parent
fbf65094a6
commit
5f879bc180
@ -0,0 +1,115 @@
|
||||
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms_memory import ChromaDB
|
||||
import os
|
||||
|
||||
# Initialize memory for agents
|
||||
memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results")
|
||||
memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results")
|
||||
|
||||
# Initialize model
|
||||
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||||
|
||||
# Initialize Risk Analysis Agent
|
||||
risk_analysis_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Risk-Analysis-Agent",
|
||||
system_prompt="You are a specialized risk analysis agent focused on assessing risks.",
|
||||
agent_description="Performs risk analysis for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_risk_analysis_agent.json",
|
||||
user_name="risk_analyst_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Sustainability Agent
|
||||
sustainability_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Sustainability-Agent",
|
||||
system_prompt="You are a sustainability analysis agent focused on ESG factors.",
|
||||
agent_description="Analyzes sustainability practices for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_sustainability_agent.json",
|
||||
user_name="sustainability_specialist",
|
||||
retry_attempts=3,
|
||||
context_length=180000,
|
||||
long_term_memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Run the agents
|
||||
risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuners for each agent
|
||||
risk_reflection_tuner = ReflectionTuner(risk_analysis_agent, reflection_steps=2)
|
||||
sustainability_reflection_tuner = ReflectionTuner(sustainability_agent, reflection_steps=2)
|
||||
|
||||
# Run the agents with Reflection Tuning
|
||||
risk_response = risk_reflection_tuner.reflect_and_tune("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_response = sustainability_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
print("Risk Analysis Agent Response:", risk_response)
|
||||
print("Sustainability Agent Response:", sustainability_response)
|
||||
|
||||
# Initialize agents from agents_with_new.yaml
|
||||
# Import ReflectionTuner
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuner for all agents, including existing ones
|
||||
deduction_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Deduction-Agent",
|
||||
system_prompt="Provide expert advice on tax deductions for Delaware C Corps.",
|
||||
agent_description="Analyzes tax deduction strategies.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_tax_deduction_agent.json",
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=1,
|
||||
context_length=250000,
|
||||
long_term_memory=memory_risk, # Reuse memory for testing purposes
|
||||
)
|
||||
|
||||
optimization_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Optimization-Agent",
|
||||
system_prompt="Provide expert advice on tax optimization strategies for Delaware C Corps.",
|
||||
agent_description="Analyzes tax optimization.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_tax_optimization_agent.json",
|
||||
user_name="tax_optimization_user",
|
||||
retry_attempts=3,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Reflection Tuners
|
||||
deduction_reflection_tuner = ReflectionTuner(deduction_agent, reflection_steps=2)
|
||||
optimization_reflection_tuner = ReflectionTuner(optimization_agent, reflection_steps=2)
|
||||
|
||||
# Run agents with Reflection Tuning
|
||||
deduction_response = deduction_reflection_tuner.reflect_and_tune("What are the most effective tax deduction strategies for a Delaware C Corp in tech?")
|
||||
optimization_response = optimization_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in finance optimize its tax strategy?")
