From 5db93f5249539dabbc07bad60da69097fd692b77 Mon Sep 17 00:00:00 2001 From: Kye Date: Fri, 30 Jun 2023 18:31:14 -0400 Subject: [PATCH] swarms todo --- IDEAS.MD | 5 +++++ README.md | 2 -- swarms/utils/utils.py | 34 ++++++++++++++++++++++++++++++++++ 3 files changed, 39 insertions(+), 2 deletions(-) diff --git a/IDEAS.MD b/IDEAS.MD index 7661f868..284e8ba9 100644 --- a/IDEAS.MD +++ b/IDEAS.MD @@ -84,3 +84,8 @@ In the context of swarm LLMs, one could consider an **Omni-Vector Embedding Data + +# Repos +[🐪CAMEL🐪](https://twitter.com/hwchase17/status/1645834030519296000) +[MultiAgent](https://github.com/rumpfmax/Multi-GPT/blob/master/multigpt/multi_agent_manager.py) +[AutoGPT](https://github.com/Significant-Gravitas/Auto-GPT) \ No newline at end of file diff --git a/README.md b/README.md index 08a39492..e60add41 100644 --- a/README.md +++ b/README.md @@ -134,8 +134,6 @@ Here is the detailed roadmap of our priorities and planned features for the near 5. **Task Completion and Evaluation Logic**: Include task completion logic with meta prompting, and evaluate task completion on a scale from 0.0 to 1.0. -6. **Baby AGI Setup**: Set up Baby AGI with the AutoGPT instance as a tool for enhanced capabilities. - 7. **Ocean Integration**: Use the [Ocean](https://github.com/kyegomez/Ocean) vector database as the main embedding database for all the agents, both boss and worker. 8. **Improved Communication**: Develop a universal vector database that is only used when a task is completed in this format `[TASK][COMPLETED]`. diff --git a/swarms/utils/utils.py b/swarms/utils/utils.py index 722169e3..10f40cc4 100644 --- a/swarms/utils/utils.py +++ b/swarms/utils/utils.py @@ -530,3 +530,37 @@ def get_token_ids_for_choose_model(model_name): res = list(set(res)) return res ################# END + + + + + +################# MultiAgent + +from autogpt.agent import Agent +from swarms.agents.swarms import worker_node + +class MultiAgent(worker_node): + + def __init__( + self, + ai_name, + memory, + full_message_history, + prompt, + user_input, + agent_id + ): + super().__init__( + ai_name=ai_name, + memory=memory, + full_message_history=full_message_history, + next_action_count=0, + prompt=prompt, + user_input=user_input, + ) + self.agent_id = agent_id + self.auditory_buffer = [] # contains the non processed parts of the conversation + + def receive_message(self, speaker, message): + self.auditory_buffer.append((speaker.ai_name, message)) \ No newline at end of file