diff --git a/README.md b/README.md index effb1680..378b8c54 100644 --- a/README.md +++ b/README.md @@ -141,10 +141,14 @@ model = OpenAIChat( agent = Agent( agent_name="Stock-Analysis-Agent", - model_name="gpt-4o-mini", + system_prompt="You are a stock market analysis expert. Analyze market trends and provide insights.", + llm=model, max_loops="auto", interactive=True, streaming_on=True, + verbose=True, + autosave=True, + saved_state_path="stock_analysis_agent.json" ) agent.run("What is the current market trend for tech stocks?") @@ -157,29 +161,31 @@ The `Agent` class offers a range of settings to tailor its behavior to specific | Setting | Description | Default Value | | --- | --- | --- | | `agent_name` | The name of the agent. | "DefaultAgent" | -| `system_prompt` | The system prompt to use for the agent. | "Default system prompt." | -| `llm` | The language model to use for processing tasks. | `OpenAIChat` instance | +| `system_prompt` | The system prompt to use for the agent. | None | +| `llm` | The language model to use for processing tasks. | Required | | `max_loops` | The maximum number of loops to execute for a task. | 1 | | `autosave` | Enables or disables autosaving of the agent's state. | False | | `dashboard` | Enables or disables the dashboard for the agent. | False | | `verbose` | Controls the verbosity of the agent's output. | False | +| `streaming_on` | Enables or disables response streaming. | True | | `dynamic_temperature_enabled` | Enables or disables dynamic temperature adjustment for the language model. | False | -| `saved_state_path` | The path to save the agent's state. | "agent_state.json" | -| `user_name` | The username associated with the agent. | "default_user" | -| `retry_attempts` | The number of retry attempts for failed tasks. | 1 | -| `context_length` | The maximum length of the context to consider for tasks. | 200000 | -| `return_step_meta` | Controls whether to return step metadata in the output. | False | -| `output_type` | The type of output to return (e.g., "json", "string"). | "string" | +| `saved_state_path` | The path to save the agent's state. | None | +| `user_name` | The username associated with the agent. | "User" | +| `retry_attempts` | The number of retry attempts for failed tasks. | 3 | +| `context_length` | The maximum length of the context to consider for tasks. | 8192 | +| `multi_modal` | Enables or disables multimodal support. | False | +| `code_interpreter` | Enables or disables code execution. | False | +| `self_healing_enabled` | Enables or disables error recovery. | False | +| `sentiment_threshold` | The threshold for response evaluation. | 0.7 | +| `tags` | A list of strings for categorizing the agent. | None | +| `use_cases` | A list of dictionaries documenting the agent's use cases. | None | ```python import os from swarms import Agent from swarms.models import OpenAIChat - -from swarms.prompts.finance_agent_sys_prompt import ( - FINANCIAL_AGENT_SYS_PROMPT, -) +from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT from dotenv import load_dotenv load_dotenv() @@ -187,7 +193,7 @@ load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") -# Create an instance of the OpenAIChat class +# Create model instance model = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) @@ -201,21 +207,29 @@ agent = Agent( autosave=True, dashboard=False, verbose=True, + streaming_on=True, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="swarms_corp", - retry_attempts=1, + retry_attempts=3, context_length=200000, - return_step_meta=False, - output_type="string", - streaming_on=False, + multi_modal=False, + code_interpreter=True, + self_healing_enabled=True, + sentiment_threshold=0.7, + tags=["finance", "analysis"], + use_cases=[{"name": "Financial Analysis", "description": "Analyze financial data and provide insights"}] ) +# Modern method usage +agent.update_system_prompt("New system prompt") +agent.update_max_loops(5) +agent.update_loop_interval(2) +agent.update_retry_attempts(5) +print(agent.get_llm_parameters()) -agent.run( - "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria" -) - +# Run the agent +agent.run("Analyze the latest quarterly financial report for Tesla") ``` ----- ### Integrating RAG with Swarms for Enhanced Long-Term Memory @@ -244,7 +258,10 @@ from swarms.memory import ChromaDB chromadb = ChromaDB( metric="cosine", # Metric for similarity measurement output_dir="finance_agent_rag", # Directory for storing RAG data - # docs_folder="artifacts", # Uncomment and specify the folder containing your documents + limit_tokens=1000, # Maximum tokens per query + n_results=1, # Number of results to retrieve + docs_folder=None, # Optional folder containing documents to add + verbose=False # Enable verbose logging if needed ) ```