clean up of folders

pull/68/head^2
Kye 1 year ago
parent 3b4fe35ab3
commit 47a4e28331

@ -1,51 +0,0 @@
import logging
import os
from fastapi import FastAPI, HTTPException, Depends
from fastapi_cache.decorator import cache
from fastapi_cache.coder import JsonCoder
from fastapi_cache import FastAPICache
from fastapi_cache.backends.redis import RedisBackend
from aioredis import Redis
from pydantic import BaseModel
from swarms.swarms.swarms import swarm
from fastapi_limiter import FastAPILimiter
from fastapi_limiter.depends import RateLimiter
from dotenv import load_dotenv
load_dotenv()
class SwarmInput(BaseModel):
api_key: str
objective: str
app = FastAPI()
@app.on_event("startup")
async def startup():
redis_host = os.getenv("REDIS_HOST", "localhost")
redis_port = int(os.getenv("REDIS_PORT", 6379))
redis = await Redis.create(redis_host, redis_port)
FastAPICache.init(RedisBackend(redis), prefix="fastapi-cache", coder=JsonCoder())
await FastAPILimiter.init(f"redis://{redis_host}:{redis_port}")
@app.post("/chat", dependencies=[Depends(RateLimiter(times=2, minutes=1))])
@cache(expire=60) # Cache results for 1 minute
async def run(swarm_input: SwarmInput):
try:
results = swarm(swarm_input.api_key, swarm_input.objective)
if not results:
raise HTTPException(status_code=500, detail="Failed to run swarms")
return {"results": results}
except ValueError as ve:
logging.error("A ValueError occurred", exc_info=True)
raise HTTPException(status_code=400, detail=str(ve))
except Exception:
logging.error("An error occurred", exc_info=True)
raise HTTPException(status_code=500, detail="An unexpected error occurred")

@ -1,60 +0,0 @@
import os
from pathlib import Path
from typing import Dict, List
from fastapi.templating import Jinja2Templates
from swarms.agents.utils.agent_creator import AgentManager
from swarms.utils.main import BaseHandler, FileHandler, FileType
from swarms.tools.main import ExitConversation, RequestsGet, CodeEditor, Terminal
from swarms.utils.main import CsvToDataframe
from swarms.tools.main import BaseToolSet
from swarms.utils.main import StaticUploader
BASE_DIR = Path(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
os.chdir(BASE_DIR / os.environ["PLAYGROUND_DIR"])
#
toolsets: List[BaseToolSet] = [
Terminal(),
CodeEditor(),
RequestsGet(),
ExitConversation(),
]
handlers: Dict[FileType, BaseHandler] = {FileType.DATAFRAME: CsvToDataframe()}
if os.environ["USE_GPU"]:
import torch
# from core.handlers.image import ImageCaptioning
from swarms.tools.main import ImageCaptioning
from swarms.tools.main import (
ImageEditing,
InstructPix2Pix,
Text2Image,
VisualQuestionAnswering,
)
if torch.cuda.is_available():
toolsets.extend(
[
Text2Image("cuda"),
ImageEditing("cuda"),
InstructPix2Pix("cuda"),
VisualQuestionAnswering("cuda"),
]
)
handlers[FileType.IMAGE] = ImageCaptioning("cuda")
agent_manager = AgentManager.create(toolsets=toolsets)
file_handler = FileHandler(handlers=handlers, path=BASE_DIR)
templates = Jinja2Templates(directory=BASE_DIR / "api" / "templates")
uploader = StaticUploader.from_settings(path=BASE_DIR / "static", endpoint="static")
reload_dirs = [BASE_DIR / "core", BASE_DIR / "api"]

