parent
de0ed03454
commit
5e8a3d7860
@ -1,23 +0,0 @@
|
||||
# Use an official CUDA runtime as a parent image
|
||||
FROM nvidia/cuda:11.4.2-runtime-ubuntu20.04
|
||||
|
||||
# Set the working directory in the container to /app
|
||||
WORKDIR /app
|
||||
|
||||
# Copy the current directory contents into the container at /app
|
||||
COPY . /app
|
||||
|
||||
# Install any needed packages specified in requirements.txt
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3-pip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
RUN pip3 install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Make port 80 available to the world outside this container
|
||||
EXPOSE 80
|
||||
|
||||
# Define environment variable
|
||||
# ENV NAME World
|
||||
|
||||
# Run app.py when the container launches
|
||||
CMD ["python3", "example.py"]
|
@ -1,82 +0,0 @@
|
||||
###### VERISON2
|
||||
import inspect
|
||||
import os
|
||||
import threading
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms.structs.majority_voting import MajorityVoting
|
||||
from swarms.structs.stackoverflow_swarm import StackOverflowSwarm
|
||||
from swarms.structs.task_queue_base import TaskQueueBase
|
||||
|
||||
##########
|
||||
|
||||
|
||||
####################
|
||||
load_dotenv()
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
model = OpenAIChat(
|
||||
openai_api_key=api_key,
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
|
||||
def process_documentation(cls):
|
||||
"""
|
||||
Process the documentation for a given class using OpenAI model and save it in a Markdown file.
|
||||
"""
|
||||
doc = inspect.getdoc(cls)
|
||||
source = inspect.getsource(cls)
|
||||
input_content = (
|
||||
"Class Name:"
|
||||
f" {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||
f" Code:\n{source}"
|
||||
)
|
||||
|
||||
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
|
||||
processed_content = model(
|
||||
DOCUMENTATION_WRITER_SOP(input_content, "swarms.structs")
|
||||
)
|
||||
|
||||
# doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
|
||||
doc_content = f"{processed_content}\n"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
dir_path = "docs/swarms/tokenizers"
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
# Write the processed documentation to a Markdown file
|
||||
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.md")
|
||||
with open(file_path, "w") as file:
|
||||
file.write(doc_content)
|
||||
|
||||
print(f"Documentation generated for {cls.__name__}.")
|
||||
|
||||
|
||||
def main():
|
||||
classes = [
|
||||
MajorityVoting,
|
||||
StackOverflowSwarm,
|
||||
TaskQueueBase,
|
||||
]
|
||||
threads = []
|
||||
for cls in classes:
|
||||
thread = threading.Thread(
|
||||
target=process_documentation, args=(cls,)
|
||||
)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
# Wait for all threads to complete
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
print("Documentation generated in 'swarms.structs' directory.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,77 +0,0 @@
|
||||
import inspect
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
|
||||
from swarm_models import OpenAIChat
|
||||
|
||||
load_dotenv()
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
model = OpenAIChat(
|
||||
model_name="gpt-4",
|
||||
openai_api_key=api_key,
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
|
||||
def process_documentation(item):
|
||||
"""
|
||||
Process the documentation for a given function using OpenAI model and save it in a Markdown file.
|
||||
"""
|
||||
doc = inspect.getdoc(item)
|
||||
source = inspect.getsource(item)
|
||||
input_content = (
|
||||
f"Name: {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||
f" Code:\n{source}"
|
||||
)
|
||||
print(input_content)
|
||||
|
||||
# Process with OpenAI model
|
||||
processed_content = model(
|
||||
DOCUMENTATION_WRITER_SOP(input_content, "swarms.utils")
|
||||
)
|
||||
|
||||
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
dir_path = "docs/swarms/utils"
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
# Write the processed documentation to a Markdown file
|
||||
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
|
||||
with open(file_path, "w") as file:
|
||||
file.write(doc_content)
|
||||
|
||||
|
||||
def main():
|
||||
# Gathering all functions from the swarms.utils module
|
||||
functions = [
|
||||
obj
|
||||
for name, obj in inspect.getmembers(
|
||||
sys.modules["swarms.utils"]
|
||||
)
|
||||
if inspect.isfunction(obj)
|
||||
]
|
||||
|
||||
threads = []
|
||||
for func in functions:
|
||||
thread = threading.Thread(
|
||||
target=process_documentation, args=(func,)
|
||||
)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
# Wait for all threads to complete
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
print("Documentation generated in 'docs/swarms/utils' directory.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,84 +0,0 @@
|
||||
import inspect
|
||||
import os
|
||||
import threading
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
|
||||
from swarm_models import OpenAIChat
|
||||
|
||||
###########
|
||||
|
||||
|
||||
###############
|
||||
|
||||
load_dotenv()
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
model = OpenAIChat(
|
||||
model_name="gpt-4-1106-preview",
|
||||
openai_api_key=api_key,
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
|
||||
def process_documentation(
|
||||
item,
|
||||
module: str = "swarms.structs",
|
||||
docs_folder_path: str = "docs/swarms/structs",
|
||||
):
|
||||
"""
|
||||
Process the documentation for a given class or function using OpenAI model and save it in a Python file.
