From 4f4d5be200cbf0f3f9fc2cfce29d57647e2d4771 Mon Sep 17 00:00:00 2001 From: Kye Gomez Date: Fri, 26 Jul 2024 21:35:33 -0400 Subject: [PATCH] [agent_run] --- docs/mkdocs.yml | 1 - docs/swarms/models/gpt4o.md | 150 ------------------ docs/swarms_cloud/agent_api.md | 1 - .../agricultural_swarm.py | 6 +- .../using_concurrent_workflow.py | 6 +- pyproject.toml | 2 +- .../marketplace/agricultural_optimization.py | 2 +- swarms/structs/agent.py | 6 +- 8 files changed, 13 insertions(+), 161 deletions(-) delete mode 100644 docs/swarms/models/gpt4o.md diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 3b5abb4f..69e5034f 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -168,7 +168,6 @@ nav: - Nougat: "swarms/models/nougat.md" - Dalle3: "swarms/models/dalle3.md" - GPT4VisionAPI: "swarms/models/gpt4v.md" - - GPT4o: "swarms/models/gpt4o.md" - Agents: - Agent: "swarms/structs/agent.md" - Task: "swarms/structs/task.md" diff --git a/docs/swarms/models/gpt4o.md b/docs/swarms/models/gpt4o.md deleted file mode 100644 index 7b53a742..00000000 --- a/docs/swarms/models/gpt4o.md +++ /dev/null @@ -1,150 +0,0 @@ -# Documentation for GPT4o Module - -## Overview and Introduction - -The `GPT4o` module is a multi-modal conversational model based on OpenAI's GPT-4 architecture. It extends the functionality of the `BaseMultiModalModel` class, enabling it to handle both text and image inputs for generating diverse and contextually rich responses. This module leverages the power of the GPT-4 model to enhance interactions by integrating visual information with textual prompts, making it highly relevant for applications requiring multi-modal understanding and response generation. - -### Key Concepts -- **Multi-Modal Model**: A model that can process and generate responses based on multiple types of inputs, such as text and images. -- **System Prompt**: A predefined prompt to guide the conversation flow. -- **Temperature**: A parameter that controls the randomness of the response generation. -- **Max Tokens**: The maximum number of tokens (words or word pieces) in the generated response. - -## Class Definition - -### `GPT4o` Class - - -### Parameters - -| Parameter | Type | Description | -|-----------------|--------|--------------------------------------------------------------------------------------| -| `system_prompt` | `str` | The system prompt to be used in the conversation. | -| `temperature` | `float`| The temperature parameter for generating diverse responses. Default is `0.1`. | -| `max_tokens` | `int` | The maximum number of tokens in the generated response. Default is `300`. | -| `openai_api_key`| `str` | The API key for accessing the OpenAI GPT-4 API. | -| `*args` | | Additional positional arguments. | -| `**kwargs` | | Additional keyword arguments. | - -## Functionality and Usage - -### `encode_image` Function - -The `encode_image` function is used to encode an image file into a base64 string format, which can then be included in the request to the GPT-4 API. - -#### Parameters - -| Parameter | Type | Description | -|---------------|--------|----------------------------------------------| -| `image_path` | `str` | The local path to the image file to be encoded. | - -#### Returns - -| Return Type | Description | -|-------------|---------------------------------| -| `str` | The base64 encoded string of the image. | - -### `GPT4o.__init__` Method - -The constructor for the `GPT4o` class initializes the model with the specified parameters and sets up the OpenAI client. - -### `GPT4o.run` Method - -The `run` method executes the GPT-4o model to generate a response based on the provided task and optional image. - -#### Parameters - -| Parameter | Type | Description | -|---------------|--------|----------------------------------------------------| -| `task` | `str` | The task or user prompt for the conversation. | -| `local_img` | `str` | The local path to the image file. | -| `img` | `str` | The URL of the image. | -| `*args` | | Additional positional arguments. | -| `**kwargs` | | Additional keyword arguments. | - -#### Returns - -| Return Type | Description | -|-------------|--------------------------------------------------| -| `str` | The generated response from the GPT-4o model. | - -## Usage Examples - -### Example 1: Basic Text Prompt - -```python -from swarms import GPT4o - -# Initialize the model -model = GPT4o( - system_prompt="You are a helpful assistant.", - temperature=0.7, - max_tokens=150, - openai_api_key="your_openai_api_key" -) - -# Define the task -task = "What is the capital of France?" - -# Generate response -response = model.run(task) -print(response) -``` - -### Example 2: Text Prompt with Local Image - -```python -from swarms import GPT4o - -# Initialize the model -model = GPT4o( - system_prompt="Describe the image content.", - temperature=0.5, - max_tokens=200, - openai_api_key="your_openai_api_key" -) - -# Define the task and image path -task = "Describe the content of this image." -local_img = "path/to/your/image.jpg" - -# Generate response -response = model.run(task, local_img=local_img) -print(response) -``` - -### Example 3: Text Prompt with Image