|
||||
|
||||
print("Tax Deduction Agent Response:", deduction_response)
|
||||
print("Tax Optimization Agent Response:", optimization_response)
|
@ -0,0 +1,175 @@
|
||||
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms_memory import ChromaDB
|
||||
import os
|
||||
|
||||
# Initialize memory for agents
|
||||
memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results")
|
||||
memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results")
|
||||
|
||||
# Initialize model
|
||||
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||||
|
||||
# Initialize Risk Analysis Agent
|
||||
risk_analysis_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Risk-Analysis-Agent",
|
||||
system_prompt="You are a specialized risk analysis agent focused on assessing risks.",
|
||||
agent_description="Performs risk analysis for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_risk_analysis_agent.json",
|
||||
user_name="risk_analyst_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Sustainability Agent
|
||||
sustainability_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Sustainability-Agent",
|
||||
system_prompt="You are a sustainability analysis agent focused on ESG factors.",
|
||||
agent_description="Analyzes sustainability practices for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_sustainability_agent.json",
|
||||
user_name="sustainability_specialist",
|
||||
retry_attempts=3,
|
||||
context_length=180000,
|
||||
long_term_memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Run the agents
|
||||
risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuners for each agent
|
||||
risk_reflection_tuner = ReflectionTuner(risk_analysis_agent, reflection_steps=2)
|
||||
sustainability_reflection_tuner = ReflectionTuner(sustainability_agent, reflection_steps=2)
|
||||
|
||||
# Run the agents with Reflection Tuning
|
||||
risk_response = risk_reflection_tuner.reflect_and_tune("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_response = sustainability_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
print("Risk Analysis Agent Response:", risk_response)
|
||||
print("Sustainability Agent Response:", sustainability_response)
|
||||
|
||||
# Initialize agents from agents_with_new.yaml
|
||||
# Import ReflectionTuner
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuner for all agents, including existing ones
|
||||
deduction_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Deduction-Agent",
|
||||
system_prompt="Provide expert advice on tax deductions for Delaware C Corps.",
|
||||
agent_description="Analyzes tax deduction strategies.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_tax_deduction_agent.json",
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=1,
|
||||
context_length=250000,
|
||||
long_term_memory=memory_risk, # Reuse memory for testing purposes
|
||||
)
|
||||
|
||||
optimization_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Optimization-Agent",
|
||||
system_prompt="Provide expert advice on tax optimization strategies for Delaware C Corps.",
|
||||
agent_description="Analyzes tax optimization.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_tax_optimization_agent.json",
|
||||
user_name="tax_optimization_user",
|
||||
retry_attempts=3,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Reflection Tuners
|
||||
deduction_reflection_tuner = ReflectionTuner(deduction_agent, reflection_steps=2)
|
||||
optimization_reflection_tuner = ReflectionTuner(optimization_agent, reflection_steps=2)
|
||||
|
||||
# Run agents with Reflection Tuning
|
||||
deduction_response = deduction_reflection_tuner.reflect_and_tune("What are the most effective tax deduction strategies for a Delaware C Corp in tech?")
|
||||
optimization_response = optimization_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in finance optimize its tax strategy?")
|
||||
|
||||
print("Tax Deduction Agent Response:", deduction_response)
|
||||
print("Tax Optimization Agent Response:", optimization_response)
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
import requests
|
||||
|
||||
def duckduckgo_search(query):
|
||||
# Simple DuckDuckGo search function for Data-Collector agent
|
||||
url = f"https://api.duckduckgo.com/?q={query}&format=json&pretty=1"
|
||||
response = requests.get(url)
|
||||
if response.status_code == 200:
|
||||
return response.json().get("AbstractText", "No data found")
|
||||
return "Failed to retrieve data"
|
||||
|
||||
# Initialize Planner and Data-Collector agents with DuckDuckGo search capability
|
||||
planner_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Planner-Agent",
|
||||
system_prompt="Develop a quarterly strategic roadmap for a Delaware C Corp.",
|
||||
agent_description="Creates detailed plans and schedules.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_planner_agent.json",
|
||||
user_name="planner_user",
|
||||
retry_attempts=2,
|
||||
context_length=150000,
|
||||
long_term_memory=memory_sustainability, # Reuse memory for demonstration purposes
|
||||
)
|
||||
|
||||
data_collector_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Data-Collector-Agent",
|
||||
system_prompt="Collect and synthesize information from DuckDuckGo search.",
|
||||
agent_description="Gathers data from open-source search engines.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_data_collector_agent.json",
|
||||
user_name="data_collector_user",
|
||||
retry_attempts=3,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk, # Reuse memory for demonstration
|
||||
)
|
||||
|
||||
# Initialize Reflection Tuners
|
||||
planner_reflection_tuner = ReflectionTuner(planner_agent, reflection_steps=2)
|
||||
data_collector_reflection_tuner = ReflectionTuner(data_collector_agent, reflection_steps=2)
|
||||
|
||||
# Run Planner agent with Reflection Tuning
|
||||
planner_response = planner_reflection_tuner.reflect_and_tune("Create a quarterly strategic roadmap for a Delaware C Corp in biotech.")