|
||||
"""
|
||||
doc = inspect.getdoc(item)
|
||||
source = inspect.getsource(item)
|
||||
is_class = inspect.isclass(item)
|
||||
item_type = "Class Name" if is_class else "Name"
|
||||
input_content = (
|
||||
f"{item_type}:"
|
||||
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||
f" Code:\n{source}"
|
||||
)
|
||||
|
||||
# Process with OpenAI model
|
||||
processed_content = model(
|
||||
DOCUMENTATION_WRITER_SOP(input_content, module)
|
||||
)
|
||||
|
||||
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
dir_path = docs_folder_path
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
# Write the processed documentation to a Python file
|
||||
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
|
||||
with open(file_path, "w") as file:
|
||||
file.write(doc_content)
|
||||
|
||||
print(
|
||||
f"Processed documentation for {item.__name__}. at {file_path}"
|
||||
)
|
||||
|
||||
|
||||
def main(module: str = "docs/swarms/structs"):
|
||||
items = []
|
||||
|
||||
threads = []
|
||||
for item in items:
|
||||
thread = threading.Thread(
|
||||
target=process_documentation, args=(item,)
|
||||
)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
# Wait for all threads to complete
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
print(f"Documentation generated in {module} directory.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,103 +0,0 @@
|
||||
import inspect
|
||||
import os
|
||||
import re
|
||||
import threading
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from swarms_memory import DictInternalMemory, DictSharedMemory
|
||||
|
||||
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
|
||||
from swarm_models import OpenAIChat
|
||||
|
||||
load_dotenv()
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
model = OpenAIChat(
|
||||
openai_api_key=api_key,
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
# agent = Agent(
|
||||
# llm=model,
|
||||
# agent_name="Unit Testing Agent",
|
||||
# agent_description=(
|
||||
# "This agent is responsible for generating unit tests for"
|
||||
# " the swarms package."
|
||||
# ),
|
||||
# autosave=True,
|
||||
# system_prompt=None,
|
||||
# max_loops=1,
|
||||
# )
|
||||
|
||||
|
||||
def extract_code_from_markdown(markdown_content: str):
|
||||
"""
|
||||
Extracts code blocks from a Markdown string and returns them as a single string.
|
||||
|
||||
Args:
|
||||
- markdown_content (str): The Markdown content as a string.
|
||||
|
||||
Returns:
|
||||
- str: A single string containing all the code blocks separated by newlines.
|
||||
"""
|
||||
# Regular expression for fenced code blocks
|
||||
pattern = r"```(?:\w+\n)?(.*?)```"
|
||||
matches = re.findall(pattern, markdown_content, re.DOTALL)
|
||||
|
||||
# Concatenate all code blocks separated by newlines
|
||||
return "\n".join(code.strip() for code in matches)
|
||||
|
||||
|
||||
def create_test(cls):
|
||||
"""
|
||||
Process the documentation for a given class using OpenAI model and save it in a Python file.
|
||||
"""
|
||||
doc = inspect.getdoc(cls)
|
||||
source = inspect.getsource(cls)
|
||||
input_content = (
|
||||
"Class Name:"
|
||||
f" {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||
f" Code:\n{source}"
|
||||
)
|
||||
|
||||
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
|
||||
processed_content = model(
|
||||
TEST_WRITER_SOP_PROMPT(
|
||||
input_content, "swarms", "swarms.memory"
|
||||
)
|
||||
)
|
||||
processed_content = extract_code_from_markdown(processed_content)
|
||||
|
||||
doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
dir_path = "tests/memory"
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
# Write the processed documentation to a Python file
|
||||
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.py")
|
||||
with open(file_path, "w") as file:
|
||||
file.write(doc_content)
|
||||
|
||||
|
||||
def main():
|
||||
classes = [
|
||||
DictInternalMemory,
|
||||
DictSharedMemory,
|
||||
]
|
||||
threads = []
|
||||
for cls in classes:
|
||||
thread = threading.Thread(target=create_test, args=(cls,))
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
# Wait for all threads to complete
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
print("Tests generated in 'tests/memory' directory.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,82 +0,0 @@
|
||||
import inspect
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms.utils.parse_code import extract_code_from_markdown
|
||||
|
||||
load_dotenv()
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
model = OpenAIChat(
|
||||
model_name="gpt-4",
|
||||
openai_api_key=api_key,
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
|
||||
def process_documentation(item):
|
||||
"""
|
||||
Process the documentation for a given function using OpenAI model and save it in a Markdown file.