@ -1,137 +0,0 @@
import os
import re
from multiprocessing import Process
from tempfile import NamedTemporaryFile
from typing import List, TypedDict
import uvicorn
from fastapi import FastAPI, Request, UploadFile
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from api.olds.container import (
agent_manager,
file_handler,
reload_dirs,
templates,
uploader,
)
from api.olds.worker import get_task_result, start_worker, task_execute
# from env import settings
app = FastAPI()
app.mount("/static", StaticFiles(directory=uploader.path), name="static")
class ExecuteRequest(BaseModel):
session: str
prompt: str
files: List[str]
class ExecuteResponse(TypedDict):
answer: str
files: List[str]
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/dashboard", response_class=HTMLResponse)
async def dashboard(request: Request):
return templates.TemplateResponse("dashboard.html", {"request": request})
@app.post("/upload")
async def create_upload_file(files: List[UploadFile]):
urls = []
for file in files:
extension = "." + file.filename.split(".")[-1]
with NamedTemporaryFile(suffix=extension) as tmp_file:
tmp_file.write(file.file.read())
tmp_file.flush()
urls.append(uploader.upload(tmp_file.name))
return {"urls": urls}
@app.post("/api/execute")
async def execute(request: ExecuteRequest) -> ExecuteResponse:
query = request.prompt
files = request.files
session = request.session
executor = agent_manager.create_executor(session)
promptedQuery = "\n".join([file_handler.handle(file) for file in files])
promptedQuery += query
try:
res = executor({"input": promptedQuery})
except Exception as e:
return {"answer": str(e), "files": []}
files = re.findall(r"\[file://\S*\]", res["output"])
files = [file[1:-1].split("file://")[1] for file in files]
return {
"answer": res["output"],
"files": [uploader.upload(file) for file in files],
}
@app.post("/api/execute/async")
async def execute_async(request: ExecuteRequest):
query = request.prompt
files = request.files
session = request.session
promptedQuery = "\n".join([file_handler.handle(file) for file in files])
promptedQuery += query
execution = task_execute.delay(session, promptedQuery)
return {"id": execution.id}
@app.get("/api/execute/async/{execution_id}")
async def execute_async(execution_id: str):
execution = get_task_result(execution_id)
result = {}
if execution.status == "SUCCESS" and execution.result:
output = execution.result.get("output", "")
files = re.findall(r"\[file://\S*\]", output)
files = [file[1:-1].split("file://")[1] for file in files]
result = {
"answer": output,
"files": [uploader.upload(file) for file in files],
}
return {
"status": execution.status,
"info": execution.info,
"result": result,
}
def serve():
p = Process(target=start_worker, args=[])
p.start()
uvicorn.run("api.main:app", host="0.0.0.0", port=os.environ["EVAL_PORT"])
def dev():
p = Process(target=start_worker, args=[])
p.start()
uvicorn.run(
"api.main:app",
host="0.0.0.0",
port=os.environ["EVAL_PORT"],
reload=True,
reload_dirs=reload_dirs,
)

@ -1,44 +0,0 @@
import os
from celery import Celery
from celery.result import AsyncResult
from api.olds.container import agent_manager
celery_app = Celery(__name__)
celery_app.conf.broker_url = os.environ["CELERY_BROKER_URL"]
celery_app.conf.result_backend = os.environ["CELERY_BROKER_URL"]
celery_app.conf.update(
task_track_started=True,
task_serializer="json",
accept_content=["json"], # Ignore other content
result_serializer="json",
enable_utc=True,
)
@celery_app.task(name="task_execute", bind=True)
def task_execute(self, session: str, prompt: str):
executor = agent_manager.create_executor(session, self)
response = executor({"input": prompt})
result = {"output": response["output"]}
previous = AsyncResult(self.request.id)
if previous and previous.info:
result.update(previous.info)
return result
def get_task_result(task_id):
return AsyncResult(task_id)
def start_worker():
celery_app.worker_main(
[
"worker",
"--loglevel=INFO",
]
)

@ -1,52 +0,0 @@
# This is a basic Dockerfile and might need to be adjusted according to your specific application's needs. Please replace the placeholders for environment variables with your actual keys. Also, remember not to expose sensitive data like API keys in your Dockerfile or any version control systems.
# When building and running this Docker container, be sure to allocate enough resources (especially GPU memory) for your chosen visual foundation model if running on a machine with an NVIDIA GPU. You may need to use nvidia-docker or Docker's --gpus option when running the container. The GPU memory usage you provided would be valuable for this purpose.
# It's important to note that Docker inherently does not fully support GPUs. As a result, running GPU-accelerated code within Docker requires a special runtime like NVIDIA Docker. For more complex orchestration, a platform like Kubernetes can be more effective.
# Lastly, since your application seems to be using Redis (CELERY_BROKER_URL), you might need to set up a separate Redis service as well. This can be accomplished by creating a multi-container Docker application using Docker Compose or Kubernetes.
# Use an official Python runtime as a parent image
FROM python:3.10
# Set environment variables
ENV EVAL_PORT=8000 \
MODEL_NAME=gpt-4 \
CELERY_BROKER_URL=redis://localhost:6379 \
SERVER=http://localhost:${EVAL_PORT} \
USE_GPU=False \
PLAYGROUND_DIR=playground \
LOG_LEVEL=INFO \
BOT_NAME=Swarm \
# You will need to set these environment variables to your actual keys in production
OPENAI_API_KEY=your_openai_api_key \
WINEDB_HOST=your_winedb_host \
WINEDB_PASSWORD=your_winedb_password \
BING_SEARCH_URL=your_bing_search_url \
BING_SUBSCRIPTION_KEY=your_bing_subscription_key \
SERPAPI_API_KEY=your_serpapi_api_key \
REDIS_HOST=your_redis_host \
REDIS_PORT=your_redis_port
# Set work directory
WORKDIR /usr/src/app
# Add requirements file
COPY requirements.txt ./
# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Bundle app source
COPY . .
# Expose port
EXPOSE ${EVAL_PORT}
# Run the application
CMD ["uvicorn", "api.app:app", "--host", "0.0.0.0", "--port", "8000"]

