diff --git a/docs/best_practices.md b/docs/best_practices.md
deleted file mode 100644
index 0ada3238..00000000
--- a/docs/best_practices.md
+++ /dev/null
@@ -1,241 +0,0 @@
----
-title: Best Practices for Multi-Agent Systems
-description: A comprehensive guide to building and managing multi-agent systems
----
-
-# Best Practices for Multi-Agent Systems
-
-## Overview
-
-This guide provides comprehensive best practices for designing, implementing, and managing multi-agent systems. It covers key aspects from architecture selection to performance optimization and security considerations.
-
-```mermaid
-graph TD
- A[Multi-Agent System] --> B[Architecture]
- A --> C[Implementation]
- A --> D[Management]
- A --> E[Security]
-
- B --> B1[HHCS]
- B --> B2[Auto Agent Builder]
- B --> B3[SwarmRouter]
-
- C --> C1[Agent Design]
- C --> C2[Communication]
- C --> C3[Error Handling]
-
- D --> D1[Monitoring]
- D --> D2[Scaling]
- D --> D3[Performance]
-
- E --> E1[Data Privacy]
- E --> E2[Access Control]
- E --> E3[Audit Logging]
-```
-
-## Why Multi-Agent Systems?
-
-Individual agents face several limitations that multi-agent systems can overcome:
-
-```mermaid
-graph LR
- A[Individual Agent Limitations] --> B[Context Window Limits]
- A --> C[Single Task Execution]
- A --> D[Hallucination]
- A --> E[No Collaboration]
-
- F[Multi-Agent Solutions] --> G[Distributed Processing]
- F --> H[Parallel Task Execution]
- F --> I[Cross-Verification]
- F --> J[Collaborative Intelligence]
-```
-
-### Key Benefits
-
-1. **Enhanced Reliability**
- - Cross-verification between agents
- - Redundancy and fault tolerance
- - Consensus-based decision making
-
-2. **Improved Efficiency**
- - Parallel processing capabilities
- - Specialized agent roles
- - Resource optimization
-
-3. **Better Accuracy**
- - Multiple verification layers
- - Collaborative fact-checking
- - Consensus-driven outputs
-
-## Architecture Selection
-
-Choose the appropriate architecture based on your needs:
-
-| Architecture | Best For | Key Features |
-|--------------|----------|--------------|
-| HHCS | Complex, multi-domain tasks | - Clear task routing
- Specialized handling
- Parallel processing |
-| Auto Agent Builder | Dynamic, evolving tasks | - Self-organizing
- Flexible scaling
- Adaptive creation |
-| SwarmRouter | Varied task types | - Multiple workflows
- Simple configuration
- Flexible deployment |
-
-## Implementation Best Practices
-
-### 1. Agent Design
-
-```mermaid
-graph TD
- A[Agent Design] --> B[Clear Role Definition]
- A --> C[Focused System Prompts]
- A --> D[Error Handling]
- A --> E[Memory Management]
-
- B --> B1[Specialized Tasks]
- B --> B2[Defined Responsibilities]
-
- C --> C1[Task-Specific Instructions]
- C --> C2[Communication Guidelines]
-
- D --> D1[Retry Mechanisms]
- D --> D2[Fallback Strategies]
-
- E --> E1[Context Management]
- E --> E2[History Tracking]
-```
-
-### 2. Communication Protocols
-
-- **State Alignment**
- - Begin with shared understanding
- - Regular status updates
- - Clear task progression
-
-- **Information Sharing**
- - Transparent decision making
- - Explicit acknowledgments
- - Structured data formats
-
-### 3. Error Handling
-
-```python
-try:
- result = router.route_task(task)
-except Exception as e:
- logger.error(f"Task routing failed: {str(e)}")
- # Implement retry or fallback strategy
-```
-
-## Performance Optimization
-
-### 1. Resource Management
-
-```mermaid
-graph LR
- A[Resource Management] --> B[Memory Usage]
- A --> C[CPU Utilization]
- A --> D[API Rate Limits]
-
- B --> B1[Caching]
- B --> B2[Cleanup]
-
- C --> C1[Load Balancing]
- C --> C2[Concurrent Processing]
-
- D --> D1[Rate Limiting]
- D --> D2[Request Batching]
-```
-
-### 2. Scaling Strategies
-
-1. **Horizontal Scaling**
- - Add more agents for parallel processing
- - Distribute workload across instances
- - Balance resource utilization
-
-2. **Vertical Scaling**
- - Optimize individual agent performance
- - Enhance memory management
- - Improve processing efficiency
-
-## Security Considerations
-
-### 1. Data Privacy
-
-- Implement encryption for sensitive data
-- Secure communication channels
-- Regular security audits
-
-### 2. Access Control
-
-```mermaid
-graph TD
- A[Access Control] --> B[Authentication]
- A --> C[Authorization]
- A --> D[Audit Logging]
-
- B --> B1[Identity Verification]
- B --> B2[Token Management]
