSystem: content=None, timestamp=datetime.utcnow(), agent_name=config.agent.agent_name, - metadata={"error": "Timeout"} + metadata={"error": "Timeout"}, ) except Exception as e: return SpeakerMessage( @@ -176,12 +194,13 @@ class SpeakerSystem: content=None, timestamp=datetime.utcnow(), agent_name=config.agent.agent_name, - metadata={"error": str(e)} + metadata={"error": str(e)}, ) + class AsyncWorkflow(BaseWorkflow): """Enhanced asynchronous workflow with advanced speaker system""" - + def __init__( self, name: str = "AsyncWorkflow", @@ -209,20 +228,26 @@ class AsyncWorkflow(BaseWorkflow): self.shared_memory = SharedMemory(shared_memory_path) self.speaker_system = SpeakerSystem() self.enable_group_chat = enable_group_chat - self.group_chat_config = group_chat_config or GroupChatConfig() + self.group_chat_config = ( + group_chat_config or GroupChatConfig() + ) self._setup_logging(log_path) self.metadata = {} def _setup_logging(self, log_path: str) -> None: """Configure rotating file logger""" - self.logger = logging.getLogger(f"workflow_{self.workflow_id}") - self.logger.setLevel(logging.DEBUG if self.verbose else logging.INFO) - + self.logger = logging.getLogger( + f"workflow_{self.workflow_id}" + ) + self.logger.setLevel( + logging.DEBUG if self.verbose else logging.INFO + ) + handler = RotatingFileHandler( - log_path, maxBytes=10*1024*1024, backupCount=5 + log_path, maxBytes=10 * 1024 * 1024, backupCount=5 ) formatter = logging.Formatter( - '%(asctime)s - %(name)s - %(levelname)s - %(message)s' + "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) handler.setFormatter(formatter) self.logger.addHandler(handler) @@ -235,35 +260,35 @@ class AsyncWorkflow(BaseWorkflow): agent=agent, concurrent=True, timeout=30.0, - required=False + required=False, ) self.speaker_system.add_speaker(config) async def run_concurrent_speakers( - self, - task: str, - context: Dict[str, Any] = None + self, task: str, context: Dict[str, Any] = None ) -> List[SpeakerMessage]: """Run all concurrent speakers in parallel""" concurrent_tasks = [ - self.speaker_system._execute_speaker(config, task, context) + self.speaker_system._execute_speaker( + config, task, context + ) for config in self.speaker_system.speakers.values() if config.concurrent ] - - results = await asyncio.gather(*concurrent_tasks, return_exceptions=True) + + results = await asyncio.gather( + *concurrent_tasks, return_exceptions=True + ) return [r for r in results if isinstance(r, SpeakerMessage)] async def run_sequential_speakers( - self, - task: str, - context: Dict[str, Any] = None + self, task: str, context: Dict[str, Any] = None ) -> List[SpeakerMessage]: """Run non-concurrent speakers in sequence""" results = [] for config in sorted( self.speaker_system.speakers.values(), - key=lambda x: x.priority + key=lambda x: x.priority, ): if not config.concurrent: result = await self.speaker_system._execute_speaker( @@ -273,63 +298,74 @@ class AsyncWorkflow(BaseWorkflow): return results async def run_group_chat( - self, - initial_message: str, - context: Dict[str, Any] = None + self, initial_message: str, context: Dict[str, Any] = None ) -> List[SpeakerMessage]: """Run a group chat discussion among speakers""" if not self.enable_group_chat: - raise ValueError("Group chat is not enabled for this workflow") + raise ValueError( + "Group chat is not enabled for this workflow" + ) messages: List[SpeakerMessage] = [] current_turn = 0 - + while current_turn < self.group_chat_config.max_turns: turn_context = { "turn": current_turn, "history": messages, - **(context or {}) + **(context or {}), } - + if self.group_chat_config.allow_concurrent: turn_messages = await self.run_concurrent_speakers( - initial_message if current_turn == 0 else messages[-1].content, - turn_context + ( + initial_message + if current_turn == 0 + else messages[-1].content + ), + turn_context, ) else: turn_messages = await self.run_sequential_speakers( - initial_message if current_turn == 0 else messages[-1].content, - turn_context + ( + initial_message + if