@ -1,48 +0,0 @@
# Use an official Python runtime as a parent image
FROM nvidia/cuda:11.7.0-runtime-ubuntu20.04
# Set environment variables
ENV EVAL_PORT=8000 \
MODEL_NAME=gpt-4 \
CELERY_BROKER_URL=redis://localhost:6379 \
SERVER=http://localhost:${EVAL_PORT} \
USE_GPU=True \
PLAYGROUND_DIR=playground \
LOG_LEVEL=INFO \
BOT_NAME=Orca \
# You will need to set these environment variables to your actual keys in production
OPENAI_API_KEY=your_openai_api_key \
WINEDB_HOST=your_winedb_host \
WINEDB_PASSWORD=your_winedb_password \
BING_SEARCH_URL=your_bing_search_url \
BING_SUBSCRIPTION_KEY=your_bing_subscription_key \
SERPAPI_API_KEY=your_serpapi_api_key \
REDIS_HOST=your_redis_host \
REDIS_PORT=your_redis_port
# Set work directory
WORKDIR /usr/src/app
# Install system dependencies
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
apt-get install -y python3.10 python3-pip curl && \
apt-get install -y nodejs npm
# Add requirements file
COPY requirements.txt ./
# Install any needed packages specified in requirements.txt
RUN python3.10 -m pip install --upgrade pip && \
python3.10 -m pip install --no-cache-dir -r requirements.txt
# Bundle app source
COPY . .
# Expose port
EXPOSE ${EVAL_PORT}
# Run the application
CMD ["uvicorn", "api.app:app", "--host", "0.0.0.0", "--port", "8000"]

@ -1,32 +0,0 @@
version: '3.8'
services:
swarms:
build: .
ports:
- "${SWARMS_PORT}:${SWARMS_PORT}"
environment:
SWARMS_PORT: 8000
MODEL_NAME: gpt-4
CELERY_BROKER_URL: redis://redis:6379
SERVER: http://localhost:${SWARMS_PORT}
USE_GPU: False
PLAYGROUND_DIR: playground
LOG_LEVEL: INFO
BOT_NAME: Orca
# You will need to set these environment variables to your actual keys in production
OPENAI_API_KEY: your_openai_api_key
WINEDB_HOST: your_winedb_host
WINEDB_PASSWORD: your_winedb_password
BING_SEARCH_URL: your_bing_search_url
BING_SUBSCRIPTION_KEY: your_bing_subscription_key
SERPAPI_API_KEY: your_serpapi_api_key
depends_on:
- redis
volumes:
- .:/usr/src/app
redis:
image: redis:alpine
ports:
- 6379:6379

@ -1,42 +0,0 @@
apiVersion: apps/v1
kind: Deployment
metadata:
name: swarms-deployment
spec:
replicas: 3
selector:
matchLabels:
app: swarms
template:
metadata:
labels:
app: swarms
spec:
containers:
- name: swarms
image: your_dockerhub_username/swarms:latest
ports:
- containerPort: 8000
env:
- name: EVAL_PORT
value: "8000"
- name: MODEL_NAME
value: "gpt-4"
- name: CELERY_BROKER_URL
value: "redis://redis:6379"
- name: SERVER
value: "http://localhost:8000"
- name: USE_GPU
value: "False"
- name: PLAYGROUND_DIR
value: "playground"
- name: LOG_LEVEL
value: "INFO"
- name: BOT_NAME
value: "Orca"
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: OPENAI_API_KEY
# Other environment variables

