parent
ce0dd1f5a6
commit
490e278385
After Width: | Height: | Size: 40 KiB |
@ -0,0 +1,10 @@
|
||||
from swarms.models.azure_openai_llm import AzureOpenAI
|
||||
|
||||
# Initialize Azure OpenAI
|
||||
model = AzureOpenAI()
|
||||
|
||||
# Run the model
|
||||
model(
|
||||
"Create a youtube script for a video on how to use the swarms"
|
||||
" framework"
|
||||
)
|
@ -0,0 +1,39 @@
|
||||
from swarms import Agent, OpenAIChat, SequentialWorkflow
|
||||
|
||||
# Example usage
|
||||
llm = OpenAIChat(
|
||||
temperature=0.5,
|
||||
max_tokens=3000,
|
||||
)
|
||||
|
||||
# Initialize the Agent with the language agent
|
||||
agent1 = Agent(
|
||||
agent_name="John the writer",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
)
|
||||
|
||||
|
||||
# Create another Agent for a different task
|
||||
agent2 = Agent("Summarizer", llm=llm, max_loops=1, dashboard=False)
|
||||
|
||||
|
||||
# Create the workflow
|
||||
workflow = SequentialWorkflow(
|
||||
name="Blog Generation Workflow",
|
||||
description=(
|
||||
"Generate a youtube transcript on how to deploy agents into production"
|
||||
),
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
agents=[agent1, agent2],
|
||||
)
|
||||
|
||||
# Run the workflow
|
||||
workflow.run()
|
||||
|
||||
# # # Output the results
|
||||
# for task in workflow.tasks:
|
||||
# print(f"Task: {task.description}, Result: {task.result}")
|
@ -0,0 +1,223 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
|
||||
|
||||
import openai
|
||||
from langchain_core.pydantic_v1 import (
|
||||
Field,
|
||||
SecretStr,
|
||||
root_validator,
|
||||
)
|
||||
from langchain_core.utils import (
|
||||
convert_to_secret_str,
|
||||
get_from_dict_or_env,
|
||||
)
|
||||
from langchain_openai.llms.base import BaseOpenAI
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AzureOpenAI(BaseOpenAI):
|
||||
"""Azure-specific OpenAI large language models.
|
||||
|
||||
To use, you should have the ``openai`` python package installed, and the
|
||||
environment variable ``OPENAI_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the openai.create call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from swarms import AzureOpenAI
|
||||
|
||||
openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct")
|
||||
"""
|
||||
|
||||
azure_endpoint: Union[str, None] = None
|
||||
"""Your Azure endpoint, including the resource.
|
||||
|
||||
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
|
||||
|
||||
Example: `https://example-resource.azure.openai.com/`
|
||||
"""
|
||||
deployment_name: Union[str, None] = Field(
|
||||
default=None, alias="azure_deployment"
|
||||
)
|
||||
"""A model deployment.
|
||||
|
||||
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
||||
Note: this means you won't be able to use non-deployment endpoints.
|
||||
"""
|
||||
openai_api_version: str = Field(default="", alias="api_version")
|
||||
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
||||
openai_api_key: Optional[SecretStr] = Field(
|
||||
default=None, alias="api_key"
|
||||
)
|
||||
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
||||
azure_ad_token: Optional[SecretStr] = None
|
||||
"""Your Azure Active Directory token.
|
||||
|
||||
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
||||
|
||||
For more:
|
||||
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
||||
""" # noqa: E501
|
||||
azure_ad_token_provider: Union[Callable[[], str], None] = None
|
||||
"""A function that returns an Azure Active Directory token.
|
||||
|
||||
Will be invoked on every request.
|
||||
"""
|
||||
openai_api_type: str = ""
|
||||
"""Legacy, for openai<1.0.0 support."""
|
||||
validate_base_url: bool = True
|
||||
"""For backwards compatibility. If legacy val openai_api_base is passed in, try to
|
||||
infer if it is a base_url or azure_endpoint and update accordingly.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> List[str]:
|
||||
"""Get the namespace of the langchain object."""
|
||||
return ["langchain", "llms", "openai"]
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["streaming"] and values["n"] > 1:
|
||||
raise ValueError("Cannot stream results when n > 1.")
|
||||
if values["streaming"] and values["best_of"] > 1:
|
||||
raise ValueError(
|
||||
"Cannot stream results when best_of > 1."