current_turn == 0 + else messages[-1].content + ), + turn_context, ) - + messages.extend(turn_messages) - + # Check if we should continue the conversation if self._should_end_group_chat(messages): break - + current_turn += 1 - + if self.group_chat_config.save_history: self.speaker_system.message_history.extend(messages) - + return messages - def _should_end_group_chat(self, messages: List[SpeakerMessage]) -> bool: + def _should_end_group_chat( + self, messages: List[SpeakerMessage] + ) -> bool: """Determine if group chat should end based on messages""" if not messages: return True - + # Check if all required speakers have participated if self.group_chat_config.require_all_speakers: participating_roles = {msg.role for msg in messages} required_roles = { - role for role, config in self.speaker_system.speakers.items() + role + for role, config in self.speaker_system.speakers.items() if config.required } if not required_roles.issubset(participating_roles): return False - + return False @asynccontextmanager @@ -344,26 +380,24 @@ class AsyncWorkflow(BaseWorkflow): await self._save_results(start_time, end_time) async def _execute_agent_task( - self, - agent: Agent, - task: str + self, agent: Agent, task: str ) -> AgentOutput: """Execute a single agent task with enhanced error handling and monitoring""" start_time = datetime.utcnow() task_id = str(uuid.uuid4()) - + try: self.logger.info( f"Agent {agent.agent_name} starting task {task_id}: {task}" ) - + result = await agent.arun(task) - + end_time = datetime.utcnow() self.logger.info( f"Agent {agent.agent_name} completed task {task_id}" ) - + return AgentOutput( agent_id=str(id(agent)), agent_name=agent.agent_name, @@ -372,16 +406,16 @@ class AsyncWorkflow(BaseWorkflow): output=result, start_time=start_time, end_time=end_time, - status="success" + status="success", ) - + except Exception as e: end_time = datetime.utcnow() self.logger.error( f"Error in agent {agent.agent_name} task {task_id}: {str(e)}", - exc_info=True + exc_info=True, ) - + return AgentOutput( agent_id=str(id(agent)), agent_name=agent.agent_name, @@ -391,7 +425,7 @@ class AsyncWorkflow(BaseWorkflow): start_time=start_time, end_time=end_time, status="error", - error=str(e) + error=str(e), ) async def run(self, task: str) -> WorkflowOutput: @@ -401,22 +435,28 @@ class AsyncWorkflow(BaseWorkflow): async with self.task_context(): start_time = datetime.utcnow() - + try: # Run speakers first if enabled speaker_outputs = [] if self.enable_group_chat: speaker_outputs = await self.run_group_chat(task) else: - concurrent_outputs = await self.run_concurrent_speakers(task) - sequential_outputs = await self.run_sequential_speakers(task) - speaker_outputs = concurrent_outputs + sequential_outputs + concurrent_outputs = ( + await self.run_concurrent_speakers(task) + ) + sequential_outputs = ( + await self.run_sequential_speakers(task) + ) + speaker_outputs = ( + concurrent_outputs + sequential_outputs + ) # Store speaker outputs in shared memory self.shared_memory.set( "speaker_outputs", [msg.dict() for msg in speaker_outputs], - "workflow" + "workflow", ) # Create tasks for all agents @@ -426,13 +466,19 @@ class AsyncWorkflow(BaseWorkflow): ] # Execute all tasks concurrently - agent_outputs = await asyncio.gather(*tasks, return_exceptions=True) - + agent_outputs = await asyncio.gather( + *tasks, return_exceptions=True + ) + end_time = datetime.utcnow() - + # Calculate success/failure counts - successful_tasks = sum(1 for output in agent_outputs - if isinstance(output, AgentOutput) and output.status == "success") + successful_tasks = sum( + 1 + for output in agent_outputs + if isinstance(output, AgentOutput) + and output.status == "success" + ) failed_tasks = len(agent_outputs) - successful_tasks return WorkflowOutput( @@ -443,64 +489,99 @@ class AsyncWorkflow(BaseWorkflow): total_agents=len(self.agents), successful_tasks=successful_tasks, failed_tasks=failed_tasks, - agent_outputs=[output for output in agent_outputs - if isinstance(output, AgentOutput)], + agent_outputs=[ + output + for output in agent_outputs + if isinstance(output, AgentOutput) + ], metadata={ "max_workers": self.max_workers, - "shared_memory_keys": list(self.shared_memory._memory.keys()), + "shared_memory_keys": list( + self.shared_memory._memory.keys() + ), "group_chat_enabled": self.enable_group_chat, - "total_speaker_messages": len(speaker_outputs), - "speaker_outputs": [msg.dict() for msg in speaker_outputs] - } + "total_speaker_messages": len( + speaker_outputs + ), + "speaker_outputs": [ + msg.dict() for msg in speaker_outputs + ], + }, ) except Exception as e: - self.logger.error(f"Critical workflow error: {str(e)}", exc_info=True) + self.logger.error( + f"Critical workflow error: {str(e)}", + exc_info=True, + ) raise - async def _save_results(self, start_time: datetime, end_time: datetime) -> None: + async def _save_results( + self, start_time: datetime, end_time: datetime + ) -> None: """Save workflow results to disk""" if not self.autosave: return output_dir = "workflow_outputs" os.makedirs(output_dir, exist_ok=True) - + filename = f"{output_dir}/workflow_{self.workflow_id}_{end_time.strftime('%Y%m%d_%H%M%S')}.json" - + try: - with open(filename, 'w') as f: - json.dump({ - "workflow_id": self.workflow_id, - "start_time": start_time.isoformat(), - "end_time": end_time.isoformat(), - "results": [ - asdict(result) if hasattr(result, '__dict__') - else result.dict() if hasattr(result, 'dict') - else str(result) - for result in self.results - ], - "speaker_history": [ - msg.dict() for msg in self.speaker_system.message_history - ], - "metadata": self.metadata - }, f, default=str, indent=2) - + with open(filename, "w") as f: + json.dump( + { + "workflow_id": self.workflow_id, + "start_time": start_time.isoformat(), + "end_time": end_time.isoformat(), + "results": [ + ( + asdict(result) + if hasattr(result, "__dict__") + else ( + result.dict() + if hasattr(result, "dict") + else str(result) + ) + ) + for result in self.results + ], + "speaker_history": [ + msg.dict() + for msg in self.speaker_system.message_history + ], + "metadata": self.metadata, + }, + f, + default=str, + indent=2, + ) + self.logger.info(f"Workflow results saved to {filename}") except Exception as e: - self.logger.error(f"Error saving workflow results: {str(e)}") + self.logger.error( + f"Error saving workflow results: {str(e)}" + ) def _validate_config(self) -> None: """Validate workflow configuration""" if self.max_workers < 1: raise ValueError("max_workers must be at least 1") - - if self.enable_group_chat and not self.speaker_system.speakers: - raise ValueError("Group chat enabled but no speakers configured") - + + if ( + self.enable_group_chat + and not self.speaker_system.speakers + ): + raise ValueError( + "Group chat enabled but no speakers configured" + ) + for config in self.speaker_system.speakers.values(): if config.timeout <= 0: - raise ValueError(f"Invalid timeout for speaker {config.role}") + raise ValueError( + f"Invalid timeout for speaker {config.role}" + ) async def cleanup(self) -> None: """Cleanup workflow resources""" @@ -509,24 +590,32 @@ class AsyncWorkflow(BaseWorkflow): for handler in self.logger.handlers[:]: handler.close() self.logger.removeHandler(handler) - + # Persist final state if self.autosave: end_time = datetime.utcnow() - await self._save_results(self.results[0].start_time if self.results else end_time, end_time) - + await self._save_results( + ( + self.results[0].start_time + if self.results + else end_time + ), + end_time, + ) + # Clear shared memory if configured self.shared_memory._memory.clear() - + except Exception as e: self.logger.error(f"Error during cleanup: {str(e)}") raise + # Utility functions for the workflow def create_default_workflow( agents: List[Agent], name: str = "DefaultWorkflow", - enable_group_chat: bool = False + enable_group_chat: bool = False, ) -> AsyncWorkflow: """Create a workflow with default configuration""" workflow = AsyncWorkflow( @@ -540,18 +629,19 @@ def create_default_workflow( group_chat_config=GroupChatConfig( max_turns=5, allow_concurrent=True, - require_all_speakers=False - ) + require_all_speakers=False, + ), ) - + workflow.add_default_speakers() return workflow + async def run_workflow_with_retry( workflow: AsyncWorkflow, task: str, max_retries: int = 3, - retry_delay: float = 1.0 + retry_delay: float = 1.0, ) -> WorkflowOutput: """Run workflow with retry logic""" for attempt in range(max_retries): @@ -565,19 +655,19 @@ async def run_workflow_with_retry( ) await asyncio.sleep(retry_delay) retry_delay *= 2 # Exponential backoff - + # async def create_specialized_agents() -> List[Agent]: # """Create a set of specialized agents for financial analysis""" - + # # Base model configuration # model = OpenAIChat(model_name="gpt-4o") - + # # Financial Analysis Agent # financial_agent = Agent( # agent_name="Financial-Analysis-Agent", # agent_description="Personal finance advisor agent", -# system_prompt=FINANCIAL_AGENT_SYS_PROMPT + +# system_prompt=FINANCIAL_AGENT_SYS_PROMPT + # "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", # max_loops=1, # llm=model, @@ -593,7 +683,7 @@ async def run_workflow_with_retry( # saved_state_path="financial_agent.json", # interactive=False, # ) - + # # Risk Assessment Agent # risk_agent = Agent( # agent_name="Risk-Assessment-Agent", @@ -611,7 +701,7 @@ async def run_workflow_with_retry( # saved_state_path="risk_agent.json", # interactive=False, # ) - + # # Market Research Agent # research_agent = Agent( # agent_name="Market-Research-Agent", @@ -629,20 +719,20 @@ async def run_workflow_with_retry( # saved_state_path="research_agent.json", # interactive=False, # ) - + # return [financial_agent, risk_agent, research_agent] # async def main(): # # Create specialized agents # agents = await create_specialized_agents() - + # # Create workflow with group chat enabled # workflow = create_default_workflow( # agents=agents, # name="AI-Investment-Analysis-Workflow", # enable_group_chat=True # ) - + # # Configure speaker roles # workflow.speaker_system.add_speaker( # SpeakerConfig( @@ -653,7 +743,7 @@ async def run_workflow_with_retry( # required=True # ) # ) - + # workflow.speaker_system.add_speaker( # SpeakerConfig( # role=SpeakerRole.CRITIC, @@ -662,7 +752,7 @@ async def run_workflow_with_retry( # concurrent=True # ) # ) - + # workflow.speaker_system.add_speaker( # SpeakerConfig( # role=SpeakerRole.EXECUTOR, @@ -671,7 +761,7 @@ async def run_workflow_with_retry( # concurrent=True # ) # ) - + # # Investment analysis task # investment_task = """ # Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities: @@ -681,7 +771,7 @@ async def run_workflow_with_retry( # 4. Provide market trend analysis # Present the results in a structured markdown format. # """ - + # try: # # Run workflow with retry # result = await run_workflow_with_retry( @@ -689,16 +779,16 @@ async def run_workflow_with_retry( # task=investment_task, # max_retries=3 # ) - + # print("\nWorkflow Results:") # print("================") - + # # Process and display agent outputs # for output in result.agent_outputs: # print(f"\nAgent: {output.agent_name}") # print("-" * (len(output.agent_name) + 8)) # print(output.output) - + # # Display group chat history if enabled # if workflow.enable_group_chat: # print("\nGroup Chat Discussion:") @@ -706,7 +796,7 @@ async def run_workflow_with_retry( # for msg in workflow.speaker_system.message_history: # print(f"\n{msg.role} ({msg.agent_name}):") # print(msg.content) - + # # Save detailed results # if result.metadata.get("shared_memory_keys"): # print("\nShared Insights:") @@ -716,13 +806,13 @@ async def run_workflow_with_retry( # if value: # print(f"\n{key}:") # print(value) - + # except Exception as e: # print(f"Workflow failed: {str(e)}") - + # finally: # await workflow.cleanup() # if __name__ == "__main__": # # Run the example -# asyncio.run(main()) \ No newline at end of file +# asyncio.run(main()) diff --git a/swarm_builder.py b/swarms/structs/swarm_builder.py similarity index 100% rename from swarm_builder.py rename to swarms/structs/swarm_builder.py