parent
a8cf8f46dd
commit
4abc823215
@ -1,99 +1,304 @@
|
||||
#kye
|
||||
#aug 8, 11:51
|
||||
import warnings
|
||||
import logging
|
||||
import sys
|
||||
from typing import (
|
||||
Any,
|
||||
Collection,
|
||||
Dict,
|
||||
Field,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
AbstractSet
|
||||
)
|
||||
|
||||
from simpleaichat import AIChat, AsyncAIChat
|
||||
import asyncio
|
||||
import openai
|
||||
import tiktoken
|
||||
import os
|
||||
|
||||
def get_from_dict_or_env(
|
||||
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None
|
||||
) -> str:
|
||||
"""Get a value from a dictionary or an environment variable."""
|
||||
if key in data and data[key]:
|
||||
return data[key]
|
||||
else:
|
||||
return get_from_env(key, env_key, default=default)
|
||||
|
||||
class OpenAI:
|
||||
def __init__(self,
|
||||
api_key=None,
|
||||
system=None,
|
||||
console=True,
|
||||
model=None,
|
||||
params=None,
|
||||
save_messages=True):
|
||||
self.api_key = api_key or self.fetch_api_key()
|
||||
self.system = system or "You are a helpful assistant"
|
||||
|
||||
try:
|
||||
|
||||
self.ai = AIChat(api_key=self.api_key,
|
||||
system=self.system,
|
||||
console=self.console,
|
||||
model=self.model,
|
||||
params=self.params,
|
||||
save_messages=self.save_messages)
|
||||
|
||||
self.async_ai = AsyncAIChat(
|
||||
api_key=self.api_key,
|
||||
system=self.system,
|
||||
console=self.console,
|
||||
model=self.model,
|
||||
params=self.params,
|
||||
save_messages=self.save_messages
|
||||
)
|
||||
|
||||
except Exception as error:
|
||||
raise ValueError(f"Failed to initialize the chat with error: {error}, check inputs and input types")
|
||||
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
|
||||
"""Get a value from a dictionary or an environment variable."""
|
||||
if env_key in os.environ and os.environ[env_key]:
|
||||
return os.environ[env_key]
|
||||
elif default is not None:
|
||||
return default
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Did not find {key}, please add an environment variable"
|
||||
f" `{env_key}` which contains it, or pass"
|
||||
f" `{key}` as a named parameter."
|
||||
)
|
||||
|
||||
def __call__(self, message, **kwargs):
|
||||
try:
|
||||
return self.ai(message, **kwargs)
|
||||
except Exception as error:
|
||||
print(f"Error in OpenAI, {error}")
|
||||
|
||||
def generate(self, message, **kwargs):
|
||||
try:
|
||||
return self.ai(message, **kwargs)
|
||||
except Exception as error:
|
||||
print(f"Error in OpenAI, {error}")
|
||||
|
||||
async def generate_async(self, message, **kwargs):
|
||||
try:
|
||||
return await self.async_ai(message, **kwargs)
|
||||
except Exception as error:
|
||||
raise Exception(f"Error in asynchronous OpenAI Call, {error}")
|
||||
|
||||
def initialize_chat(self, ids):
|
||||
for id in ids:
|
||||
try:
|
||||
self.async_ai.new_session(api_key=self.api_key, id=id)
|
||||
except Exception as error:
|
||||
raise ValueError(f"Failed to initialize session for ID {id} with error: {error}")
|
||||
|
||||
async def ask_multiple(self, ids, question_template):
|
||||
|
||||
|
||||
|
||||
class OpenAIChat(BaseLLM):
|
||||
"""OpenAI Chat large language models.
|
||||
|
||||
To use, you should have the ``openai`` python package installed, and the
|
||||
environment variable ``OPENAI_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the openai.create call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import OpenAIChat
|
||||
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model_name: str = "gpt-3.5-turbo"
|
||||
"""Model name to use."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
openai_api_key: Optional[str] = None
|
||||
openai_api_base: Optional[str] = None
|
||||
# to support explicit proxy for OpenAI
|
||||
openai_proxy: Optional[str] = None
|
||||
max_retries: int = 6
|
||||
"""Maximum number of retries to make when generating."""
|
||||
prefix_messages: List = Field(default_factory=list)
|
||||
"""Series of messages for Chat input."""