|
||||
print("Planner Agent Response:", planner_response)
|
||||
|
||||
# Run Data Collector agent with Reflection Tuning, using DuckDuckGo search
|
||||
data_collector_task = "Find recent trends in tax strategies for corporations in the US."
|
||||
search_result = duckduckgo_search(data_collector_task)
|
||||
data_collector_response = data_collector_reflection_tuner.reflect_and_tune(f"{search_result}")
|
||||
print("Data Collector Agent Response:", data_collector_response)
|
@ -0,0 +1,203 @@
|
||||
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms_memory import ChromaDB
|
||||
import os
|
||||
|
||||
# Initialize memory for agents
|
||||
memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results")
|
||||
memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results")
|
||||
|
||||
# Initialize model
|
||||
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||||
|
||||
# Initialize Risk Analysis Agent
|
||||
risk_analysis_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Risk-Analysis-Agent",
|
||||
system_prompt="You are a specialized risk analysis agent focused on assessing risks.",
|
||||
agent_description="Performs risk analysis for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_risk_analysis_agent.json",
|
||||
user_name="risk_analyst_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Sustainability Agent
|
||||
sustainability_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Sustainability-Agent",
|
||||
system_prompt="You are a sustainability analysis agent focused on ESG factors.",
|
||||
agent_description="Analyzes sustainability practices for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_sustainability_agent.json",
|
||||
user_name="sustainability_specialist",
|
||||
retry_attempts=3,
|
||||
context_length=180000,
|
||||
long_term_memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Run the agents
|
||||
risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuners for each agent
|
||||
risk_reflection_tuner = ReflectionTuner(risk_analysis_agent, reflection_steps=2)
|
||||
sustainability_reflection_tuner = ReflectionTuner(sustainability_agent, reflection_steps=2)
|
||||
|
||||
# Run the agents with Reflection Tuning
|
||||
risk_response = risk_reflection_tuner.reflect_and_tune("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_response = sustainability_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
print("Risk Analysis Agent Response:", risk_response)
|
||||
print("Sustainability Agent Response:", sustainability_response)
|
||||
|
||||
# Initialize agents from agents_with_new.yaml
|
||||
# Import ReflectionTuner
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuner for all agents, including existing ones
|
||||
deduction_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Deduction-Agent",
|
||||
system_prompt="Provide expert advice on tax deductions for Delaware C Corps.",
|
||||
agent_description="Analyzes tax deduction strategies.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_tax_deduction_agent.json",
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=1,
|
||||
context_length=250000,
|
||||
long_term_memory=memory_risk, # Reuse memory for testing purposes
|
||||
)
|
||||
|
||||
optimization_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Tax-Optimization-Agent",
|
||||
system_prompt="Provide expert advice on tax optimization strategies for Delaware C Corps.",
|
||||
agent_description="Analyzes tax optimization.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_tax_optimization_agent.json",
|
||||
user_name="tax_optimization_user",
|
||||
retry_attempts=3,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Reflection Tuners
|
||||
deduction_reflection_tuner = ReflectionTuner(deduction_agent, reflection_steps=2)
|
||||
optimization_reflection_tuner = ReflectionTuner(optimization_agent, reflection_steps=2)
|
||||
|
||||
# Run agents with Reflection Tuning
|
||||
deduction_response = deduction_reflection_tuner.reflect_and_tune("What are the most effective tax deduction strategies for a Delaware C Corp in tech?")
|
||||
optimization_response = optimization_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in finance optimize its tax strategy?")
