diff --git a/hiearchical_swarm.py b/hiearchical_swarm.py index fb6a189b..f38446ed 100644 --- a/hiearchical_swarm.py +++ b/hiearchical_swarm.py @@ -9,6 +9,7 @@ from swarms.models.popular_llms import Anthropic, OpenAIChat from swarms.models.base_llm import BaseLLM from swarms.memory.base_vectordb import BaseVectorDatabase + boss_sys_prompt = ( "You're the Swarm Orchestrator, like a project manager of a" " bustling hive. When a task arises, you tap into your network of" diff --git a/swarms/memory/chroma_db.py b/playground/memory/chroma_db.py similarity index 100% rename from swarms/memory/chroma_db.py rename to playground/memory/chroma_db.py diff --git a/swarms/memory/pg.py b/playground/memory/pg.py similarity index 100% rename from swarms/memory/pg.py rename to playground/memory/pg.py diff --git a/swarms/memory/pinecone.py b/playground/memory/pinecone.py similarity index 100% rename from swarms/memory/pinecone.py rename to playground/memory/pinecone.py diff --git a/swarms/memory/weaviate_db.py b/playground/memory/weaviate_db.py similarity index 100% rename from swarms/memory/weaviate_db.py rename to playground/memory/weaviate_db.py diff --git a/playground/structs/kyle_hackathon.py b/playground/structs/kyle_hackathon.py index 137ebf70..c62d3ea2 100644 --- a/playground/structs/kyle_hackathon.py +++ b/playground/structs/kyle_hackathon.py @@ -4,7 +4,7 @@ from dotenv import load_dotenv from swarms import Agent, OpenAIChat from swarms.agents.multion_agent import MultiOnAgent -from swarms.memory.chroma_db import ChromaDB +from playground.memory.chroma_db import ChromaDB from swarms.tools.tool import tool from swarms.tools.code_interpreter import SubprocessCodeInterpreter diff --git a/playground/structs/multi_modal_rag_agent.py b/playground/structs/multi_modal_rag_agent.py index ff758e28..2978b8fb 100644 --- a/playground/structs/multi_modal_rag_agent.py +++ b/playground/structs/multi_modal_rag_agent.py @@ -4,7 +4,7 @@ import os from dotenv import load_dotenv from swarms import Agent, OpenAIChat -from swarms.memory.chroma_db import ChromaDB +from playground.memory.chroma_db import ChromaDB from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT from swarms.tools.tool import tool diff --git a/swarms/memory/qdrant.py b/swarms/memory/qdrant.py deleted file mode 100644 index 4df1f350..00000000 --- a/swarms/memory/qdrant.py +++ /dev/null @@ -1,161 +0,0 @@ -from typing import List - -from httpx import RequestError -from swarms.memory.base_vectordb import BaseVectorDatabase - -try: - from sentence_transformers import SentenceTransformer -except ImportError: - print("Please install the sentence-transformers package") - print("pip install sentence-transformers") - -try: - from qdrant_client import QdrantClient - from qdrant_client.http.models import ( - Distance, - PointStruct, - VectorParams, - ) -except ImportError: - print("Please install the qdrant-client package") - print("pip install qdrant-client") - - -class Qdrant(BaseVectorDatabase): - """ - Qdrant class for managing collections and performing vector operations using QdrantClient. - - Attributes: - client (QdrantClient): The Qdrant client for interacting with the Qdrant server. - collection_name (str): Name of the collection to be managed in Qdrant. - model (SentenceTransformer): The model used for generating sentence embeddings. - - Args: - api_key (str): API key for authenticating with Qdrant. - host (str): Host address of the Qdrant server. - port (int): Port number of the Qdrant server. Defaults to 6333. - collection_name (str): Name of the collection to be used or created. Defaults to "qdrant". - model_name (str): Name of the model to be used for embeddings. Defaults to "BAAI/bge-small-en-v1.5". - https (bool): Flag to indicate if HTTPS should be used. Defaults to True. - """ - - def __init__( - self, - api_key: str, - host: str, - port: int = 6333, - collection_name: str = "qdrant", - model_name: str = "BAAI/bge-small-en-v1.5", - https: bool = True, - ): - try: - self.client = QdrantClient( - url=host, port=port, api_key=api_key - ) - self.collection_name = collection_name - self._load_embedding_model(model_name) - self._setup_collection() - except RequestError as e: - print(f"Error setting up QdrantClient: {e}") - - def _load_embedding_model(self, model_name: str): - """ - Loads the sentence embedding model specified by the model name. - - Args: - model_name (str): The name of the model to load for generating embeddings. - """ - try: - self.model = SentenceTransformer(model_name) - except Exception as e: - print(f"Error loading embedding model: {e}") - - def _setup_collection(self): - try: - exists = self.client.get_collection(self.collection_name) - if exists: - print( - f"Collection '{self.collection_name}' already" - " exists." - ) - except Exception: - self.client.create_collection( - collection_name=self.collection_name, - vectors_config=VectorParams( - size=self.model.get_sentence_embedding_dimension(), - distance=Distance.DOT, - ), - ) - print(f"Collection '{self.collection_name}' created.") - - def add(self, docs: List[dict], *args, **kwargs): - """ - Adds vector representations of documents to the Qdrant collection. - - Args: - docs (List[dict]): A list of documents where each document is a dictionary with at least a 'page_content' key. - - Returns: - OperationResponse or None: Returns the operation information if successful, otherwise None. - """ - points = [] - for i, doc in enumerate(docs): - try: - if "page_content" in doc: - embedding = self.model.encode( - doc["page_content"], normalize_embeddings=True - ) - points.append( - PointStruct( - id=i + 1, - vector=embedding, - payload={"content": doc["page_content"]}, - ) - ) - else: - print( - f"Document at index {i} is missing" - " 'page_content' key" - ) - except Exception as e: - print(f"Error processing document at index {i}: {e}") - - try: - operation_info = self.client.upsert( - collection_name=self.collection_name, - wait=True, - points=points, - *args, - **kwargs, - ) - return operation_info - except Exception as e: - print(f"Error adding vectors: {e}") - return None - - def query(self, query: str, limit: int = 3, *args, **kwargs): - """ - Searches the collection for vectors similar to the query vector. - - Args: - query (str): The query string to be converted into a vector and used for searching. - limit (int): The number of search results to return. Defaults to 3. - - Returns: - SearchResult or None: Returns the search results if successful, otherwise None. - """ - try: - query_vector = self.model.encode( - query, normalize_embeddings=True, *args, **kwargs - ) - search_result = self.client.search( - collection_name=self.collection_name, - query_vector=query_vector, - limit=limit, - *args, - **kwargs, - ) - return search_result - except Exception as e: - print(f"Error searching vectors: {e}") - return None diff --git a/swarms/structs/__init__.py b/swarms/structs/__init__.py index 0eac3a15..6da5bfdb 100644 --- a/swarms/structs/__init__.py +++ b/swarms/structs/__init__.py @@ -27,7 +27,6 @@ from swarms.structs.multi_process_workflow import ( from swarms.structs.multi_threaded_workflow import ( MultiThreadedWorkflow, ) -from swarms.structs.nonlinear_workflow import NonlinearWorkflow from swarms.structs.plan import Plan from swarms.structs.recursive_workflow import RecursiveWorkflow from swarms.structs.schemas import ( diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index bb0bfc76..e5c86734 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -1,16 +1,16 @@ import asyncio import json import logging -from typing import Union import os import random import sys import time import uuid -from typing import Any, Callable, Dict, List, Optional, Tuple +from typing import Any, Callable, Dict, List, Optional, Tuple, Union import yaml from loguru import logger +from pydantic import BaseModel from termcolor import colored from swarms.memory.base_vectordb import BaseVectorDatabase @@ -18,23 +18,21 @@ from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3 from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1, ) +from swarms.prompts.worker_prompt