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
||||
"""Set of special tokens that are allowed。"""
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
||||
"""Set of special tokens that are not allowed。"""
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
openai_api_key = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
openai_api_base = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
default="",
|
||||
)
|
||||
openai_proxy = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
openai_organization = get_from_dict_or_env(
|
||||
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
|
||||
)
|
||||
try:
|
||||
self.initialize_chat(ids)
|
||||
tasks = [self.async_ai(question_template.format(id=id), id=id) for id in ids]
|
||||
return await asyncio.gather(*tasks)
|
||||
except Exception as error:
|
||||
raise Exception(f"Error in ask_multiple: method: {error}")
|
||||
|
||||
async def stream_multiple(self, ids, question_template):
|
||||
import openai
|
||||
|
||||
openai.api_key = openai_api_key
|
||||
if openai_api_base:
|
||||
openai.api_base = openai_api_base
|
||||
if openai_organization:
|
||||
openai.organization = openai_organization
|
||||
if openai_proxy:
|
||||
openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
try:
|
||||
self.initialize_chat(ids)
|
||||
|
||||
async def stream_id(id):
|
||||
async for chunk in await self.async_ai.stream(question_template.format(id=id), id=id):
|
||||
response = chunk["response"]
|
||||
return response
|
||||
|
||||
tasks = [stream_id(id) for id in ids]
|
||||
return await asyncio.gather(*tasks)
|
||||
except Exception as error:
|
||||
raise Exception(f"Error in stream_multiple method: {error}")
|
||||
|
||||
def fetch_api_key(self):
|
||||
pass
|
||||
values["client"] = openai.ChatCompletion
|
||||
except AttributeError:
|
||||
raise ValueError(
|
||||
"`openai` has no `ChatCompletion` attribute, this is likely "
|
||||
"due to an old version of the openai package. Try upgrading it "
|
||||
"with `pip install --upgrade openai`."
|
||||
)
|
||||
warnings.warn(
|
||||
"You are trying to use a chat model. This way of initializing it is "
|
||||
"no longer supported. Instead, please use: "
|
||||
"`from langchain.chat_models import ChatOpenAI`"
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling OpenAI API."""
|
||||
return self.model_kwargs
|
||||
|
||||
def _get_chat_params(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> Tuple:
|
||||
if len(prompts) > 1:
|
||||
raise ValueError(
|
||||
f"OpenAIChat currently only supports single prompt, got {prompts}"
|
||||
)
|
||||
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
||||
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
if params.get("max_tokens") == -1:
|
||||
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
|
||||
del params["max_tokens"]
|
||||
return messages, params
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_params([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
for stream_resp in completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
#usage
|
||||
#from swarms import OpenAI()
|
||||
#chat = OpenAI()
|
||||
#response = chat.generate("Hello World")
|
||||
#print(response)
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_params([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
async for stream_resp in await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
if self.streaming:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
messages, params = self._get_chat_params(prompts, stop)
|
||||
params = {**params, **kwargs}
|
||||
full_response = completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
)
|
||||
llm_output = {
|
||||
"token_usage": full_response["usage"],
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
return LLMResult(
|
||||
generations=[
|
||||
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
],
|
||||
llm_output=llm_output,
|
||||
)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
if self.streaming:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
messages, params = self._get_chat_params(prompts, stop)
|
||||
params = {**params, **kwargs}
|
||||
full_response = await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
)
|
||||
llm_output = {
|
||||
"token_usage": full_response["usage"],
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
return LLMResult(
|
||||
generations=[
|
||||
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
],
|
||||
llm_output=llm_output,
|
||||
)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "openai-chat"
|
||||
|
||||
def get_token_ids(self, text: str) -> List[int]:
|
||||
"""Get the token IDs using the tiktoken package."""
|
||||
# tiktoken NOT supported for Python < 3.8
|
||||
if sys.version_info[1] < 8:
|
||||
return super().get_token_ids(text)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate get_num_tokens. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
#async
|
||||
# async_responses = asyncio.run(chat.ask_multiple(['id1', 'id2'], "How is {id}"))
|
||||
# print(async_responses)
|
||||
enc = tiktoken.encoding_for_model(self.model_name)
|
||||
return enc.encode(
|
||||
text,
|
||||
allowed_special=self.allowed_special,
|
||||
disallowed_special=self.disallowed_special,
|
||||
)
|
Loading…
Reference in new issue