|
||||
|
||||
print("Tax Deduction Agent Response:", deduction_response)
|
||||
print("Tax Optimization Agent Response:", optimization_response)
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
import requests
|
||||
|
||||
def duckduckgo_search(query):
|
||||
# Simple DuckDuckGo search function for Data-Collector agent
|
||||
url = f"https://api.duckduckgo.com/?q={query}&format=json&pretty=1"
|
||||
response = requests.get(url)
|
||||
if response.status_code == 200:
|
||||
return response.json().get("AbstractText", "No data found")
|
||||
return "Failed to retrieve data"
|
||||
|
||||
# Initialize Planner and Data-Collector agents with DuckDuckGo search capability
|
||||
planner_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Planner-Agent",
|
||||
system_prompt="Develop a quarterly strategic roadmap for a Delaware C Corp.",
|
||||
agent_description="Creates detailed plans and schedules.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_planner_agent.json",
|
||||
user_name="planner_user",
|
||||
retry_attempts=2,
|
||||
context_length=150000,
|
||||
long_term_memory=memory_sustainability, # Reuse memory for demonstration purposes
|
||||
)
|
||||
|
||||
data_collector_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Data-Collector-Agent",
|
||||
system_prompt="Collect and synthesize information from DuckDuckGo search.",
|
||||
agent_description="Gathers data from open-source search engines.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_data_collector_agent.json",
|
||||
user_name="data_collector_user",
|
||||
retry_attempts=3,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk, # Reuse memory for demonstration
|
||||
)
|
||||
|
||||
# Initialize Reflection Tuners
|
||||
planner_reflection_tuner = ReflectionTuner(planner_agent, reflection_steps=2)
|
||||
data_collector_reflection_tuner = ReflectionTuner(data_collector_agent, reflection_steps=2)
|
||||
|
||||
# Run Planner agent with Reflection Tuning
|
||||
planner_response = planner_reflection_tuner.reflect_and_tune("Create a quarterly strategic roadmap for a Delaware C Corp in biotech.")
|
||||
print("Planner Agent Response:", planner_response)
|
||||
|
||||
# Run Data Collector agent with Reflection Tuning, using DuckDuckGo search
|
||||
data_collector_task = "Find recent trends in tax strategies for corporations in the US."
|
||||
search_result = duckduckgo_search(data_collector_task)
|
||||
data_collector_response = data_collector_reflection_tuner.reflect_and_tune(f"{search_result}")
|
||||
print("Data Collector Agent Response:", data_collector_response)
|
||||
|
||||
from token_cache_and_adaptive_factory import TokenCache, AdaptiveAgentFactory
|
||||
|
||||
# Initialize TokenCache and AdaptiveAgentFactory
|
||||
token_cache = TokenCache(cache_duration_minutes=30) # Cache duration for tokens
|
||||
adaptive_factory = AdaptiveAgentFactory(model, token_cache)
|
||||
|
||||
# Example of creating adaptive agents dynamically
|
||||
adaptive_risk_agent = adaptive_factory.create_agent(
|
||||
agent_name="Adaptive-Risk-Agent",
|
||||
system_prompt="Assess new risk factors for changing economic conditions.",
|
||||
task="Dynamic risk analysis in evolving markets.",
|
||||
memory=memory_risk,
|
||||
)
|
||||
|
||||
adaptive_sustainability_agent = adaptive_factory.create_agent(
|
||||
agent_name="Adaptive-Sustainability-Agent",
|
||||
system_prompt="Evaluate sustainability strategies in response to new regulations.",
|
||||
task="Dynamic sustainability strategy for manufacturing.",
|
||||
memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Running adaptive agents
|
||||
adaptive_risk_response = adaptive_risk_agent.run("Analyze potential economic risks for new market conditions.")
|
||||
adaptive_sustainability_response = adaptive_sustainability_agent.run("Evaluate ESG strategies with upcoming regulation changes.")