-
- C --> C1[Role-Based Access]
- C --> C2[Permission Management]
-
- D --> D1[Activity Tracking]
- D --> D2[Compliance Monitoring]
-```
-
-## Monitoring and Maintenance
-
-### 1. Key Metrics
-
-- Response times
-- Success rates
-- Error rates
-- Resource utilization
-- API usage
-
-### 2. Logging Best Practices
-
-```python
-# Structured logging example
-logger.info({
- 'event': 'task_completion',
- 'task_id': task.id,
- 'duration': duration,
- 'agents_involved': agent_count,
- 'status': 'success'
-})
-```
-
-### 3. Alert Configuration
-
-Set up alerts for:
-- Critical errors
-- Performance degradation
-- Resource constraints
-- Security incidents
-
-## Getting Started
-
-1. **Start Small**
- - Begin with a pilot project
- - Test with limited scope
- - Gather metrics and feedback
-
-2. **Scale Gradually**
- - Increase complexity incrementally
- - Add agents as needed
- - Monitor performance impact
-
-3. **Maintain Documentation**
- - Keep system diagrams updated
- - Document configuration changes
- - Track performance optimizations
-
-## Conclusion
-
-Building effective multi-agent systems requires careful consideration of architecture, implementation, security, and maintenance practices. By following these guidelines, you can create robust, efficient, and secure multi-agent systems that effectively overcome the limitations of individual agents.
-
-!!! tip "Remember"
- - Start with clear objectives
- - Choose appropriate architecture
- - Implement proper security measures
- - Monitor and optimize performance
- - Document everything
\ No newline at end of file
diff --git a/docs/index.md b/docs/index.md
index 9d8bbc54..171a88b4 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -1,89 +1,3 @@
----
-title: Multi-Agent LLM Systems Best Practices Guide
-description: A comprehensive guide to building and managing multi-agent Large Language Model (LLM) systems
----
-
-# Multi-Agent LLM Systems Best Practices Guide
-
-Welcome to the comprehensive guide on building and managing multi-agent Large Language Model (LLM) systems. This documentation provides tactical insights, best practices, and practical solutions for implementing reliable and efficient multi-agent systems.
-
-## Overview
-
-Multi-agent LLM systems represent a paradigm shift in artificial intelligence, enabling complex problem-solving through collaborative intelligence. This guide will help you understand:
-
-- Why multi-agent systems are necessary
-- Common limitations and how to overcome them
-- Best practices for implementation
-- Communication protocols and error handling
-- Performance optimization techniques
-
-## Quick Navigation
-
-```mermaid
-graph LR
- A[Start Here] --> B[Core Concepts]
- A --> C[Best Practices]
- A --> D[FAQ]
- B --> E[Why Multi-Agent?]
- B --> F[Limitations]
- B --> G[Architecture]
- C --> H[Implementation]
- C --> I[Communication]
- C --> J[Error Handling]
- C --> K[Performance]
-```
-
-## Key Features
-
-- 🚀 **Comprehensive Coverage**: From basic concepts to advanced implementation details
-- 🔧 **Practical Examples**: Real-world scenarios and solutions
-- 📈 **Performance Optimization**: Tips and techniques for scaling
-- 🛡️ **Error Handling**: Robust protocols for system reliability
-- 🤝 **Communication Patterns**: Effective agent collaboration strategies
-
-## Getting Started
-
-1. Start with [Why Multi-Agent Systems?](concepts/why-multi-agent.md) to understand the fundamentals
-2. Review [Limitations of Individual Agents](concepts/limitations.md) to learn about common challenges
-3. Explore [Implementation Guide](best-practices/implementation.md) for practical setup instructions
-4. Check the [FAQ](faq.md) for quick answers to common questions
-
-## Core Principles
-
-1. **Reliability Through Collaboration**
- - Multiple agents working together
- - Cross-verification of results
- - Redundancy for critical tasks
-
-2. **Efficient Communication**
- - Clear protocols
- - Minimal overhead
- - Effective coordination
-
-3. **Scalable Architecture**
- - Modular design
- - Flexible deployment
- - Resource optimization
-
-4. **Robust Error Handling**
- - Graceful failure recovery
- - Systematic error detection
- - Proactive monitoring
-
-## Contributing
-
-We welcome contributions to this guide! Please see our [contribution guidelines](contributing.md) for more information on how to help improve this documentation.