@ -1,12 +0,0 @@
apiVersion: v1
kind: Service
metadata:
name: swarms-service
spec:
selector:
app: swarms
ports:
- protocol: TCP
port: 80
targetPort: 8000
type: LoadBalancer

@ -1,208 +0,0 @@
To create a Terraform configuration for deploying the Swarm application on an AWS EC2 instance with a T4 GPU, you would typically need the following resources:
1. **AWS Provider:** This is needed to configure the AWS resources.
2. **AWS Key Pair:** This is required for SSH access to the EC2 instances.
3. **Security Group:** This defines the firewall rules for your instances.
4. **EC2 Instance:** This is where you deploy your application. Be sure to choose an instance type that supports T4 GPUs (like `g4dn.xlarge` for example).
5. **IAM Role and Policy:** These are optional but recommended for managing permissions.
The Terraform configuration file(s) should be written in HashiCorp Configuration Language (HCL). The conventional file extension is `.tf`.
Here's an example of what the Terraform configuration might look like:
```hcl
provider "aws" {
region = "us-west-2"
}
resource "aws_key_pair" "deployer" {
key_name = "deployer-key"
public_key = file("~/.ssh/id_rsa.pub")
}
resource "aws_security_group" "swarm-sg" {
name = "swarm-sg"
description = "Security group for Swarm app"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
ingress {
from_port = 8000
to_port = 8000
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
}
resource "aws_instance" "swarm" {
ami = "ami-0c94855ba95c574c8" # Update this with the correct AMI ID
instance_type = "g4dn.xlarge"
key_name = aws_key_pair.deployer.key_name
vpc_security_group_ids = [aws_security_group.swarm-sg.id]
tags = {
Name = "SwarmInstance"
}
user_data = <<-EOF
#!/bin/bash
sudo apt-get update
sudo apt-get install -y docker.io
sudo docker pull your_docker_image_name
sudo docker run -d -p 8000:8000 your_docker_image_name
EOF
}
```
Please replace the `"ami-0c94855ba95c574c8"` with the correct AMI ID for your desired operating system and `"your_docker_image_name"` with the name of your Docker image.
This is a simple configuration and may not cover all your requirements. You might need to modify this to fit your needs, such as adding persistent storage (EBS volumes), load balancers, auto scaling groups, etc.
Remember to install Terraform and initialize it in your working directory using `terraform init` before running `terraform apply` to create the resources. Also, ensure your AWS credentials are correctly set up in your environment.
Incorporating persistent storage, load balancers, and auto scaling will make our Terraform configuration significantly more complex. Below is a skeleton of what the configuration might look like:
```hcl
provider "aws" {
region = "us-west-2"
}
data "aws_ami" "ubuntu" {
most_recent = true
filter {
name = "name"
values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
}
filter {
name = "virtualization-type"
values = ["hvm"]
}
owners = ["099720109477"]
}
resource "aws_key_pair" "deployer" {
key_name = "deployer-key"
public_key = file("~/.ssh/id_rsa.pub")
}
resource "aws_security_group" "swarm-sg" {
name = "swarm-sg"
description = "Security group for Swarm app"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
ingress {
from_port = 8000
to_port = 8000
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
}
resource "aws_launch_configuration" "swarm" {
name = "swarm-configuration"
image_id = data.aws_ami.ubuntu.id
instance_type = "g4dn.xlarge"
key_name = aws_key_pair.deployer.key_name
security_groups = [aws_security_group.swarm-sg.id]
user_data = <<-EOF
#!/bin/bash
sudo apt-get update
sudo apt-get install -y docker.io
sudo docker pull your_docker_image_name
sudo docker run -d -p 8000:8000 your_docker_image_name
EOF
root_block_device {
volume_type = "gp2"
volume_size = 30 # size in GBs
}
lifecycle {
create_before_destroy = true
}
}
resource "aws_autoscaling_group" "swarm" {
name_prefix = "swarm-asg"
max_size = 5
min_size = 1
desired_capacity = 1
launch_configuration = aws_launch_configuration.swarm.id
lifecycle {
create_before_destroy = true
}
}
resource "aws_elb" "swarm" {
name = "swarm-elb"
subnets = ["subnet-id1", "subnet-id2"]
listener {
instance_port = 8000
instance_protocol = "http"
lb_port = 80
lb_protocol = "http"
}
health_check {
healthy_threshold = 2
unhealthy_threshold = 2
timeout = 3
target = "HTTP:8000/"
interval = 30
}
instances = [aws_instance.swarm.id]
cross_zone_load_balancing = true
idle_timeout = 400
connection_draining = true
connection_draining_timeout = 400
}
```
In this example, the `aws_launch_configuration` sets up the details
for launching new instances, including attaching an EBS volume for persistent storage. The `aws_autoscaling_group` uses this configuration to scale instances up and down as required.
The `aws_elb` resource creates a load balancer that distributes incoming traffic across all the instances in the autoscaling group. The `health_check` block inside `aws_elb` is used to check the health of the instances. If an instance fails the health check, it is replaced by the autoscaling group.
Please replace `"subnet-id1"` and `"subnet-id2"` with your actual subnet IDs and `"your_docker_image_name"` with the name of your Docker image.
Again, note that this is a simplified example and may need to be adjusted to suit your particular use case. For instance, this configuration assumes that you are using a single security group for all instances, which might not be the best setup for a real-world scenario.
Before running this Terraform configuration, make sure to initialize Terraform in your working directory using `terraform init`, and ensure that your AWS credentials are correctly set up in your environment.