|
||||
"""
|
||||
doc = inspect.getdoc(item)
|
||||
source = inspect.getsource(item)
|
||||
input_content = (
|
||||
f"Name: {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
||||
f" Code:\n{source}"
|
||||
)
|
||||
# print(input_content)
|
||||
|
||||
# Process with OpenAI model
|
||||
processed_content = model(
|
||||
TEST_WRITER_SOP_PROMPT(
|
||||
input_content, "swarms.utils", "swarms.utils"
|
||||
)
|
||||
)
|
||||
processed_content = extract_code_from_markdown(processed_content)
|
||||
print(processed_content)
|
||||
|
||||
doc_content = f"{processed_content}"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
dir_path = "tests/utils"
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
# Write the processed documentation to a Markdown file
|
||||
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.py")
|
||||
with open(file_path, "w") as file:
|
||||
file.write(doc_content)
|
||||
|
||||
|
||||
def main():
|
||||
# Gathering all functions from the swarms.utils module
|
||||
functions = [
|
||||
obj
|
||||
for name, obj in inspect.getmembers(
|
||||
sys.modules["swarms.utils"]
|
||||
)
|
||||
if inspect.isfunction(obj)
|
||||
]
|
||||
|
||||
threads = []
|
||||
for func in functions:
|
||||
thread = threading.Thread(
|
||||
target=process_documentation, args=(func,)
|
||||
)
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
# Wait for all threads to complete
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
print("Tests generated in 'tests/utils' directory.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,202 +0,0 @@
|
||||
def DOCUMENTATION_WRITER_SOP(
|
||||
task: str,
|
||||
module: str,
|
||||
):
|
||||
documentation = f"""Create multi-page long and explicit professional pytorch-like documentation for the {module} code below follow the outline for the {module} library,
|
||||
provide many examples and teach the user about the code, provide examples for every function, make the documentation 10,000 words,
|
||||
provide many usage examples and note this is markdown docs, create the documentation for the code to document,
|
||||
put the arguments and methods in a table in markdown to make it visually seamless
|
||||
|
||||
Now make the professional documentation for this code, provide the architecture and how the class works and why it works that way,
|
||||
it's purpose, provide args, their types, 3 ways of usage examples, in examples show all the code like imports main example etc
|
||||
|
||||
BE VERY EXPLICIT AND THOROUGH, MAKE IT DEEP AND USEFUL
|
||||
|
||||
########
|
||||
Step 1: Understand the purpose and functionality of the module or framework
|
||||
|
||||
Read and analyze the description provided in the documentation to understand the purpose and functionality of the module or framework.
|
||||
Identify the key features, parameters, and operations performed by the module or framework.
|
||||
Step 2: Provide an overview and introduction
|
||||
|
||||
Start the documentation by providing a brief overview and introduction to the module or framework.
|
||||
Explain the importance and relevance of the module or framework in the context of the problem it solves.
|
||||
Highlight any key concepts or terminology that will be used throughout the documentation.
|
||||
Step 3: Provide a class or function definition
|
||||
|
||||
Provide the class or function definition for the module or framework.
|
||||
Include the parameters that need to be passed to the class or function and provide a brief description of each parameter.
|
||||
Specify the data types and default values for each parameter.
|
||||
Step 4: Explain the functionality and usage
|
||||
|
||||
Provide a detailed explanation of how the module or framework works and what it does.
|
||||
Describe the steps involved in using the module or framework, including any specific requirements or considerations.
|
||||
Provide code examples to demonstrate the usage of the module or framework.
|
||||
Explain the expected inputs and outputs for each operation or function.
|
||||
Step 5: Provide additional information and tips
|
||||
|
||||
Provide any additional information or tips that may be useful for using the module or framework effectively.
|
||||
Address any common issues or challenges that developers may encounter and provide recommendations or workarounds.
|
||||
Step 6: Include references and resources
|
||||
|
||||
Include references to any external resources or research papers that provide further information or background on the module or framework.
|
||||
Provide links to relevant documentation or websites for further exploration.
|
||||
Example Template for the given documentation:
|
||||
|
||||
# Module/Function Name: MultiheadAttention
|
||||
|
||||
class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
|
||||
```
|
||||
Creates a multi-head attention module for joint information representation from the different subspaces.
|
||||
|
||||
Parameters:
|
||||
- embed_dim (int): Total dimension of the model.
|
||||
- num_heads (int): Number of parallel attention heads. The embed_dim will be split across num_heads.