-
-## Support
-
-If you need help or have questions:
-
-1. Check the [FAQ](faq.md) section
-2. Review [Tips & Troubleshooting](tips.md)
-3. Raise an issue on our GitHub repository
-
-Let's build better multi-agent systems together! 🚀
-
# Welcome to Swarms Docs Home
[](https://discord.gg/jM3Z6M9uMq) [](https://www.youtube.com/@kyegomez3242) [](https://www.linkedin.com/in/kye-g-38759a207/) [](https://x.com/kyegomezb)
diff --git a/docs/swarms_cloud/best_practices.md b/docs/swarms_cloud/best_practices.md
index 49d22345..9e17a7c2 100644
--- a/docs/swarms_cloud/best_practices.md
+++ b/docs/swarms_cloud/best_practices.md
@@ -8,42 +8,67 @@ This comprehensive guide outlines production-grade best practices for using the
!!! info "Available Swarm Architectures"
- | Swarm Type | Best For | Use Cases |
- |------------|----------|------------|
- | `AgentRearrange` | Dynamic workflows | - Complex task decomposition
- Adaptive processing
- Multi-stage analysis |
- | `MixtureOfAgents` | Diverse expertise | - Cross-domain problems
- Comprehensive analysis
- Multi-perspective tasks |
- | `SpreadSheetSwarm` | Data processing | - Financial analysis
- Data transformation
- Batch calculations |
- | `SequentialWorkflow` | Linear processes | - Document processing
- Step-by-step analysis
- Quality control |
- | `ConcurrentWorkflow` | Parallel tasks | - Batch processing
- Independent analyses
- High-throughput needs |
- | `GroupChat` | Collaborative solving | - Brainstorming
- Decision making
- Problem solving |
- | `MultiAgentRouter` | Task distribution | - Load balancing
- Specialized processing
- Resource optimization |
- | `AutoSwarmBuilder` | Automated setup | - Quick prototyping
- Simple tasks
- Testing |
- | `HiearchicalSwarm` | Complex organization | - Project management
- Research analysis
- Enterprise workflows |
- | `MajorityVoting` | Consensus needs | - Quality assurance
- Decision validation
- Risk assessment |
+ | Swarm Type | Best For | Use Cases | Example Configuration |
+ |------------|----------|------------|---------------------|
+ | `AgentRearrange` | Dynamic workflows | - Complex task decomposition
- Adaptive processing
- Multi-stage analysis
- Dynamic resource allocation | ```python
{"swarm_type": "AgentRearrange",
"rearrange_flow": "optimize for efficiency",
"max_loops": 3}``` |
+ | `MixtureOfAgents` | Diverse expertise | - Cross-domain problems
- Comprehensive analysis
- Multi-perspective tasks
- Research synthesis | ```python
{"swarm_type": "MixtureOfAgents",
"agents": [{"role": "researcher"},
{"role": "analyst"},
{"role": "writer"}]}``` |
+ | `SpreadSheetSwarm` | Data processing | - Financial analysis
- Data transformation
- Batch calculations
- Report generation | ```python
{"swarm_type": "SpreadSheetSwarm",
"data_format": "csv",
"analysis_type": "financial"}``` |
+ | `SequentialWorkflow` | Linear processes | - Document processing
- Step-by-step analysis
- Quality control
- Content pipeline | ```python
{"swarm_type": "SequentialWorkflow",
"steps": ["research", "draft",
"review", "finalize"]}``` |
+ | `ConcurrentWorkflow` | Parallel tasks | - Batch processing
- Independent analyses
- High-throughput needs
- Multi-market analysis | ```python
{"swarm_type": "ConcurrentWorkflow",
"max_parallel": 5,
"batch_size": 10}``` |
+ | `GroupChat` | Collaborative solving | - Brainstorming
- Decision making
- Problem solving
- Strategy development | ```python
{"swarm_type": "GroupChat",
"participants": ["expert1", "expert2"],
"discussion_rounds": 3}``` |
+ | `MultiAgentRouter` | Task distribution | - Load balancing
- Specialized processing
- Resource optimization
- Service routing | ```python