|
||||
|
||||
print("Adaptive Risk Agent Response:", adaptive_risk_response)
|
||||
print("Adaptive Sustainability Agent Response:", adaptive_sustainability_response)
|
@ -0,0 +1,52 @@
|
||||
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms_memory import ChromaDB
|
||||
import os
|
||||
|
||||
# Initialize memory for agents
|
||||
memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results")
|
||||
memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results")
|
||||
|
||||
# Initialize model
|
||||
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||||
|
||||
# Initialize Risk Analysis Agent
|
||||
risk_analysis_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Risk-Analysis-Agent",
|
||||
system_prompt="You are a specialized risk analysis agent focused on assessing risks.",
|
||||
agent_description="Performs risk analysis for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_risk_analysis_agent.json",
|
||||
user_name="risk_analyst_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Sustainability Agent
|
||||
sustainability_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Sustainability-Agent",
|
||||
system_prompt="You are a sustainability analysis agent focused on ESG factors.",
|
||||
agent_description="Analyzes sustainability practices for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_sustainability_agent.json",
|
||||
user_name="sustainability_specialist",
|
||||
retry_attempts=3,
|
||||
context_length=180000,
|
||||
long_term_memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Run the agents
|
||||
risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
@ -0,0 +1,65 @@
|
||||
|
||||
from swarms import Agent
|
||||
from swarm_models import OpenAIChat
|
||||
from swarms_memory import ChromaDB
|
||||
import os
|
||||
|
||||
# Initialize memory for agents
|
||||
memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results")
|
||||
memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results")
|
||||
|
||||
# Initialize model
|
||||
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||||
|
||||
# Initialize Risk Analysis Agent
|
||||
risk_analysis_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Risk-Analysis-Agent",
|
||||
system_prompt="You are a specialized risk analysis agent focused on assessing risks.",
|
||||
agent_description="Performs risk analysis for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path="delaware_c_corp_risk_analysis_agent.json",
|
||||
user_name="risk_analyst_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory_risk,
|
||||
)
|
||||
|
||||
# Initialize Sustainability Agent
|
||||
sustainability_agent = Agent(
|
||||
agent_name="Delaware-C-Corp-Sustainability-Agent",
|
||||
system_prompt="You are a sustainability analysis agent focused on ESG factors.",
|
||||
agent_description="Analyzes sustainability practices for Delaware C Corps.",
|
||||
llm=model,
|
||||
max_loops=2,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=False,
|
||||
saved_state_path="delaware_c_corp_sustainability_agent.json",
|
||||
user_name="sustainability_specialist",
|
||||
retry_attempts=3,
|
||||
context_length=180000,
|
||||
long_term_memory=memory_sustainability,
|
||||
)
|
||||
|
||||
# Run the agents
|
||||
risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
from reflection_tuner import ReflectionTuner
|
||||
|
||||
# Initialize Reflection Tuners for each agent
|
||||
risk_reflection_tuner = ReflectionTuner(risk_analysis_agent, reflection_steps=2)
|
||||
sustainability_reflection_tuner = ReflectionTuner(sustainability_agent, reflection_steps=2)
|
||||
|
||||
# Run the agents with Reflection Tuning
|
||||
risk_response = risk_reflection_tuner.reflect_and_tune("What are the top financial and operational risks for a Delaware C Corp in healthcare?")
|
||||
sustainability_response = sustainability_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in manufacturing improve its sustainability practices?")
|
||||
|
||||
print("Risk Analysis Agent Response:", risk_response)
|
||||
print("Sustainability Agent Response:", sustainability_response)
|
@ -0,0 +1,94 @@
|
||||
agents:
|
||||
- agent_name: "Delaware-C-Corp-Tax-Deduction-Agent"
|
||||
# model:
|
||||
# model_name: "gpt-4o-mini"
|
||||
# temperature: 0.1
|
||||
# max_tokens: 2500
|
||||
system_prompt: |
|
||||
You are a highly specialized financial analysis agent focused on Delaware C Corps tax deductions. Your task is to provide expert advice on optimizing tax strategies for Delaware C Corps, ensuring compliance with all relevant tax laws and regulations. You should be well-versed in Delaware state tax codes and federal tax laws affecting C Corps. Your responses should include detailed explanations of tax deductions available to Delaware C Corps, including but not limited to:
|
||||
- Research and Development (R&D) tax credits
|
||||
- Depreciation and amortization
|
||||
- Business expense deductions
|
||||
- Charitable contributions
|
||||
- State-specific tax incentives
|
||||
- Federal tax deductions applicable to C Corps
|
||||
max_loops: 1
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_tax_deduction_agent.json"
|
||||
user_name: "swarms_corp"
|
||||
retry_attempts: 1
|
||||
context_length: 250000
|
||||
return_step_meta: false
|
||||
output_type: "str" # Can be "json" or any other format
|
||||
task: "What are the most effective tax deduction strategies for a Delaware C Corp in the technology industry?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Tax-Optimization-Agent"
|
||||
# model:
|
||||
# model_name: "gpt-4o-mini"
|
||||
# temperature: 0.2
|
||||
# max_tokens: 2000
|
||||
system_prompt: |
|
||||
You are a highly specialized financial analysis agent focused on Delaware C Corps tax optimization. Your task is to provide expert advice on optimizing tax strategies for Delaware C Corps, ensuring compliance with all relevant tax laws and regulations. You should be well-versed in Delaware state tax codes and federal tax laws affecting C Corps. Your responses should include detailed explanations of tax optimization strategies available to Delaware C Corps, including but not limited to:
|
||||
- Entity structure optimization
|
||||
- Income shifting strategies
|
||||
- Loss utilization and carryovers
|
||||
- Tax-efficient supply chain management
|
||||
- State-specific tax planning
|
||||
- Federal tax planning applicable to C Corps
|
||||
max_loops: 2
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: false
|
||||
saved_state_path: "delaware_c_corp_tax_optimization_agent.json"
|
||||
user_name: "tax_optimization_user"
|
||||
retry_attempts: 3
|
||||
context_length: 200000
|
||||
return_step_meta: true
|
||||
output_type: "str"
|
||||
task: "How can a Delaware C Corp in the finance industry optimize its tax strategy for maximum savings?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Risk-Analysis-Agent"
|
||||
system_prompt: |
|
||||
You are a specialized risk analysis agent focused on assessing financial, legal, and operational risks for Delaware C Corps.
|
||||
Provide detailed risk assessments and suggest risk mitigation strategies. Your expertise should cover:
|
||||
- Market risk analysis
|
||||
- Operational risk analysis
|
||||
- Compliance with Delaware and federal regulations
|
||||
- Financial risk modeling
|
||||
max_loops: 3
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_risk_analysis_agent.json"
|
||||
user_name: "risk_analyst_user"
|
||||
retry_attempts: 2
|
||||
context_length: 200000
|
||||
return_step_meta: true
|
||||
output_type: "json"
|
||||
task: "What are the top financial and operational risks for a Delaware C Corp in the healthcare industry?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Sustainability-Agent"
|
||||
system_prompt: |
|
||||
You are a sustainability analysis agent focused on evaluating and enhancing the economic sustainability of Delaware C Corps.
|
||||
Your recommendations should address:
|
||||
- Environmental, Social, and Governance (ESG) factors
|
||||
- Resource management and waste reduction strategies
|
||||
- Compliance with sustainability regulations and reporting
|
||||
- Sustainable investment strategies
|
||||
max_loops: 2
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: false
|
||||
saved_state_path: "delaware_c_corp_sustainability_agent.json"
|
||||
user_name: "sustainability_specialist"
|
||||
retry_attempts: 3
|
||||
context_length: 180000
|
||||
return_step_meta: true
|
||||
output_type: "str"
|
||||
task: "How can a Delaware C Corp in the manufacturing industry improve its sustainability practices?"
|
@ -0,0 +1,129 @@
|
||||
agents:
|
||||
- agent_name: "Delaware-C-Corp-Tax-Deduction-Agent"
|
||||
# model:
|
||||
# model_name: "gpt-4o-mini"
|
||||
# temperature: 0.1
|
||||
# max_tokens: 2500
|
||||
system_prompt: |
|
||||
You are a highly specialized financial analysis agent focused on Delaware C Corps tax deductions. Your task is to provide expert advice on optimizing tax strategies for Delaware C Corps, ensuring compliance with all relevant tax laws and regulations. You should be well-versed in Delaware state tax codes and federal tax laws affecting C Corps. Your responses should include detailed explanations of tax deductions available to Delaware C Corps, including but not limited to:
|
||||
- Research and Development (R&D) tax credits
|
||||
- Depreciation and amortization
|
||||
- Business expense deductions
|
||||