|
||||
)
|
||||
|
||||
# Check OPENAI_KEY for backwards compatibility.
|
||||
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
||||
# other forms of azure credentials.
|
||||
openai_api_key = (
|
||||
values["openai_api_key"]
|
||||
or os.getenv("AZURE_OPENAI_API_KEY")
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
values["openai_api_key"] = (
|
||||
convert_to_secret_str(openai_api_key)
|
||||
if openai_api_key
|
||||
else None
|
||||
)
|
||||
|
||||
values["azure_endpoint"] = values[
|
||||
"azure_endpoint"
|
||||
] or os.getenv("AZURE_OPENAI_ENDPOINT")
|
||||
azure_ad_token = values["azure_ad_token"] or os.getenv(
|
||||
"AZURE_OPENAI_AD_TOKEN"
|
||||
)
|
||||
values["azure_ad_token"] = (
|
||||
convert_to_secret_str(azure_ad_token)
|
||||
if azure_ad_token
|
||||
else None
|
||||
)
|
||||
values["openai_api_base"] = values[
|
||||
"openai_api_base"
|
||||
] or os.getenv("OPENAI_API_BASE")
|
||||
values["openai_proxy"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
values["openai_api_version"] = values[
|
||||
"openai_api_version"
|
||||
] or os.getenv("OPENAI_API_VERSION")
|
||||
values["openai_api_type"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_type",
|
||||
"OPENAI_API_TYPE",
|
||||
default="azure",
|
||||
)
|
||||
# For backwards compatibility. Before openai v1, no distinction was made
|
||||
# between azure_endpoint and base_url (openai_api_base).
|
||||
openai_api_base = values["openai_api_base"]
|
||||
if openai_api_base and values["validate_base_url"]:
|
||||
if "/openai" not in openai_api_base:
|
||||
values["openai_api_base"] = (
|
||||
values["openai_api_base"].rstrip("/") + "/openai"
|
||||
)
|
||||
raise ValueError(
|
||||
"As of openai>=1.0.0, Azure endpoints should be"
|
||||
" specified via the `azure_endpoint` param not"
|
||||
" `openai_api_base` (or alias `base_url`)."
|
||||
)
|
||||
if values["deployment_name"]:
|
||||
raise ValueError(
|
||||
"As of openai>=1.0.0, if `deployment_name` (or"
|
||||
" alias `azure_deployment`) is specified then"
|
||||
" `openai_api_base` (or alias `base_url`) should"
|
||||
" not be. Instead use `deployment_name` (or alias"
|
||||
" `azure_deployment`) and `azure_endpoint`."
|
||||
)
|
||||
values["deployment_name"] = None
|
||||
client_params = {
|
||||
"api_version": values["openai_api_version"],
|
||||
"azure_endpoint": values["azure_endpoint"],
|
||||
"azure_deployment": values["deployment_name"],
|
||||
"api_key": (
|
||||
values["openai_api_key"].get_secret_value()
|
||||
if values["openai_api_key"]
|
||||
else None
|
||||
),
|
||||
"azure_ad_token": (
|
||||
values["azure_ad_token"].get_secret_value()
|
||||
if values["azure_ad_token"]
|
||||
else None
|
||||
),
|
||||
"azure_ad_token_provider": values[
|
||||
"azure_ad_token_provider"
|
||||
],
|
||||
"organization": values["openai_organization"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"timeout": values["request_timeout"],
|
||||
"max_retries": values["max_retries"],
|
||||
"default_headers": values["default_headers"],
|
||||
"default_query": values["default_query"],
|
||||
"http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.AzureOpenAI(
|
||||
**client_params
|
||||
).completions
|
||||
values["async_client"] = openai.AsyncAzureOpenAI(
|
||||
**client_params
|
||||
).completions
|
||||
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return {
|
||||
**{"deployment_name": self.deployment_name},
|
||||
**super()._identifying_params,
|
||||
}
|
||||
|
||||
@property
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
openai_params = {"model": self.deployment_name}
|
||||
return {**openai_params, **super()._invocation_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "azure"
|
||||
|
||||
@property
|
||||
def lc_attributes(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"openai_api_type": self.openai_api_type,
|
||||
"openai_api_version": self.openai_api_version,
|
||||
}
|
Loading…
Reference in new issue