From 4ae59df890840017fb7e564ac63a15729976cd2e Mon Sep 17 00:00:00 2001 From: Kye Date: Thu, 23 Nov 2023 15:01:14 -0800 Subject: [PATCH] tools fix, parse docs, inject tools docs into prompts, and attempt to execute tools, display markdown --- README.md | 18 +- example.py | 32 +-- swarms/structs/flow.py | 291 +++++++++++--------------- swarms/structs/non_linear_workflow.py | 17 +- swarms/structs/sequential_workflow.py | 4 - swarms/utils/__init__.py | 2 +- 6 files changed, 141 insertions(+), 223 deletions(-) diff --git a/README.md b/README.md index 5ef0678b..9b5166cf 100644 --- a/README.md +++ b/README.md @@ -42,10 +42,8 @@ api_key = "" # Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC llm = OpenAIChat( - # model_name="gpt-4" openai_api_key=api_key, temperature=0.5, - # max_tokens=100, ) ## Initialize the workflow @@ -53,24 +51,10 @@ flow = Flow( llm=llm, max_loops=2, dashboard=True, - # stopping_condition=None, # You can define a stopping condition as needed. - # loop_interval=1, - # retry_attempts=3, - # retry_interval=1, - # interactive=False, # Set to 'True' for interactive mode. - # dynamic_temperature=False, # Set to 'True' for dynamic temperature handling. + ) -# out = flow.load_state("flow_state.json") -# temp = flow.dynamic_temperature() -# filter = flow.add_response_filter("Trump") out = flow.run("Generate a 10,000 word blog on health and wellness.") -# out = flow.validate_response(out) -# out = flow.analyze_feedback(out) -# out = flow.print_history_and_memory() -# # out = flow.save_state("flow_state.json") -# print(out) - ``` diff --git a/example.py b/example.py index 46e8b33c..af41d355 100644 --- a/example.py +++ b/example.py @@ -1,37 +1,15 @@ from swarms.models import OpenAIChat from swarms.structs import Flow -# Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC +# Initialize the language model llm = OpenAIChat( - # model_name="gpt-4" - # openai_api_key=api_key, temperature=0.5, - # max_tokens=100, ) ## Initialize the workflow -flow = Flow( - llm=llm, - max_loops=2, - dashboard=True, - # tools=[search_api] - # stopping_condition=None, # You can define a stopping condition as needed. - # loop_interval=1, - # retry_attempts=3, - # retry_interval=1, - # interactive=False, # Set to 'True' for interactive mode. - # dynamic_temperature=False, # Set to 'True' for dynamic temperature handling. -) +flow = Flow(llm=llm, max_loops=1, dashboard=True) + +# Run the workflow on a task +out = flow.run("Generate a 10,000 word blog on health and wellness.") -# out = flow.load_state("flow_state.json") -# temp = flow.dynamic_temperature() -# filter = flow.add_response_filter("Trump") -out = flow.run( - "Generate a 10,000 word blog on mental clarity and the benefits of meditation." -) -# out = flow.validate_response(out) -# out = flow.analyze_feedback(out) -# out = flow.print_history_and_memory() -# # out = flow.save_state("flow_state.json") -# print(out) diff --git a/swarms/structs/flow.py b/swarms/structs/flow.py index 7aca7f21..aa0060b4 100644 --- a/swarms/structs/flow.py +++ b/swarms/structs/flow.py @@ -11,6 +11,7 @@ from termcolor import colored from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.parse_code import extract_code_in_backticks_in_string +from swarms.tools.tool import BaseTool # System prompt FLOW_SYSTEM_PROMPT = f""" @@ -25,7 +26,6 @@ to aid in these complex tasks. Your responses should be coherent, contextually r """ - # Prompts DYNAMIC_STOP_PROMPT = """ @@ -36,7 +36,6 @@ This will enable you to leave the autonomous loop. """ - # Make it able to handle multi input tools DYNAMICAL_TOOL_USAGE = """ You have access to the following tools: @@ -53,6 +52,11 @@ commands: { "tool1": "inputs", "tool1": "inputs" } + "tool3: "tool_name", + "params": { + "tool1": "inputs", + "tool1": "inputs" + } } } @@ -60,6 +64,29 @@ commands: { {tools} """ +SCENARIOS = """ +commands: { + "tools": { + tool1: "tool_name", + "params": { + "tool1": "inputs", + "tool1": "inputs" + } + "tool2: "tool_name", + "params": { + "tool1": "inputs", + "tool1": "inputs" + } + "tool3: "tool_name", + "params": { + "tool1": "inputs", + "tool1": "inputs" + } + } +} + +""" + def autonomous_agent_prompt( tools_prompt: str = DYNAMICAL_TOOL_USAGE, @@ -198,7 +225,7 @@ class Flow: def __init__( self, llm: Any, - template: str, + template: Optional[str] = None, max_loops=5, stopping_condition: Optional[Callable[[str], bool]] = None, loop_interval: int = 1, @@ -212,7 +239,7 @@ class Flow: agent_name: str = " Autonomous Agent XYZ1B", agent_description: str = None, system_prompt: str = FLOW_SYSTEM_PROMPT, - # tools: List[Any] = None, + tools: List[BaseTool] = None, dynamic_temperature: bool = False, sop: str = None, saved_state_path: Optional[str] = "flow_state.json", @@ -246,7 +273,7 @@ class Flow: # The max_loops will be set dynamically if the dynamic_loop if self.dynamic_loops: self.max_loops = "auto" - # self.tools = tools or [] + self.tools = tools or [] self.system_prompt = system_prompt self.agent_name = agent_name self.agent_description = agent_description @@ -310,68 +337,81 @@ class Flow: # # Parse the text for tool usage # pass - # def get_tool_description(self): - # """Get the tool description""" - # tool_descriptions = [] - # for tool in self.tools: - # description = f"{tool.name}: {tool.description}" - # tool_descriptions.append(description) - # return "\n".join(tool_descriptions) - - # def find_tool_by_name(self, name: str): - # """Find a tool by name""" - # for tool in self.tools: - # if tool.name == name: - # return tool - # return None - - # def construct_dynamic_prompt(self): - # """Construct the dynamic prompt""" - # tools_description = self.get_tool_description() - # return DYNAMICAL_TOOL_USAGE.format(tools=tools_description) - - # def extract_tool_commands(self, text: str): - # """ - # Extract the tool commands from the text - - # Example: - # ```json - # { - # "tool": "tool_name", - # "params": { - # "tool1": "inputs", - # "param2": "value2" - # } - # } - # ``` + def get_tool_description(self): + """Get the tool description""" + if self.tools: + try: + tool_descriptions = [] + for tool in self.tools: + description = f"{tool.name}: {tool.description}" + tool_descriptions.append(description) + return "\n".join(tool_descriptions) + except Exception as error: + print( + f"Error getting tool description: {error} try adding a description to the tool or removing the tool" + ) + else: + return "No tools available" - # """ - # # Regex to find JSON like strings - # pattern = r"```json(.+?)```" - # matches = re.findall(pattern, text, re.DOTALL) - # json_commands = [] - # for match in matches: - # try: - # json_commands = json.loads(match) - # json_commands.append(json_commands) - # except Exception as error: - # print(f"Error parsing JSON command: {error}") - - # def parse_and_execute_tools(self, response): - # """Parse and execute the tools""" - # json_commands = self.extract_tool_commands(response) - # for command in json_commands: - # tool_name = command.get("tool") - # params = command.get("parmas", {}) - # self.execute_tool(tool_name, params) - - # def execute_tools(self, tool_name, params): - # """Execute the tool with the provided params""" - # tool = self.tool_find_by_name(tool_name) - # if tool: - # # Execute the tool with the provided parameters - # tool_result = tool.run(**params) - # print(tool_result) + def find_tool_by_name(self, name: str): + """Find a tool by name""" + for tool in self.tools: + if tool.name == name: + return tool + return None + + def construct_dynamic_prompt(self): + """Construct the dynamic prompt""" + tools_description = self.get_tool_description() + + tool_prompt = self.tool_prompt_prep(tools_description, SCENARIOS) + + return tool_prompt + + # return DYNAMICAL_TOOL_USAGE.format(tools=tools_description) + + def extract_tool_commands(self, text: str): + """ + Extract the tool commands from the text + + Example: + ```json + { + "tool": "tool_name", + "params": { + "tool1": "inputs", + "param2": "value2" + } + } + ``` + + """ + # Regex to find JSON like strings + pattern = r"```json(.