- Charitable contributions
|
||||
- State-specific tax incentives
|
||||
- Federal tax deductions applicable to C Corps
|
||||
max_loops: 1
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_tax_deduction_agent.json"
|
||||
user_name: "swarms_corp"
|
||||
retry_attempts: 1
|
||||
context_length: 250000
|
||||
return_step_meta: false
|
||||
output_type: "str" # Can be "json" or any other format
|
||||
task: "What are the most effective tax deduction strategies for a Delaware C Corp in the technology industry?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Tax-Optimization-Agent"
|
||||
# model:
|
||||
# model_name: "gpt-4o-mini"
|
||||
# temperature: 0.2
|
||||
# max_tokens: 2000
|
||||
system_prompt: |
|
||||
You are a highly specialized financial analysis agent focused on Delaware C Corps tax optimization. Your task is to provide expert advice on optimizing tax strategies for Delaware C Corps, ensuring compliance with all relevant tax laws and regulations. You should be well-versed in Delaware state tax codes and federal tax laws affecting C Corps. Your responses should include detailed explanations of tax optimization strategies available to Delaware C Corps, including but not limited to:
|
||||
- Entity structure optimization
|
||||
- Income shifting strategies
|
||||
- Loss utilization and carryovers
|
||||
- Tax-efficient supply chain management
|
||||
- State-specific tax planning
|
||||
- Federal tax planning applicable to C Corps
|
||||
max_loops: 2
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: false
|
||||
saved_state_path: "delaware_c_corp_tax_optimization_agent.json"
|
||||
user_name: "tax_optimization_user"
|
||||
retry_attempts: 3
|
||||
context_length: 200000
|
||||
return_step_meta: true
|
||||
output_type: "str"
|
||||
task: "How can a Delaware C Corp in the finance industry optimize its tax strategy for maximum savings?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Risk-Analysis-Agent"
|
||||
system_prompt: |
|
||||
You are a specialized risk analysis agent focused on assessing financial, legal, and operational risks for Delaware C Corps.
|
||||
Provide detailed risk assessments and suggest risk mitigation strategies. Your expertise should cover:
|
||||
- Market risk analysis
|
||||
- Operational risk analysis
|
||||
- Compliance with Delaware and federal regulations
|
||||
- Financial risk modeling
|
||||
max_loops: 3
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_risk_analysis_agent.json"
|
||||
user_name: "risk_analyst_user"
|
||||
retry_attempts: 2
|
||||
context_length: 200000
|
||||
return_step_meta: true
|
||||
output_type: "json"
|
||||
task: "What are the top financial and operational risks for a Delaware C Corp in the healthcare industry?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Sustainability-Agent"
|
||||
system_prompt: |
|
||||
You are a sustainability analysis agent focused on evaluating and enhancing the economic sustainability of Delaware C Corps.
|
||||
Your recommendations should address:
|
||||
- Environmental, Social, and Governance (ESG) factors
|
||||
- Resource management and waste reduction strategies
|
||||
- Compliance with sustainability regulations and reporting
|
||||
- Sustainable investment strategies
|
||||
max_loops: 2
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: false
|
||||
saved_state_path: "delaware_c_corp_sustainability_agent.json"
|
||||
user_name: "sustainability_specialist"
|
||||
retry_attempts: 3
|
||||
context_length: 180000
|
||||
return_step_meta: true
|
||||
output_type: "str"
|
||||
task: "How can a Delaware C Corp in the manufacturing industry improve its sustainability practices?"
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Planner-Agent"
|
||||
system_prompt: |
|
||||
You are a planning agent focused on developing schedules, timelines, and strategic roadmaps for Delaware C Corps.
|
||||
Your planning should account for company milestones, regulatory deadlines, and strategic goals. Provide organized,
|
||||
step-by-step timelines, and resources.
|
||||
max_loops: 2
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_planner_agent.json"
|
||||
user_name: "planner_user"
|
||||
retry_attempts: 2
|
||||
context_length: 150000
|
||||
return_step_meta: true
|
||||
output_type: "json"
|
||||
task: "Create a quarterly strategic roadmap for a Delaware C Corp in the biotech industry."
|
||||
|
||||
- agent_name: "Delaware-C-Corp-Data-Collector-Agent"
|
||||
system_prompt: |
|
||||
You are a data collection agent specialized in gathering relevant data from open-source search engines, focusing on
|
||||
market trends, regulatory updates, and industry insights. Use DuckDuckGo to collect accurate and up-to-date information.