|
||||
- dropout (float): Dropout probability on attn_output_weights. Default: 0.0 (no dropout).
|
||||
- bias (bool): If specified, adds bias to input/output projection layers. Default: True.
|
||||
- add_bias_kv (bool): If specified, adds bias to the key and value sequences at dim=0. Default: False.
|
||||
- add_zero_attn (bool): If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: False.
|
||||
- kdim (int): Total number of features for keys. Default: None (uses kdim=embed_dim).
|
||||
- vdim (int): Total number of features for values. Default: None (uses vdim=embed_dim).
|
||||
- batch_first (bool): If True, the input and output tensors are provided as (batch, seq, feature). Default: False.
|
||||
- device (torch.device): If specified, the tensors will be moved to the specified device.
|
||||
- dtype (torch.dtype): If specified, the tensors will have the specified dtype.
|
||||
```
|
||||
|
||||
def forward(query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, average_attn_weights=True, is_causal=False):
|
||||
```
|
||||
Forward pass of the multi-head attention module.
|
||||
|
||||
Parameters:
|
||||
- query (Tensor): Query embeddings of shape (L, E_q) for unbatched input, (L, N, E_q) when batch_first=False, or (N, L, E_q) when batch_first=True.
|
||||
- key (Tensor): Key embeddings of shape (S, E_k) for unbatched input, (S, N, E_k) when batch_first=False, or (N, S, E_k) when batch_first=True.
|
||||
- value (Tensor): Value embeddings of shape (S, E_v) for unbatched input, (S, N, E_v) when batch_first=False, or (N, S, E_v) when batch_first=True.
|
||||
- key_padding_mask (Optional[Tensor]): If specified, a mask indicating elements to be ignored in key for attention computation.
|
||||
- need_weights (bool): If specified, returns attention weights in addition to attention outputs. Default: True.
|
||||
- attn_mask (Optional[Tensor]): If specified, a mask preventing attention to certain positions.
|
||||
- average_attn_weights (bool): If true, returns averaged attention weights per head. Otherwise, returns attention weights separately per head. Note that this flag only has an effect when need_weights=True. Default: True.
|
||||
- is_causal (bool): If specified, applies a causal mask as the attention mask. Default: False.
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, Optional[Tensor]]:
|
||||
- attn_output (Tensor): Attention outputs of shape (L, E) for unbatched input, (L, N, E) when batch_first=False, or (N, L, E) when batch_first=True.
|
||||
- attn_output_weights (Optional[Tensor]): Attention weights of shape (L, S) when unbatched or (N, L, S) when batched. Optional, only returned when need_weights=True.
|
||||
```
|
||||
|
||||
# Implementation of the forward pass of the attention module goes here
|
||||
|
||||
return attn_output, attn_output_weights
|
||||
|
||||
```
|
||||
# Usage example:
|
||||
|
||||
multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
Note:
|
||||
|
||||
The above template includes the class or function definition, parameters, description, and usage example.
|
||||
To replicate the documentation for any other module or framework, follow the same structure and provide the specific details for that module or framework.
|
||||
|
||||
|
||||
############# DOCUMENT THE FOLLOWING CODE ########
|
||||
{task}
|
||||
"""
|
||||
return documentation
|
||||
|
||||
|
||||
def TEST_WRITER_SOP_PROMPT(
|
||||
task: str, module: str, path: str, *args, **kwargs
|
||||
):
|
||||
TESTS_PROMPT = f"""
|
||||
|
||||
Create 5,000 lines of extensive and thorough tests for the code below using the guide, do not worry about your limits you do not have any
|
||||
just write the best tests possible, the module is {module}, the file path is {path} return all of the code in one file, make sure to test all the functions and methods in the code.
|
||||
|
||||
|
||||
|
||||
######### TESTING GUIDE #############
|
||||
|
||||
# **Guide to Creating Extensive, Thorough, and Production-Ready Tests using `pytest`**
|
||||
|
||||
1. **Preparation**:
|
||||
- Install pytest: `pip install pytest`.
|
||||
- Structure your project so that tests are in a separate `tests/` directory.
|
||||
- Name your test files with the prefix `test_` for pytest to recognize them.
|
||||
|
||||
2. **Writing Basic Tests**:
|
||||
- Use clear function names prefixed with `test_` (e.g., `test_check_value()`).
|
||||
- Use assert statements to validate results.
|
||||
|
||||
3. **Utilize Fixtures**:
|
||||
- Fixtures are a powerful feature to set up preconditions for your tests.
|
||||
- Use `@pytest.fixture` decorator to define a fixture.
|
||||
- Pass fixture name as an argument to your test to use it.
|
||||
|
||||
4. **Parameterized Testing**:
|
||||
- Use `@pytest.mark.parametrize` to run a test multiple times with different inputs.