{"swarm_type": "MultiAgentRouter",
"routing_strategy": "skill_based",
"fallback_agent": "general"}``` |
+ | `AutoSwarmBuilder` | Automated setup | - Quick prototyping
- Simple tasks
- Testing
- MVP development | ```python
{"swarm_type": "AutoSwarmBuilder",
"complexity": "medium",
"optimize_for": "speed"}``` |
+ | `HiearchicalSwarm` | Complex organization | - Project management
- Research analysis
- Enterprise workflows
- Team automation | ```python
{"swarm_type": "HiearchicalSwarm",
"levels": ["manager", "specialist",
"worker"]}``` |
+ | `MajorityVoting` | Consensus needs | - Quality assurance
- Decision validation
- Risk assessment
- Content moderation | ```python
{"swarm_type": "MajorityVoting",
"min_votes": 3,
"threshold": 0.7}``` |
+
+=== "Application Patterns"
+
+ !!! tip "Specialized Application Configurations"
+
+ | Application | Recommended Swarm | Configuration Example | Benefits |
+ |------------|-------------------|----------------------|-----------|
+ | **Team Automation** | `HiearchicalSwarm` | ```python
{
"swarm_type": "HiearchicalSwarm",
"agents": [
{"role": "ProjectManager",
"responsibilities": ["planning", "coordination"]},
{"role": "TechLead",
"responsibilities": ["architecture", "review"]},
{"role": "Developers",
"count": 3,
"specializations": ["frontend", "backend", "testing"]}
]
}``` | - Automated team coordination
- Clear responsibility chain
- Scalable team structure |
+ | **Research Pipeline** | `SequentialWorkflow` | ```python
{
"swarm_type": "SequentialWorkflow",
"pipeline": [
{"stage": "Literature Review",
"agent_type": "Researcher"},
{"stage": "Data Analysis",
"agent_type": "Analyst"},
{"stage": "Report Generation",
"agent_type": "Writer"}
]
}``` | - Structured research process
- Quality control at each stage
- Comprehensive output |
+ | **Trading System** | `ConcurrentWorkflow` | ```python
{
"swarm_type": "ConcurrentWorkflow",
"agents": [
{"market": "crypto",
"strategy": "momentum"},
{"market": "forex",
"strategy": "mean_reversion"},
{"market": "stocks",
"strategy": "value"}
]
}``` | - Multi-market coverage
- Real-time analysis
- Risk distribution |
+ | **Content Factory** | `MixtureOfAgents` | ```python
{
"swarm_type": "MixtureOfAgents",
"workflow": [
{"role": "Researcher",
"focus": "topic_research"},
{"role": "Writer",
"style": "engaging"},
{"role": "Editor",
"quality_standards": "high"}
]
}``` | - Automated content creation
- Consistent quality
- High throughput |
=== "Cost Optimization"
- !!! tip "Cost Management Strategies"
+ !!! tip "Advanced Cost Management Strategies"
+
+ | Strategy | Implementation | Impact | Configuration Example |
+ |----------|----------------|---------|---------------------|
+ | Batch Processing | Group related tasks | 20-30% cost reduction | ```python
{"batch_size": 10,
"parallel_execution": true,
"deduplication": true}``` |
+ | Off-peak Usage | Schedule for 8 PM - 6 AM PT | 15-25% cost reduction | ```python
{"schedule": "0 20 * * *",
"timezone": "America/Los_Angeles"}``` |
+ | Token Optimization | Precise prompts, focused tasks | 10-20% cost reduction | ```python
{"max_tokens": 2000,
"compression": true,
"cache_similar": true}``` |
+ | Caching | Store reusable results | 30-40% cost reduction | ```python
{"cache_ttl": 3600,
"similarity_threshold": 0.95}``` |
+ | Agent Optimization | Use minimum required agents | 15-25% cost reduction | ```python
{"auto_scale": true,
"min_agents": 2,
"max_agents": 5}``` |
+ | Smart Routing | Route to specialized agents | 10-15% cost reduction | ```python
{"routing_strategy": "cost_effective",
"fallback": "general"}``` |
+ | Prompt Engineering | Optimize input tokens | 15-20% cost reduction | ```python