import tool_usage_worker_prompt from swarms.structs.conversation import Conversation -from swarms.tools.tool import BaseTool +from swarms.structs.schemas import ManySteps, Step +from swarms.structs.yaml_model import YamlModel +from swarms.telemetry.user_utils import get_user_device_data from swarms.tools.code_interpreter import SubprocessCodeInterpreter -from swarms.utils.data_to_text import data_to_text -from swarms.utils.parse_code import extract_code_from_markdown -from swarms.utils.pdf_to_text import pdf_to_text from swarms.tools.exec_tool import execute_tool_by_name -from swarms.prompts.worker_prompt import tool_usage_worker_prompt -from pydantic import BaseModel from swarms.tools.pydantic_to_json import ( base_model_to_openai_function, multi_base_model_to_openai_function, ) -from swarms.structs.schemas import Step, ManySteps -from swarms.telemetry.user_utils import get_user_device_data -from swarms.structs.yaml_model import YamlModel -from swarms.tools.code_interpreter import SubprocessCodeInterpreter +from swarms.tools.tool import BaseTool +from swarms.utils.data_to_text import data_to_text +from swarms.utils.parse_code import extract_code_from_markdown +from swarms.utils.pdf_to_text import pdf_to_text # Utils diff --git a/swarms/structs/nonlinear_workflow.py b/swarms/structs/nonlinear_workflow.py deleted file mode 100644 index ca4b05b0..00000000 --- a/swarms/structs/nonlinear_workflow.py +++ /dev/null @@ -1,90 +0,0 @@ -from swarms.structs.base_structure import BaseStructure -from swarms.structs.task import Task -from swarms.utils.logger import logger # noqa: F401 - - -class NonlinearWorkflow(BaseStructure): - """ - Represents a Directed Acyclic Graph (DAG) workflow. - - Attributes: - tasks (dict): A dictionary mapping task names to Task objects. - edges (dict): A dictionary mapping task names to a list of dependencies. - - Methods: - add(task: Task, *dependencies: str): Adds a task to the workflow with its dependencies. - run(): Executes the workflow by running tasks in topological order. - - Examples: - >>> from swarms.models import OpenAIChat - >>> from swarms.structs import NonlinearWorkflow, Task - >>> llm = OpenAIChat(openai_api_key="") - >>> task = Task(llm, "What's the weather in miami") - >>> workflow = NonlinearWorkflow() - >>> workflow.add(task) - >>> workflow.run() - - """ - - def __init__(self, stopping_token: str = ""): - self.tasks = {} - self.edges = {} - self.stopping_token = stopping_token - - def add(self, task: Task, *dependencies: str): - """ - Adds a task to the workflow with its dependencies. - - Args: - task (Task): The task to be added. - dependencies (str): Variable number of dependency task names. - - Raises: - AssertionError: If the task is None. - - Returns: - None - """ - assert task is not None, "Task cannot be None" - self.tasks[task.name] = task - self.edges[task.name] = list(dependencies) - logger.info(f"[NonlinearWorkflow] [Added task {task.name}]") - - def run(self): - """ - Executes the workflow by running tasks in topological order. - - Raises: - Exception: If a circular dependency is detected. - - Returns: - None - """ - try: - # Create a copy of the edges - edges = self.edges.copy() - - while edges: - # Get all tasks with no dependencies - ready_tasks = [ - task for task, deps in edges.items() if not deps - ] - - if not ready_tasks: - raise Exception("Circular dependency detected") - - # Run all ready tasks - for task in ready_tasks: - result = self.tasks[task].execute() - if result == self.stopping_token: - return - del edges[task] - - # Remove dependencies on the ready tasks - for deps in edges.values(): - for task in ready_tasks: - if task in deps: - deps.remove(task) - except Exception as error: - logger.error(f"[ERROR][NonlinearWorkflow] {error}") - raise error diff --git a/swarms/structs/plan.py b/swarms/structs/plan.py index 4b5db022..a43291fc 100644 --- a/swarms/structs/plan.py +++ b/swarms/structs/plan.py @@ -1,32 +1,10 @@ from typing import List - +from pydantic import BaseModel from swarms.structs.step import Step -class Plan: - def __init__(self, steps: List[Step]): - """ - Initializes a Plan object. - - Args: - steps (List[Step]): A list of Step objects representing the steps in the plan. - """ - self.steps = steps - - def __str__(self) -> str: - """ - Returns a string representation of the Plan object. - - Returns: - str: A string representation of the Plan object. - """ - return str([str(step) for step in self.steps]) - - def __repr(self) -> str: - """ - Returns a string representation of the Plan object. +class Plan(BaseModel): + steps: List[Step] - Returns: - str: A string representation of the Plan object. - """ - return str(self) + class Config: + orm_mode = True diff --git a/swarms/structs/stackoverflow_swarm.py b/swarms/structs/stackoverflow_swarm.py deleted file mode 100644 index d3a18a6f..00000000 --- a/swarms/structs/stackoverflow_swarm.py +++ /dev/null @@ -1,89 +0,0 @@ -from typing import List - -from swarms.structs.agent import Agent -from swarms.structs.base_swarm import ( - BaseSwarm, -) -from swarms.structs.conversation import Conversation -from swarms.utils.logger import logger - - -class StackOverflowSwarm(BaseSwarm): - """ - Represents a swarm of agents that work together to solve a problem or answer a question on Stack Overflow. - - Attributes: - agents (List[Agent]): The list of agents in the swarm. - autosave (bool): Flag indicating whether to automatically save the conversation. - verbose (bool): Flag indicating whether to display verbose output. - save_filepath (str): The filepath to save the conversation. - conversation (Conversation): The conversation object for storing the interactions. - - Examples: - >>> from swarms.structs.agent import Agent - >>> from swarms.structs.stack_overflow_swarm import StackOverflowSwarm - """ - - def __init__( - self, - agents: List[Agent], - autosave: bool = False, - verbose: bool = False, - save_filepath: str = "stack_overflow_swarm.json", - eval_agent: Agent = None, - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.agents = agents - self.autosave = autosave - self.verbose = verbose - self.save_filepath = save_filepath - self.eval_agent = eval_agent - - # Configure conversation - self.conversation = Conversation( - time_enabled=True, - autosave=autosave, - save_filepath=save_filepath, - *args, - **kwargs, - ) - - # Counter for the number of upvotes per post - self.upvotes = 0 - - # Counter for the number of downvotes per post - self.downvotes = 0 - - # Forum for the agents to interact - self.forum = [] - - def run(self, task: str, *args, **kwargs): - """ - Run the swarm to solve a problem or answer a question like stack overflow - - Args: - task (str): The task to be performed by the agents. - *args: Variable length argument list. - **kwargs: Arbitrary keyword arguments. - - Returns: - List[str]: The conversation history. - """ - # Add the task to the conversation - self.conversation.add("Human", task) - logger.info(f"Task: {task} Added to the Forum.") - - # Run the agents and get their responses and append to the conversation - for agent in self.agents: - response = agent.run( - self.conversation.return_history_as_string(), - *args, - **kwargs, - ) - # Add to the conversation - self.conversation.add(agent.ai_name, f"{response}") - logger.info(f"[{agent.ai_name}]: [{response}]") - - return self.conversation.return_history_as_string() diff --git a/tests/memory/test_pinecone.py b/tests/memory/test_pinecone.py index a7d4fcea..53cfad44 100644 --- a/tests/memory/test_pinecone.py +++ b/tests/memory/test_pinecone.py @@ -1,7 +1,7 @@ import os from unittest.mock import patch -from swarms.memory.pinecone import PineconeDB +from playground.memory.pinecone import PineconeDB api_key = os.getenv("PINECONE_API_KEY") or "" diff --git a/tests/memory/test_pq_db.py b/tests/memory/test_pq_db.py index 5e44f0ba..ef3dd1f3 100644 --- a/tests/memory/test_pq_db.py +++ b/tests/memory/test_pq_db.py @@ -3,7 +3,7 @@ from unittest.mock import patch from dotenv import load_dotenv -from swarms.memory.pg import PostgresDB +from playground.memory.pg import PostgresDB load_dotenv()