URL - -```python -from swarms import GPT4o - -# Initialize the model -model = GPT4o( - system_prompt="You are a visual assistant.", - temperature=0.6, - max_tokens=250, - openai_api_key="your_openai_api_key" -) - -# Define the task and image URL -task = "What can you tell about the scenery in this image?" -img_url = "http://example.com/image.jpg" - -# Generate response -response = model.run(task, img=img_url) -print(response) -``` - -## Additional Information and Tips - -- **API Key Management**: Ensure that your OpenAI API key is securely stored and managed. Do not hard-code it in your scripts. Use environment variables or secure storage solutions. -- **Image Encoding**: The `encode_image` function is crucial for converting images to a base64 format suitable for API requests. Ensure that the images are accessible and properly formatted. -- **Temperature Parameter**: Adjust the `temperature` parameter to control the creativity of the model's responses. Lower values make the output more deterministic, while higher values increase randomness. -- **Token Limit**: Be mindful of the `max_tokens` parameter to avoid exceeding the API's token limits. This parameter controls the length of the generated responses. - -## References and Resources - -- [OpenAI API Documentation](https://beta.openai.com/docs/) -- [Python Base64 Encoding](https://docs.python.org/3/library/base64.html) -- [dotenv Documentation](https://saurabh-kumar.com/python-dotenv/) -- [BaseMultiModalModel Documentation](https://swarms.apac.ai) \ No newline at end of file diff --git a/docs/swarms_cloud/agent_api.md b/docs/swarms_cloud/agent_api.md index 5d0fa9d0..016ddedf 100644 --- a/docs/swarms_cloud/agent_api.md +++ b/docs/swarms_cloud/agent_api.md @@ -27,7 +27,6 @@ This endpoint returns a list of available model names. It is useful for clients ```json [ "OpenAIChat", - "GPT4o", "GPT4VisionAPI", "Anthropic" ] diff --git a/playground/demos/plant_biologist_swarm/agricultural_swarm.py b/playground/demos/plant_biologist_swarm/agricultural_swarm.py index e35b0048..3feb8245 100644 --- a/playground/demos/plant_biologist_swarm/agricultural_swarm.py +++ b/playground/demos/plant_biologist_swarm/agricultural_swarm.py @@ -18,7 +18,7 @@ from playground.demos.plant_biologist_swarm.prompts import ( treatment_recommender_agent, ) from swarms import Agent -from swarms.models.gpt_o import GPT4o +from swarms.models.gpt_o import GPT4VisionAPI # Load the OpenAI API key from the .env file load_dotenv() @@ -28,7 +28,9 @@ api_key = os.environ.get("OPENAI_API_KEY") # llm = llm, -llm = GPT4o(max_tokens=3000, openai_api_key=os.getenv("OPENAI_API_KEY")) +llm = GPT4VisionAPI( + max_tokens=3000, openai_api_key=os.getenv("OPENAI_API_KEY") +) # Initialize Diagnoser Agent diagnoser_agent = Agent( diff --git a/playground/demos/plant_biologist_swarm/using_concurrent_workflow.py b/playground/demos/plant_biologist_swarm/using_concurrent_workflow.py index 35b1374c..b4e5306d 100644 --- a/playground/demos/plant_biologist_swarm/using_concurrent_workflow.py +++ b/playground/demos/plant_biologist_swarm/using_concurrent_workflow.py @@ -10,7 +10,7 @@ from playground.demos.plant_biologist_swarm.prompts import ( ) from swarms import Agent, ConcurrentWorkflow -from swarms.models.gpt_o import GPT4o +from swarms.models.gpt_o import GPT4VisionAPI # Load the OpenAI API key from the .env file @@ -19,8 +19,8 @@ load_dotenv() # Initialize the OpenAI API key api_key = os.environ.get("OPENAI_API_KEY") -# GPT4o -llm = GPT4o( +# GPT4VisionAPI +llm = GPT4VisionAPI( max_tokens=4000, ) diff --git a/pyproject.toml b/pyproject.toml index 35314e6e..eb0c1e0d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "5.4.1" +version = "5.4.2" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] diff --git a/swarms/marketplace/agricultural_optimization.py b/swarms/marketplace/agricultural_optimization.py index 5949648d..a6d8d52e 100644 --- a/swarms/marketplace/agricultural_optimization.py +++ b/swarms/marketplace/agricultural_optimization.py @@ -215,7 +215,7 @@ class AgricultureOptimizationSwarm(BaseSwarm): def __init__( self, name: str = "jeremy/agricultural-optimization-gpt4o", - description: str = "A swarm utilizing GPT4o for agricultural optimization.", + description: str = "A swarm utilizing GPT4VisionAPI for agricultural optimization.", agents: List[Agent] = agents, *args, **kwargs, diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index 8fcf47bf..200e541e 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -743,8 +743,6 @@ class Agent(BaseStructure): task, *args, **kwargs ) ) - # print(len(memory_retrieval)) - # Merge the task prompt with the memory retrieval task_prompt = f"{task_prompt} Documents: Available {memory_retrieval}" @@ -786,6 +784,8 @@ class Agent(BaseStructure): role=self.agent_name, content=response ) + all_responses.append(response) + # Check if tools is not None if self.tools is not None: self.parse_function_call_and_execute(response) @@ -804,6 +804,8 @@ class Agent(BaseStructure): content=evaluated_response, ) + all_responses.append(evaluated_response) + # Sentiment analysis if self.sentiment_analyzer: self.sentiment_analysis_handler(response)