{"prompt_template": "focused",
"remove_redundancy": true}``` |
+
+=== "Industry Solutions"
+
+ !!! example "Industry-Specific Swarm Patterns"
- | Strategy | Implementation | Impact |
- |----------|----------------|---------|
- | Batch Processing | Group related tasks | 20-30% cost reduction |
- | Off-peak Usage | Schedule for 8 PM - 6 AM PT | 15-25% cost reduction |
- | Token Optimization | Precise prompts, focused tasks | 10-20% cost reduction |
- | Caching | Store reusable results | 30-40% cost reduction |
- | Agent Optimization | Use minimum required agents | 15-25% cost reduction |
+ | Industry | Swarm Pattern | Configuration | Use Case |
+ |----------|---------------|---------------|-----------|
+ | **Finance** | ```python
{
"swarm_type": "HiearchicalSwarm",
"agents": [
{"role": "RiskManager",
"models": ["risk_assessment"]},
{"role": "MarketAnalyst",
"markets": ["stocks", "crypto"]},
{"role": "Trader",
"strategies": ["momentum", "value"]}
]
}``` | - Portfolio management
- Risk assessment
- Market analysis
- Trading execution | Automated trading desk |
+ | **Healthcare** | ```python
{
"swarm_type": "SequentialWorkflow",
"workflow": [
{"stage": "PatientIntake",
"agent": "DataCollector"},
{"stage": "Diagnosis",
"agent": "DiagnosticsSpecialist"},
{"stage": "Treatment",
"agent": "TreatmentPlanner"}
]
}``` | - Patient analysis
- Diagnostic support
- Treatment planning
- Follow-up care | Clinical workflow automation |
+ | **Legal** | ```python
{
"swarm_type": "MixtureOfAgents",
"team": [
{"role": "Researcher",
"expertise": "case_law"},
{"role": "Analyst",
"expertise": "contracts"},
{"role": "Reviewer",
"expertise": "compliance"}
]
}``` | - Document review
- Case analysis
- Contract review
- Compliance checks | Legal document processing |
+ | **E-commerce** | ```python
{
"swarm_type": "ConcurrentWorkflow",
"processes": [
{"task": "ProductCatalog",
"agent": "ContentManager"},
{"task": "PricingOptimization",
"agent": "PricingAnalyst"},
{"task": "CustomerService",
"agent": "SupportAgent"}
]
}``` | - Product management
- Pricing optimization
- Customer support
- Inventory management | E-commerce operations |
=== "Error Handling"
- !!! warning "Error Management Best Practices"
+ !!! warning "Advanced Error Management Strategies"
- | Error Code | Strategy | Implementation |
- |------------|----------|----------------|
- | 400 | Input Validation | Pre-request parameter checks |
- | 401 | Auth Management | Regular key rotation, secure storage |
- | 429 | Rate Limiting | Exponential backoff, request queuing |
- | 500 | Resilience | Retry with backoff, fallback logic |
- | 503 | High Availability | Multi-region setup, redundancy |
+ | Error Code | Strategy | Implementation | Recovery Pattern |
+ |------------|----------|----------------|------------------|
+ | 400 | Input Validation | Pre-request parameter checks | ```python
{"validation": "strict",
"retry_on_fix": true}``` |
+ | 401 | Auth Management | Regular key rotation, secure storage | ```python
{"key_rotation": "7d",
"backup_keys": true}``` |
+ | 429 | Rate Limiting | Exponential backoff, request queuing | ```python
{"backoff_factor": 2,
"max_retries": 5}``` |
+ | 500 | Resilience | Retry with backoff, fallback logic | ```python
{"circuit_breaker": true,
"fallback_mode": "degraded"}``` |
+ | 503 | High Availability | Multi-region setup, redundancy | ```python
{"regions": ["us", "eu"],
"failover": true}``` |
+ | 504 | Timeout Handling | Adaptive timeouts, partial results | ```python
{"timeout_strategy": "adaptive",
"partial_results": true}``` |
## Choosing the Right Swarm Architecture