@ -1,115 +0,0 @@
provider "aws" {
region = "us-west-2"
}
data "aws_ami" "ubuntu" {
most_recent = true
filter {
name = "name"
values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
}
filter {
name = "virtualization-type"
values = ["hvm"]
}
owners = ["099720109477"]
}
resource "aws_key_pair" "deployer" {
key_name = "deployer-key"
public_key = file("~/.ssh/id_rsa.pub")
}
resource "aws_security_group" "swarm-sg" {
name = "swarm-sg"
description = "Security group for Swarm app"
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
ingress {
from_port = 8000
to_port = 8000
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
}
resource "aws_launch_configuration" "swarm" {
name = "swarm-configuration"
image_id = data.aws_ami.ubuntu.id
instance_type = "g4dn.xlarge"
key_name = aws_key_pair.deployer.key_name
security_groups = [aws_security_group.swarm-sg.id]
user_data = <<-EOF
#!/bin/bash
sudo apt-get update
sudo apt-get install -y docker.io
sudo docker pull your_docker_image_name
sudo docker run -d -p 8000:8000 your_docker_image_name
EOF
root_block_device {
volume_type = "gp2"
volume_size = 30 # size in GBs
}
lifecycle {
create_before_destroy = true
}
}
resource "aws_autoscaling_group" "swarm" {
name_prefix = "swarm-asg"
max_size = 5
min_size = 1
desired_capacity = 1
launch_configuration = aws_launch_configuration.swarm.id
lifecycle {
create_before_destroy = true
}
}
resource "aws_elb" "swarm" {
name = "swarm-elb"
subnets = ["subnet-id1", "subnet-id2"]
listener {
instance_port = 8000
instance_protocol = "http"
lb_port = 80
lb_protocol = "http"
}
health_check {
healthy_threshold = 2
unhealthy_threshold = 2
timeout = 3
target = "HTTP:8000/"
interval = 30
}
instances = [aws_instance.swarm.id]
cross_zone_load_balancing = true
idle_timeout = 400
connection_draining = true
connection_draining_timeout = 400
}

@ -1,50 +0,0 @@
from setuptools import setup, find_packages
setup(
name="swarms",
packages=find_packages(exclude=[]),
version="1.4.1",
license="MIT",
description="Swarms - Pytorch",
author="Kye Gomez",
author_email="kye@apac.ai",
long_description_content_type="text/markdown",
url="https://github.com/kyegomez/swarms",
keywords=[
"artificial intelligence",
"deep learning",
"optimizers",
"Prompt Engineering",
],
install_requires=[
"transformers",
"openai",
"langchain==0.0.240",
"asyncio",
"nest_asyncio",
"pegasusx",
"google-generativeai",
"oceandb",
"langchain-experimental",
"playwright",
"duckduckgo_search",
"faiss-cpu",
"wget",
"httpx",
"ggl",
"beautifulsoup4",
"pydantic",
"tenacity",
"celery",
"redis",
"google-search-results==2.4.2",
"Pillow",
],
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
],
)
Loading…
Cancel
Save