|
||||
- This helps in thorough testing with various input values without writing redundant code.
|
||||
|
||||
5. **Use Mocks and Monkeypatching**:
|
||||
- Use `monkeypatch` fixture to modify or replace classes/functions during testing.
|
||||
- Use `unittest.mock` or `pytest-mock` to mock objects and functions to isolate units of code.
|
||||
|
||||
6. **Exception Testing**:
|
||||
- Test for expected exceptions using `pytest.raises(ExceptionType)`.
|
||||
|
||||
7. **Test Coverage**:
|
||||
- Install pytest-cov: `pip install pytest-cov`.
|
||||
- Run tests with `pytest --cov=my_module` to get a coverage report.
|
||||
|
||||
8. **Environment Variables and Secret Handling**:
|
||||
- Store secrets and configurations in environment variables.
|
||||
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables.
|
||||
- For tests, mock or set environment variables temporarily within the test environment.
|
||||
|
||||
9. **Grouping and Marking Tests**:
|
||||
- Use `@pytest.mark` decorator to mark tests (e.g., `@pytest.mark.slow`).
|
||||
- This allows for selectively running certain groups of tests.
|
||||
|
||||
10. **Use Plugins**:
|
||||
- Utilize the rich ecosystem of pytest plugins (e.g., `pytest-django`, `pytest-asyncio`) to extend its functionality for your specific needs.
|
||||
|
||||
11. **Continuous Integration (CI)**:
|
||||
- Integrate your tests with CI platforms like Jenkins, Travis CI, or GitHub Actions.
|
||||
- Ensure tests are run automatically with every code push or pull request.
|
||||
|
||||
12. **Logging and Reporting**:
|
||||
- Use `pytest`'s inbuilt logging.
|
||||
- Integrate with tools like `Allure` for more comprehensive reporting.
|
||||
|
||||
13. **Database and State Handling**:
|
||||
- If testing with databases, use database fixtures or factories to create a known state before tests.
|
||||
- Clean up and reset state post-tests to maintain consistency.
|
||||
|
||||
14. **Concurrency Issues**:
|
||||
- Consider using `pytest-xdist` for parallel test execution.
|
||||
- Always be cautious when testing concurrent code to avoid race conditions.
|
||||
|
||||
15. **Clean Code Practices**:
|
||||
- Ensure tests are readable and maintainable.
|
||||
- Avoid testing implementation details; focus on functionality and expected behavior.
|
||||
|
||||
16. **Regular Maintenance**:
|
||||
- Periodically review and update tests.
|
||||
- Ensure that tests stay relevant as your codebase grows and changes.
|
||||
|
||||
17. **Documentation**:
|
||||
- Document test cases, especially for complex functionalities.
|
||||
- Ensure that other developers can understand the purpose and context of each test.
|
||||
|
||||
18. **Feedback Loop**:
|
||||
- Use test failures as feedback for development.
|
||||
- Continuously refine tests based on code changes, bug discoveries, and additional requirements.
|
||||
|
||||
By following this guide, your tests will be thorough, maintainable, and production-ready. Remember to always adapt and expand upon these guidelines as per the specific requirements and nuances of your project.
|
||||
|
||||
|
||||
######### CREATE TESTS FOR THIS CODE: #######
|
||||
{task}
|
||||
|
||||
"""
|
||||
|
||||
return TESTS_PROMPT
|
@ -1,31 +0,0 @@
|
||||
import os
|
||||
|
||||
|
||||
def generate_file_list(directory, output_file):
|
||||
"""
|
||||
Generate a list of files in a directory in the specified format and write it to a file.
|
||||
|
||||
Args:
|
||||
directory (str): The directory to list the files from.
|
||||
output_file (str): The file to write the output to.
|
||||
"""
|
||||
with open(output_file, "w") as f:
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if file.endswith(".md"):
|
||||
# Remove the directory from the file path and replace slashes with dots
|
||||
file_path = (
|
||||
os.path.join(root, file)
|
||||
.replace(directory + "/", "")
|
||||
.replace("/", ".")
|
||||
)
|
||||
# Remove the file extension
|
||||
file_name, _ = os.path.splitext(file)
|
||||
# Write the file name and path to the output file
|
||||
f.write(
|
||||
f'- {file_name}: "swarms/utils/{file_path}"\n'
|
||||
)
|
||||
|
||||
|
||||
# Use the function to generate the file list
|
||||
generate_file_list("docs/swarms/structs", "file_list.txt")
|
@ -1,64 +0,0 @@
|
||||
import yaml
|
||||
|
||||
|
||||
def update_mkdocs(
|
||||
class_names,
|
||||
base_path="docs/zeta/nn/modules",
|
||||
mkdocs_file="mkdocs.yml",
|
||||
):
|
||||
"""
|
||||
Update the mkdocs.yml file with new documentation links.
