|
|
|
@ -8,12 +8,14 @@ from langchain import PromptTemplate, HuggingFaceHub, ChatOpenAI, LLMChain
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LLM:
|
|
|
|
|
def __init__(self,
|
|
|
|
|
openai_api_key: Optional[str] = None,
|
|
|
|
|
hf_repo_id: Optional[str] = None,
|
|
|
|
|
hf_api_token: Optional[str] = None,
|
|
|
|
|
model_kwargs: Optional[dict] = None):
|
|
|
|
|
temperature: Optional[float] = 0.5,
|
|
|
|
|
max_length: Optional[int] = 64):
|
|
|
|
|
|
|
|
|
|
# Check if keys are in the environment variables
|
|
|
|
|
openai_api_key = openai_api_key or os.getenv('OPENAI_API_KEY')
|
|
|
|
@ -22,18 +24,23 @@ class LLM:
|
|
|
|
|
self.openai_api_key = openai_api_key
|
|
|
|
|
self.hf_repo_id = hf_repo_id
|
|
|
|
|
self.hf_api_token = hf_api_token
|
|
|
|
|
self.model_kwargs = model_kwargs if model_kwargs else {}
|
|
|
|
|
self.temperature = temperature
|
|
|
|
|
self.max_length = max_length
|
|
|
|
|
|
|
|
|
|
# If the HuggingFace API token is provided, set it in environment variables
|
|
|
|
|
if self.hf_api_token:
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = self.hf_api_token
|
|
|
|
|
|
|
|
|
|
# Create the LLM object based on the provided keys
|
|
|
|
|
# Initialize the LLM object
|
|
|
|
|
self.initialize_llm()
|
|
|
|
|
|
|
|
|
|
def initialize_llm(self):
|
|
|
|
|
model_kwargs = {"temperature": self.temperature, "max_length": self.max_length}
|
|
|
|
|
try:
|
|
|
|
|
if self.hf_repo_id and self.hf_api_token:
|
|
|
|
|
self.llm = HuggingFaceHub(repo_id=self.hf_repo_id, model_kwargs=self.model_kwargs)
|
|
|
|
|
self.llm = HuggingFaceHub(repo_id=self.hf_repo_id, model_kwargs=model_kwargs)
|
|
|
|
|
elif self.openai_api_key:
|
|
|
|
|
self.llm = ChatOpenAI(api_key=self.openai_api_key, model_kwargs=self.model_kwargs)
|
|
|
|
|
self.llm = ChatOpenAI(api_key=self.openai_api_key, model_kwargs=model_kwargs)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("Please provide either OpenAI API key or both HuggingFace repository ID and API token.")
|
|
|
|
|
except Exception as e:
|
|
|
|
@ -43,7 +50,6 @@ class LLM:
|
|
|
|
|
def run(self, prompt: str) -> str:
|
|
|
|
|
template = """Question: {question}
|
|
|
|
|
Answer: Let's think step by step."""
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
prompt_template = PromptTemplate(template=template, input_variables=["question"])
|
|
|
|
|
llm_chain = LLMChain(prompt=prompt_template, llm=self.llm)
|
|
|
|
@ -62,3 +68,8 @@ class LLM:
|
|
|
|
|
# llm_instance = LLM(hf_repo_id="google/flan-t5-xl", hf_api_token="your_hf_api_token")
|
|
|
|
|
# result = llm_instance.run("Who won the FIFA World Cup in 1998?")
|
|
|
|
|
# print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# make super easy to chaneg parameters, in class, use cpu and
|
|
|
|
|
#add qlora, 8bit inference
|
|
|
|
|
# look into adding deepspeed
|