From 58e1905b5de0fa3f172e732e2cc2a937c9864c28 Mon Sep 17 00:00:00 2001 From: Kye Date: Sun, 16 Jul 2023 21:55:50 -0400 Subject: [PATCH] clean up worker ultra node --- swarms/__init__.py | 3 +- swarms/agents/workers/worker_agent_ultra.py | 168 ++++++++++++++++++++ 2 files changed, 170 insertions(+), 1 deletion(-) create mode 100644 swarms/agents/workers/worker_agent_ultra.py diff --git a/swarms/__init__.py b/swarms/__init__.py index 8edcbba4..1d07422f 100644 --- a/swarms/__init__.py +++ b/swarms/__init__.py @@ -1,4 +1,5 @@ # from swarms import Swarms, swarm from swarms.swarms import Swarms, swarm from swarms.agents import worker_node -from swarms.agents.workers.WorkerUltraNode import WorkerUltraNode, WorkerUltra \ No newline at end of file +from swarms.agents.workers.WorkerUltraNode import WorkerUltraNode, WorkerUltra +from swarms.agents.workers.worker_agent_ultra import worker_ultra_node \ No newline at end of file diff --git a/swarms/agents/workers/worker_agent_ultra.py b/swarms/agents/workers/worker_agent_ultra.py new file mode 100644 index 00000000..e82c8439 --- /dev/null +++ b/swarms/agents/workers/worker_agent_ultra.py @@ -0,0 +1,168 @@ +import os +import logging +from typing import Optional, Type +from langchain.callbacks.manager import ( + AsyncCallbackManagerForToolRun, + CallbackManagerForToolRun, +) + + +from swarms.tools.agent_tools import * +from typing import List, Any, Dict, Optional +from langchain.memory.chat_message_histories import FileChatMessageHistory + +import logging +from pydantic import BaseModel, Extra +logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') + + + + +from typing import List, Any, Dict, Optional +from langchain.memory.chat_message_histories import FileChatMessageHistory +from swarms.utils.main import BaseHandler, FileHandler, FileType +from swarms.tools.main import ExitConversation, RequestsGet, CodeEditor, Terminal +from swarms.utils.main import CsvToDataframe +from swarms.tools.main import BaseToolSet +from swarms.utils.main import StaticUploader + + +class WorkerUltraNode: + """Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on""" + + def __init__(self, llm, toolsets, vectorstore): + if not llm or not toolsets or not vectorstore: + logging.error("llm, toolsets, and vectorstore cannot be None.") + raise ValueError("llm, toolsets, and vectorstore cannot be None.") + + self.llm = llm + self.toolsets = toolsets + self.vectorstore = vectorstore + self.agent = None + + def create_agent(self, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False): + logging.info("Creating agent in WorkerNode") + try: + self.agent = AutoGPT.from_llm_and_tools( + ai_name=ai_name, + ai_role=ai_role, + tools=self.toolsets, + llm=self.llm, + memory=self.vectorstore.as_retriever(search_kwargs=search_kwargs), + human_in_the_loop=human_in_the_loop, + chat_history_memory=FileChatMessageHistory("chat_history.txt"), + ) + self.agent.chain.verbose = verbose + except Exception as e: + logging.error(f"Error while creating agent: {str(e)}") + raise e + + def add_toolset(self, toolset: BaseToolSet): + if not isinstance(toolset, BaseToolSet): + logging.error("Toolset must be an instance of BaseToolSet.") + raise TypeError("Toolset must be an instance of BaseToolSet.") + + self.toolsets.append(toolset) + + def run(self, prompt: str) -> str: + if not isinstance(prompt, str): + logging.error("Prompt must be a string.") + raise TypeError("Prompt must be a string.") + + if not prompt: + logging.error("Prompt is empty.") + raise ValueError("Prompt is empty.") + + try: + self.agent.run([f"{prompt}"]) + return "Task completed by WorkerNode" + except Exception as e: + logging.error(f"While running the agent: {str(e)}") + raise e + +class WorkerUltraNodeInitializer: + def __init__(self, openai_api_key): + if not openai_api_key: + logging.error("OpenAI API key is not provided") + raise ValueError("openai_api_key cannot be None") + + self.openai_api_key = openai_api_key + + def initialize_llm(self, llm_class, temperature=0.5): + if not llm_class: + logging.error("llm_class cannot be none") + raise ValueError("llm_class cannot be None") + + try: + return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) + except Exception as e: + logging.error(f"Failed to initialize language model: {e}") + raise + + def initialize_toolsets(self): + try: + toolsets: List[BaseToolSet] = [ + Terminal(), + CodeEditor(), + RequestsGet(), + ExitConversation(), + ] + handlers: Dict[FileType, BaseHandler] = {FileType.DATAFRAME: CsvToDataframe()} + + if os.environ.get("USE_GPU", False): + import torch + from swarms.tools.main import ImageCaptioning + from swarms.tools.main import ImageEditing, InstructPix2Pix, Text2Image, VisualQuestionAnswering + + if torch.cuda.is_available(): + toolsets.extend( + [ + Text2Image("cuda"), + ImageEditing("cuda"), + InstructPix2Pix("cuda"), + VisualQuestionAnswering("cuda"), + ] + ) + handlers[FileType.IMAGE] = ImageCaptioning("cuda") + + return toolsets + except Exception as e: + logging.error(f"Failed to initialize toolsets: {e}") + + def initialize_vectorstore(self): + try: + + embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) + embedding_size = 1536 + index = faiss.IndexFlatL2(embedding_size) + return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) + except Exception as e: + logging.error(f"Failed to initialize vector store: {e}") + raise + + def create_worker_node(self, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False): + if not llm_class: + logging.error("llm_class cannot be None.") + raise ValueError("llm_class cannot be None.") + try: + worker_toolsets = self.initialize_toolsets() + vectorstore = self.initialize_vectorstore() + worker_node = WorkerUltraNode(llm=self.initialize_llm(llm_class), toolsets=worker_toolsets, vectorstore=vectorstore) + worker_node.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose) + return worker_node + except Exception as e: + logging.error(f"Failed to create worker node: {e}") + raise + +def worker_ultra_node(openai_api_key): + if not openai_api_key: + logging.error("OpenAI API key is not provided") + raise ValueError("OpenAI API key is required") + + try: + initializer = WorkerUltraNodeInitializer(openai_api_key) + worker_node = initializer.create_worker_node() + return worker_node + except Exception as e: + logging.error(f"An error occurred in worker_node: {e}") + raise \ No newline at end of file