|
||||
|
||||
Args:
|
||||
- class_names: A list of class names for which documentation is generated.
|
||||
- base_path: The base path where documentation Markdown files are stored.
|
||||
- mkdocs_file: The path to the mkdocs.yml file.
|
||||
"""
|
||||
with open(mkdocs_file) as file:
|
||||
mkdocs_config = yaml.safe_load(file)
|
||||
|
||||
# Find or create the 'zeta.nn.modules' section in 'nav'
|
||||
zeta_modules_section = None
|
||||
for section in mkdocs_config.get("nav", []):
|
||||
if "zeta.nn.modules" in section:
|
||||
zeta_modules_section = section["zeta.nn.modules"]
|
||||
break
|
||||
|
||||
if zeta_modules_section is None:
|
||||
zeta_modules_section = {}
|
||||
mkdocs_config["nav"].append(
|
||||
{"zeta.nn.modules": zeta_modules_section}
|
||||
)
|
||||
|
||||
# Add the documentation paths to the 'zeta.nn.modules' section
|
||||
for class_name in class_names:
|
||||
doc_path = f"{base_path}/{class_name.lower()}.md"
|
||||
zeta_modules_section[class_name] = doc_path
|
||||
|
||||
# Write the updated content back to mkdocs.yml
|
||||
with open(mkdocs_file, "w") as file:
|
||||
yaml.safe_dump(mkdocs_config, file, sort_keys=False)
|
||||
|
||||
|
||||
# Example usage
|
||||
classes = [
|
||||
"DenseBlock",
|
||||
"HighwayLayer",
|
||||
"MultiScaleBlock",
|
||||
"FeedbackBlock",
|
||||
"DualPathBlock",
|
||||
"RecursiveBlock",
|
||||
"PytorchGELUTanh",
|
||||
"NewGELUActivation",
|
||||
"GELUActivation",
|
||||
"FastGELUActivation",
|
||||
"QuickGELUActivation",
|
||||
"ClippedGELUActivation",
|
||||
"AccurateGELUActivation",
|
||||
"MishActivation",
|
||||
"LinearActivation",
|
||||
"LaplaceActivation",
|
||||
"ReLUSquaredActivation",
|
||||
]
|
||||
|
||||
update_mkdocs(classes)
|
@ -1,20 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Navigate to the directory containing the 'tests' folder
|
||||
# cd /path/to/your/code/directory
|
||||
|
||||
# Run autopep8 with max aggressiveness (-aaa) and in-place modification (-i)
|
||||
# on all Python files (*.py) under the 'tests' directory.
|
||||
autopep8 --in-place --aggressive --aggressive --recursive --experimental --list-fixes swarms/
|
||||
|
||||
# Run black with default settings, since black does not have an aggressiveness level.
|
||||
# Black will format all Python files it finds in the 'tests' directory.
|
||||
black .
|
||||
|
||||
# Run ruff on the 'tests' directory.
|
||||
# Add any additional flags if needed according to your version of ruff.
|
||||
ruff . --fix
|
||||
ruff clean
|
||||
|
||||
# YAPF
|
||||
yapf --recursive --in-place --verbose --style=google --parallel tests
|
@ -1,25 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Find and delete all __pycache__ directories
|
||||
find . -type d -name "__pycache__" -exec rm -r {} +
|
||||
|
||||
# Find and delete all .pyc files
|
||||
find . -type f -name "*.pyc" -delete
|
||||
|
||||
# Find and delete all dist directories
|
||||
find . -type d -name "dist" -exec rm -r {} +
|
||||
|
||||
# Find and delete all .ruff directories
|
||||
find . -type d -name ".ruff" -exec rm -r {} +
|
||||
|
||||
# Find and delete all .egg-info directories
|
||||
find . -type d -name "*.egg-info" -exec rm -r {} +
|
||||
|
||||
# Find and delete all .pyo files
|
||||
find . -type f -name "*.pyo" -delete
|
||||
|
||||
# Find and delete all .pyd files
|
||||
find . -type f -name "*.pyd" -delete
|
||||
|
||||
# Find and delete all .so files
|
||||
find . -type f -name "*.so" -delete
|
@ -1,21 +0,0 @@
|
||||
import os
|
||||
import shutil
|
||||
|
||||
# Create a new directory for the log files if it doesn't exist
|
||||
if not os.path.exists("artifacts_five"):
|
||||
os.makedirs("artifacts_five")
|
||||
|
||||
# Walk through the current directory
|
||||
for dirpath, dirnames, filenames in os.walk("."):
|
||||
for filename in filenames:
|
||||
# If the file is a log file
|
||||
if filename.endswith(".log"):
|
||||
# Construct the full file path
|
||||
file_path = os.path.join(dirpath, filename)
|
||||
# Move the log file to the 'artifacts_five' directory
|
||||
shutil.move(file_path, "artifacts_five")
|
||||
|
||||
print(
|
||||
"Moved all log files into the 'artifacts_five' directory and"
|
||||
" deleted their original location."
