parent
246a66640b
commit
55f86cd29e
@ -1,3 +1,8 @@
|
||||
|
||||
# swarms
|
||||
from swarms.swarms.dialogue_simulator import DialogueSimulator
|
||||
from swarms.swarms.autoscaler import AutoScaler
|
||||
from swarms.swarms.orchestrate import Orchestrator
|
||||
from swarms.swarms.god_mode import GodMode
|
||||
from swarms.swarms.simple_swarm import SimpleSwarm
|
||||
from swarms.swarms.multi_agent_debate import MultiAgentDebate
|
||||
|
@ -0,0 +1,54 @@
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from tabulate import tabulate
|
||||
from termcolor import colored
|
||||
|
||||
from swarms.workers.worker import Worker
|
||||
|
||||
class GodMode:
|
||||
def __init__(
|
||||
self,
|
||||
num_workers,
|
||||
num_llms,
|
||||
openai_api_key,
|
||||
ai_name
|
||||
):
|
||||
self.workers = [
|
||||
Worker(
|
||||
openai_api_key=openai_api_key,
|
||||
ai_name=ai_name
|
||||
) for _ in range(num_workers)
|
||||
]
|
||||
# self.llms = [LLM() for _ in range(num_llms)]
|
||||
self.all_agents = self.workers # + self.llms
|
||||
|
||||
def run_all(self, task):
|
||||
with ThreadPoolExecutor() as executor:
|
||||
responses = executor.map(
|
||||
lambda agent: agent.run(task) if hasattr(
|
||||
agent, 'run'
|
||||
) else agent(task), self.all_agents)
|
||||
|
||||
return list(responses)
|
||||
|
||||
def print_responses(self, task):
|
||||
responses = self.run_all(task)
|
||||
|
||||
table = []
|
||||
|
||||
for i, response in enumerate(responses):
|
||||
agent_type = "Worker" if i < len(self.workers) else "LLM"
|
||||
table.append([agent_type, response])
|
||||
print(
|
||||
colored(
|
||||
tabulate(
|
||||
table,
|
||||
headers=["Agent Type", "Response"],
|
||||
tablefmt="pretty"
|
||||
), "cyan")
|
||||
)
|
||||
|
||||
# Usage
|
||||
god_mode = GodMode(num_workers=3, openai_api_key="", ai_name="Optimus Prime")
|
||||
task = "What were the winning Boston Marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
||||
god_mode.print_responses(task)
|
@ -0,0 +1,34 @@
|
||||
from swarms.worker.worker import Worker
|
||||
|
||||
class SimpleSwarm:
|
||||
def __init__(
|
||||
self,
|
||||
num_workers,
|
||||
openai_api_key,
|
||||
ai_name
|
||||
):
|
||||
"""
|
||||
|
||||
# Usage
|
||||
swarm = Swarm(num_workers=5, openai_api_key="", ai_name="Optimus Prime")
|
||||
task = "What were the winning Boston Marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
||||
responses = swarm.distribute_task(task)
|
||||
|
||||
for response in responses:
|
||||
print(response)
|
||||
|
||||
"""
|
||||
self.workers = [
|
||||
Worker(openai_api_key, ai_name) for _ in range(num_workers)
|
||||
]
|
||||
|
||||
def run(self, task):
|
||||
responses = []
|
||||
for worker in self.workers:
|
||||
response = worker.run(task)
|
||||
responses.append(response)
|
||||
return responses
|
||||
|
||||
def __call__(self, task):
|
||||
return self.run(task)
|
||||
|
Loading…
Reference in new issue