diff --git a/README.md b/README.md index b3c20651..cdefbead 100644 --- a/README.md +++ b/README.md @@ -701,9 +701,21 @@ def research_analysis_synthesis_algorithm(agents, task, **kwargs): } # Create agents -researcher = Agent(agent_name="Researcher", model_name="gpt-4o-mini") -analyst = Agent(agent_name="Analyst", model_name="gpt-4o-mini") -synthesizer = Agent(agent_name="Synthesizer", model_name="gpt-4o-mini") +researcher = Agent( + agent_name="Researcher", + agent_description="Expert in comprehensive research and information gathering.", + model_name="gpt-4.1" +) +analyst = Agent( + agent_name="Analyst", + agent_description="Specialist in analyzing and interpreting data.", + model_name="gpt-4.1" +) +synthesizer = Agent( + agent_name="Synthesizer", + agent_description="Focused on synthesizing and integrating research insights.", + model_name="gpt-4.1" +) # Create social algorithm social_alg = SocialAlgorithms( @@ -718,17 +730,6 @@ result = social_alg.run("The impact of AI on healthcare") print(result.final_outputs) ``` -Social Algorithms provide: - -| Feature | Description | -|---------|-------------| -| **Custom Communication Patterns** | Define any arbitrary sequence of agent interactions | -| **Flexible Algorithm Upload** | Upload callable functions that define communication flows | -| **Communication Logging** | Track all agent interactions and communication steps | -| **Timeout Protection** | Prevent algorithms from running indefinitely | -| **Parallel Execution** | Support for concurrent agent execution where possible | -| **Rich Metadata** | Detailed execution results and communication history | - Perfect for implementing complex multi-agent workflows, collaborative problem-solving, and custom communication protocols. --- @@ -793,17 +794,6 @@ print("Registered agents:", deployer.list_agents()) deployer.run() ``` -AOP provides: - -| Feature | Description | -|-------------------------------|--------------------------------------------------------------------------| -| **Distributed Agent Deployment** | Deploy agents as independent services | -| **Agent Discovery** | Built-in discovery tools for finding and connecting to agents | -| **Standardized Protocol** | MCP-compatible interface for seamless integration | -| **Dynamic Management** | Add, remove, and manage agents at runtime | -| **Scalable Architecture** | Support for multiple agent clusters and load balancing | -| **Enterprise Integration** | Easy integration with existing systems and workflows | - Perfect for deploying large scale multi-agent systems. [Read the complete AOP documentation](https://docs.swarms.world/en/latest/swarms/structs/aop/) ---