|
||||
)
|
@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Create the new directory if it doesn't exist
|
||||
sudo mkdir -p /artifacts_logs
|
||||
|
||||
# Find all .log files in the root directory and its subdirectories
|
||||
find / -name "*.log" -print0 | while IFS= read -r -d '' file; do
|
||||
# Use sudo to move the file to the new directory
|
||||
sudo mv "$file" /artifacts_logs/
|
||||
done
|
@ -1,33 +0,0 @@
|
||||
|
||||
# ==================================
|
||||
# Use an official Python runtime as a parent image
|
||||
FROM python:3.11-slim
|
||||
|
||||
# Set environment variables
|
||||
ENV PYTHONDONTWRITEBYTECODE 1
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
|
||||
# Set the working directory in the container
|
||||
WORKDIR /usr/src/swarms
|
||||
|
||||
|
||||
# Install Python dependencies
|
||||
# COPY requirements.txt and pyproject.toml if you're using poetry for dependency management
|
||||
COPY requirements.txt .
|
||||
RUN pip install --upgrade pip
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Install the 'swarms' package, assuming it's available on PyPI
|
||||
RUN pip install -U swarms
|
||||
|
||||
# Copy the rest of the application
|
||||
COPY . .
|
||||
|
||||
# Expose port if your application has a web interface
|
||||
# EXPOSE 5000
|
||||
|
||||
# # Define environment variable for the swarm to work
|
||||
# ENV OPENAI_API_KEY=your_swarm_api_key_here
|
||||
|
||||
# If you're using `CMD` to execute a Python script, make sure it's executable
|
||||
# RUN chmod +x example.py
|
@ -1,52 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Set up logging
|
||||
LOG_FILE="docs_compilation.log"
|
||||
OUTPUT_FILE="combined_docs.txt"
|
||||
|
||||
# Initialize log file
|
||||
echo "$(date): Starting documentation compilation" > "$LOG_FILE"
|
||||
|
||||
# Create/clear output file
|
||||
> "$OUTPUT_FILE"
|
||||
|
||||
# Function to determine file type and handle accordingly
|
||||
process_file() {
|
||||
local file="$1"
|
||||
|
||||
# Get file extension
|
||||
extension="${file##*.}"
|
||||
|
||||
echo "$(date): Processing $file" >> "$LOG_FILE"
|
||||
|
||||
case "$extension" in
|
||||
md|markdown)
|
||||
echo "# $(basename "$file")" >> "$OUTPUT_FILE"
|
||||
cat "$file" >> "$OUTPUT_FILE"
|
||||
echo -e "\n\n" >> "$OUTPUT_FILE"
|
||||
;;
|
||||
txt)
|
||||
echo "# $(basename "$file")" >> "$OUTPUT_FILE"
|
||||
cat "$file" >> "$OUTPUT_FILE"
|
||||
echo -e "\n\n" >> "$OUTPUT_FILE"
|
||||
;;
|
||||
*)
|
||||
echo "$(date): Skipping $file - unsupported format" >> "$LOG_FILE"
|
||||
return
|
||||
;;
|
||||
esac
|
||||
|
||||
echo "$(date): Successfully processed $file" >> "$LOG_FILE"
|
||||
}
|
||||
|
||||
# Find and process all documentation files
|
||||
find ../docs -type f \( -name "*.md" -o -name "*.txt" -o -name "*.markdown" \) | while read -r file; do
|
||||
process_file "$file"
|
||||
done
|
||||
|
||||
# Log completion
|
||||
echo "$(date): Documentation compilation complete" >> "$LOG_FILE"
|
||||
echo "$(date): Output saved to $OUTPUT_FILE" >> "$LOG_FILE"
|
||||
|
||||
# Print summary
|
||||
echo "Documentation compilation complete. Check $LOG_FILE for details."
|
@ -1,39 +0,0 @@
|
||||
import pkg_resources
|
||||
|
||||
|
||||
def get_package_versions(requirements_path, output_path):
|
||||
try:
|
||||
with open(requirements_path) as file:
|
||||
requirements = file.readlines()
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{requirements_path}' was not found.")