|
||||
max_loops: 3
|
||||
autosave: true
|
||||
dashboard: false
|
||||
verbose: true
|
||||
dynamic_temperature_enabled: true
|
||||
saved_state_path: "delaware_c_corp_data_collector_agent.json"
|
||||
user_name: "data_collector_user"
|
||||
retry_attempts: 3
|
||||
context_length: 200000
|
||||
return_step_meta: true
|
||||
output_type: "str"
|
||||
task: "Find recent trends in tax strategies for corporations in the US using DuckDuckGo search."
|
@ -0,0 +1,26 @@
|
||||
|
||||
class ReflectionTuner:
|
||||
def __init__(self, agent, reflection_steps=3):
|
||||
self.agent = agent
|
||||
self.reflection_steps = reflection_steps
|
||||
|
||||
def reflect_and_tune(self, initial_task):
|
||||
response = self.agent.run(initial_task)
|
||||
for step in range(self.reflection_steps):
|
||||
# Analyzing the response and adjusting based on findings
|
||||
feedback = self.analyze_response(response)
|
||||
if feedback:
|
||||
print(f"Reflection step {step + 1}: Adjusting response based on feedback.")
|
||||
response = self.agent.run(feedback) # Rerun with adjusted task or prompt
|
||||
else:
|
||||
print(f"No further tuning required at step {step + 1}. Final response achieved.")
|
||||
break
|
||||
return response
|
||||
|
||||
def analyze_response(self, response):
|
||||
# Basic logic to analyze the response quality and determine next steps
|
||||
if "error" in response.lower() or "incomplete" in response.lower():
|
||||
return "Please refine the explanation and address missing points."
|
||||
elif "unclear" in response.lower() or "vague" in response.lower():
|
||||
return "Provide a more detailed and specific analysis."
|
||||
return None # No adjustment required if response is satisfactory
|
@ -0,0 +1,58 @@
|
||||
|
||||
import os
|
||||
import json
|
||||
from datetime import datetime, timedelta
|
||||
from collections import defaultdict
|
||||
|
||||
class TokenCache:
|
||||
def __init__(self, cache_duration_minutes=30):
|
||||
self.token_cache = defaultdict(lambda: {"token": None, "expires": datetime.now()})
|
||||
self.cache_duration = timedelta(minutes=cache_duration_minutes)
|
||||
|
||||
def get_token(self, agent_name):
|
||||
cached_token = self.token_cache[agent_name]
|
||||
if cached_token["token"] and cached_token["expires"] > datetime.now():
|
||||
print(f"Using cached token for {agent_name}.")
|
||||
return cached_token["token"]
|
||||
return None # Token has expired or does not exist
|
||||
|
||||
def set_token(self, agent_name, token):
|
||||
self.token_cache[agent_name] = {
|
||||
"token": token,
|
||||
"expires": datetime.now() + self.cache_duration,
|
||||
}
|
||||
|
||||
class AdaptiveAgentFactory:
|
||||
def __init__(self, model, token_cache, reflection_steps=2):
|
||||
self.model = model
|
||||
self.token_cache = token_cache
|
||||
self.reflection_steps = reflection_steps
|
||||
|
||||
def create_agent(self, agent_name, system_prompt, task, memory):
|
||||
cached_token = self.token_cache.get_token(agent_name)
|
||||
if cached_token:
|
||||
return cached_token
|
||||
|
||||
# Create new agent instance with unique parameters
|
||||
new_agent = Agent(
|
||||
agent_name=agent_name,
|
||||
system_prompt=system_prompt,
|
||||
agent_description=f"Adaptive agent for {task}",
|
||||
llm=self.model,
|
||||
max_loops=3,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
saved_state_path=f"{agent_name.lower().replace(' ', '_')}.json",
|
||||
user_name="adaptive_user",
|
||||
retry_attempts=2,
|
||||
context_length=200000,
|
||||
long_term_memory=memory,
|
||||
)
|
||||
|
||||
# Generate a token for the new agent and cache it
|
||||
token = f"{agent_name}_{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
||||
self.token_cache.set_token(agent_name, token)
|
||||
print(f"Created new agent {agent_name} with token {token}.")
|
||||
return new_agent
|
Loading…
Reference in new issue