+?)```" + matches = re.findall(pattern, text, re.DOTALL) + json_commands = [] + for match in matches: + try: + json_commands = json.loads(match) + json_commands.append(json_commands) + except Exception as error: + print(f"Error parsing JSON command: {error}") + + def parse_and_execute_tools(self, response: str): + """Parse and execute the tools""" + json_commands = self.extract_tool_commands(response) + for command in json_commands: + tool_name = command.get("tool") + params = command.get("parmas", {}) + self.execute_tool(tool_name, params) + + def execute_tools(self, tool_name, params): + """Execute the tool with the provided params""" + tool = self.tool_find_by_name(tool_name) + if tool: + # Execute the tool with the provided parameters + tool_result = tool.run(**params) + print(tool_result) def truncate_history(self): """ @@ -483,12 +523,12 @@ class Flow: self.print_dashboard(task) loop_count = 0 - # for i in range(self.max_loops): while self.max_loops == "auto" or loop_count < self.max_loops: loop_count += 1 print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue")) print("\n") + # Check to see if stopping token is in the output to stop the loop if self.stopping_token: if self._check_stopping_condition(response) or parse_done_token( response @@ -510,111 +550,22 @@ class Flow: **kwargs, ) + # If code interpreter is enabled then run the code if self.code_interpreter: self.run_code(response) - # If there are any tools then parse and execute them - # if self.tools: - # self.parse_and_execute_tools(response) - - if self.interactive: - print(f"AI: {response}") - history.append(f"AI: {response}") - response = input("You: ") - history.append(f"Human: {response}") - else: - print(f"AI: {response}") - history.append(f"AI: {response}") - # print(response) - break - except Exception as e: - logging.error(f"Error generating response: {e}") - attempt += 1 - time.sleep(self.retry_interval) - history.append(response) - time.sleep(self.loop_interval) - self.memory.append(history) - if self.autosave: - save_path = self.saved_state_path or "flow_state.json" - print(colored(f"Autosaving flow state to {save_path}", "green")) - self.save_state(save_path) - - if self.return_history: - return response, history - - return response - except Exception as error: - print(f"Error running flow: {error}") - raise - - def __call__(self, task: str, **kwargs): - """ - Run the autonomous agent loop - - Args: - task (str): The initial task to run - - Flow: - 1. Generate a response - 2. Check stopping condition - 3. If stopping condition is met, stop - 4. If stopping condition is not met, generate a response - 5. Repeat until stopping condition is met or max_loops is reached - - """ - try: - # dynamic_prompt = self.construct_dynamic_prompt() - # combined_prompt = f"{dynamic_prompt}\n{task}" - - # Activate Autonomous agent message - self.activate_autonomous_agent() - - response = task # or combined_prompt - history = [f"{self.user_name}: {task}"] - - # If dashboard = True then print the dashboard - if self.dashboard: - self.print_dashboard(task) - - loop_count = 0 - # for i in range(self.max_loops): - while self.max_loops == "auto" or loop_count < self.max_loops: - loop_count += 1 - print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue")) - print("\n") - - if self.stopping_token: - if self._check_stopping_condition(response) or parse_done_token( - response - ): - break - - # Adjust temperature, comment if no work - if self.dynamic_temperature: - self.dynamic_temperature() - - # Preparing the prompt - task = self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response) - - attempt = 0 - while attempt < self.retry_attempts: - try: - response = self.llm( - task, - **kwargs, - ) - - if self.code_interpreter: - self.run_code(response) # If there are any tools then parse and execute them - # if self.tools: - # self.parse_and_execute_tools(response) + if self.tools: + self.parse_and_execute_tools(response) + # If interactive mode is enabled then print the response and get user input if self.interactive: print(f"AI: {response}") history.append(f"AI: {response}") response = input("You: ") history.append(f"Human: {response}") + + # If interactive mode is not enabled then print the response else: print(f"AI: {response}") history.append(f"AI: {response}") @@ -624,15 +575,20 @@ class Flow: logging.error(f"Error generating response: {e}") attempt += 1 time.sleep(self.retry_interval) + # Add the response to the history history.append(response) + time.sleep(self.loop_interval) + # Add the history to the memory self.memory.append(history) + # If autosave is enabled then save the state if self.autosave: save_path = self.saved_state_path or "flow_state.json" print(colored(f"Autosaving flow state to {save_path}", "green")) self.save_state(save_path) + # If return history is enabled then return the response and history if self.return_history: return response, history @@ -1113,7 +1069,7 @@ class Flow: run_code = self.code_executor.run(parsed_code) return run_code - def tool_prompt_prep(self, api_docs: str = None, required_api: str = None): + def tools_prompt_prep(self, docs: str = None, scenarios: str = None): """ Prepare the tool prompt """ @@ -1160,19 +1116,14 @@ class Flow: response. Deliver your response in this format: ‘‘‘ - - Scenario 1: - - Scenario 2: - - Scenario 3: + {scenarios} ‘‘‘ # APIs ‘‘‘ - {api_docs} + {docs} ‘‘‘ # Response - Required API: {required_api} - Scenarios with >=5 API calls: ‘‘‘ - - Scenario 1: """ def self_healing(self, **kwargs): diff --git a/swarms/structs/non_linear_workflow.py b/swarms/structs/non_linear_workflow.py index b9b29154..22cef91e 100644 --- a/swarms/structs/non_linear_workflow.py +++ b/swarms/structs/non_linear_workflow.py @@ -6,7 +6,9 @@ from typing import Callable, List, Dict, Any, Sequence class Task: - def __init__(self, id: str, task: str, flows: Sequence[Flow], dependencies: List[str] = []): + def __init__( + self, id: str, task: str, flows: Sequence[Flow], dependencies: List[str] = [] + ): self.id = id self.task = task self.flows = flows @@ -62,8 +64,15 @@ flow4 = Flow(llm, max_loops=1) # Create tasks with their respective Flows and task strings task1 = Task("task1", "Generate a summary on Quantum field theory", [flow1]) -task2 = Task("task2", "Elaborate on the summary of topic X", [flow2, flow3], dependencies=["task1"]) -task3 = Task("task3", "Generate conclusions for topic X", [flow4], dependencies=["task1"]) +task2 = Task( + "task2", + "Elaborate on the summary of topic X", + [flow2, flow3], + dependencies=["task1"], +) +task3 = Task( + "task3", "Generate conclusions for topic X", [flow4], dependencies=["task1"] +) # Create a workflow and add tasks workflow = Workflow() @@ -76,4 +85,4 @@ workflow.run() # Get results results = workflow.get_results() -print(results) \ No newline at end of file +print(results) diff --git a/swarms/structs/sequential_workflow.py b/swarms/structs/sequential_workflow.py index d1c600f0..22ae4a21 100644 --- a/swarms/structs/sequential_workflow.py +++ b/swarms/structs/sequential_workflow.py @@ -260,10 +260,6 @@ class SequentialWorkflow: -------------------------------- Metadata: kwargs: {kwargs} - - - - """, "cyan", attrs=["bold", "underline"], diff --git a/swarms/utils/__init__.py b/swarms/utils/__init__.py index d5ce3583..b8aca925 100644 --- a/swarms/utils/__init__.py +++ b/swarms/utils/__init__.py @@ -1,4 +1,4 @@ -from swarms.utils.display_markdown import display_markdown_message +from swarms.utils.markdown_message import display_markdown_message from swarms.utils.futures import execute_futures_dict from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.parse_code import extract_code_in_backticks_in_string