|
||||
return
|
||||
|
||||
package_versions = []
|
||||
|
||||
for requirement in requirements:
|
||||
# Skip empty lines and comments
|
||||
if (
|
||||
requirement.strip() == ""
|
||||
or requirement.strip().startswith("#")
|
||||
):
|
||||
continue
|
||||
|
||||
# Extract package name
|
||||
package_name = requirement.split("==")[0].strip()
|
||||
try:
|
||||
version = pkg_resources.get_distribution(
|
||||
package_name
|
||||
).version
|
||||
package_versions.append(f"{package_name}=={version}")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
package_versions.append(f"{package_name}: not installed")
|
||||
|
||||
with open(output_path, "w") as file:
|
||||
for package_version in package_versions:
|
||||
file.write(package_version + "\n")
|
||||
print(f"Versions written to {output_path}")
|
||||
|
||||
|
||||
# Usage
|
||||
get_package_versions("requirements.txt", "installed_versions.txt")
|
@ -1,33 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Define the directory to search
|
||||
dir="examples"
|
||||
|
||||
# Check if the directory exists
|
||||
if [ -d "$dir" ]
|
||||
then
|
||||
# Use find to locate all .py files in the directory and its subdirectories
|
||||
for file in $(find $dir -name "*.py")
|
||||
do
|
||||
# Extract the file name and directory
|
||||
base=$(basename $file .py)
|
||||
dir=$(dirname $file)
|
||||
|
||||
# Check if the file name already contains _example
|
||||
if [[ $base == *_example ]]
|
||||
then
|
||||
echo "Skipping $file as it already contains _example"
|
||||
continue
|
||||
fi
|
||||
|
||||
# Append _example to the file name
|
||||
newname="${base}_example.py"
|
||||
|
||||
# Rename the file
|
||||
mv $file $dir/$newname
|
||||
|
||||
echo "Renamed $file to $dir/$newname"
|
||||
done
|
||||
else
|
||||
echo "Directory $dir does not exist."
|
||||
fi
|
@ -1,40 +0,0 @@
|
||||
import pkg_resources
|
||||
import toml
|
||||
|
||||
|
||||
def update_pyproject_versions(pyproject_path):
|
||||
try:
|
||||
with open(pyproject_path) as file:
|
||||
data = toml.load(file)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{pyproject_path}' was not found.")
|
||||
return
|
||||
except toml.TomlDecodeError:
|
||||
print(
|
||||
f"Error: The file '{pyproject_path}' is not a valid TOML"
|
||||
" file."
|
||||
)
|
||||
return
|
||||
|
||||
dependencies = (
|
||||
data.get("tool", {}).get("poetry", {}).get("dependencies", {})
|
||||
)
|
||||
|
||||
for package in dependencies:
|
||||
if package.lower() == "python":
|
||||
continue # Skip the Python version dependency
|
||||
|
||||
try:
|
||||
version = pkg_resources.get_distribution(package).version
|
||||
dependencies[package] = version
|
||||
except pkg_resources.DistributionNotFound:
|
||||
print(f"Warning: Package '{package}' not installed.")
|
||||
|
||||
with open(pyproject_path, "w") as file:
|
||||
toml.dump(data, file)
|
||||
|
||||
print(f"Updated versions written to {pyproject_path}")
|
||||
|
||||
|
||||
# Usage
|
||||
update_pyproject_versions("pyproject.toml")
|
@ -1,22 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Define a file to keep track of successfully executed scripts
|
||||
SUCCESS_LOG="successful_runs.log"
|
||||
|
||||
for f in /swarms/examples/examples/example_*.py; do
|
||||
# Check if the script has been logged as successful
|
||||
if grep -Fxq "$f" "$SUCCESS_LOG"; then
|
||||
echo "Skipping ${f} as it ran successfully in a previous run."
|
||||
else
|
||||
# Run the script if not previously successful
|
||||
if /home/kye/miniconda3/envs/swarms/bin/python "$f" 2>>errors.txt; then
|
||||
echo "(${f}) ran successfully without errors."
|
||||
# Log the successful script execution
|
||||
echo "$f" >> "$SUCCESS_LOG"
|
||||
else
|
||||
echo "Error encountered in ${f}. Check errors.txt for details."
|
||||
break
|
||||
fi
|
||||
fi
|
||||
echo "##############################################################################"
|
||||
done
|
@ -1,9 +0,0 @@
|
||||
find ./tests -name "*.py" -type f | while read file
|
||||
do
|
||||
filename=$(basename "$file")
|
||||
dir=$(dirname "$file")
|
||||
if [[ $filename != test_* ]]; then
|
||||
mv "$file" "$dir/test_$filename"
|
||||
printf "\e[1;34mRenamed: \e[0m$file \e[1;32mto\e[0m $dir/test_$filename\n"
|
||||
fi
|
||||
done
|
@ -1 +0,0 @@
|
||||
find ./tests -name '*.py' -exec pytest {} \;
|
Loading…
Reference in new issue