From 6c7de98d7136838528c50721210672ef9b416602 Mon Sep 17 00:00:00 2001 From: Kye Date: Thu, 23 Nov 2023 21:21:06 -0800 Subject: [PATCH] multi agent docs + playground code quality --- example.py | 1 - multi_agent_debate.py | 31 ++++++ playground/demos/autotemp/autotemp.py | 17 +++- playground/demos/nutrition/nutrition.py | 52 ++++++---- swarms/swarms/multi_agent_collab.py | 127 ++++++++++++++++++++---- 5 files changed, 183 insertions(+), 45 deletions(-) create mode 100644 multi_agent_debate.py diff --git a/example.py b/example.py index af41d355..ab496b77 100644 --- a/example.py +++ b/example.py @@ -12,4 +12,3 @@ flow = Flow(llm=llm, max_loops=1, dashboard=True) # Run the workflow on a task out = flow.run("Generate a 10,000 word blog on health and wellness.") - diff --git a/multi_agent_debate.py b/multi_agent_debate.py new file mode 100644 index 00000000..2bc67c8c --- /dev/null +++ b/multi_agent_debate.py @@ -0,0 +1,31 @@ +import os + +from dotenv import load_dotenv + +from swarms.models import OpenAIChat +from swarms.structs import Flow +from swarms.swarms.multi_agent_collab import MultiAgentCollaboration + +load_dotenv() + +api_key = os.environ.get("OPENAI_API_KEY") + +# Initialize the language model +llm = OpenAIChat( + temperature=0.5, + openai_api_key=api_key, +) + + +## Initialize the workflow +flow = Flow(llm=llm, max_loops=1, dashboard=True) +flow2 = Flow(llm=llm, max_loops=1, dashboard=True) +flow3 = Flow(llm=llm, max_loops=1, dashboard=True) + + +swarm = MultiAgentCollaboration( + agents=[flow, flow2, flow3], + max_iters=4, +) + +swarm.run("Generate a 10,000 word blog on health and wellness.") diff --git a/playground/demos/autotemp/autotemp.py b/playground/demos/autotemp/autotemp.py index ed38a621..ab521606 100644 --- a/playground/demos/autotemp/autotemp.py +++ b/playground/demos/autotemp/autotemp.py @@ -1,19 +1,24 @@ import re from swarms.models.openai_models import OpenAIChat + class AutoTemp: """ AutoTemp is a tool for automatically selecting the best temperature setting for a given task. It generates responses at different temperatures, evaluates them, and ranks them based on quality. """ - def __init__(self, api_key, default_temp=0.0, alt_temps=None, auto_select=True, max_workers=6): + def __init__( + self, api_key, default_temp=0.0, alt_temps=None, auto_select=True, max_workers=6 + ): self.api_key = api_key self.default_temp = default_temp self.alt_temps = alt_temps if alt_temps else [0.4, 0.6, 0.8, 1.0, 1.2, 1.4] self.auto_select = auto_select self.max_workers = max_workers - self.llm = OpenAIChat(openai_api_key=self.api_key, temperature=self.default_temp) + self.llm = OpenAIChat( + openai_api_key=self.api_key, temperature=self.default_temp + ) def evaluate_output(self, output, temperature): print(f"Evaluating output at temperature {temperature}...") @@ -34,12 +39,16 @@ class AutoTemp: --- """ score_text = self.llm(eval_prompt, temperature=0.5) - score_match = re.search(r'\b\d+(\.\d)?\b', score_text) + score_match = re.search(r"\b\d+(\.\d)?\b", score_text) return round(float(score_match.group()), 1) if score_match else 0.0 def run(self, prompt, temperature_string): print("Starting generation process...") - temperature_list = [float(temp.strip()) for temp in temperature_string.split(',') if temp.strip()] + temperature_list = [ + float(temp.strip()) + for temp in temperature_string.split(",") + if temp.strip() + ] outputs = {} scores = {} for temp in temperature_list: diff --git a/playground/demos/nutrition/nutrition.py b/playground/demos/nutrition/nutrition.py index 41ff2995..c263f2cd 100644 --- a/playground/demos/nutrition/nutrition.py +++ b/playground/demos/nutrition/nutrition.py @@ -11,12 +11,16 @@ openai_api_key = os.getenv("OPENAI_API_KEY") # Define prompts for various tasks MEAL_PLAN_PROMPT = "Based on the following user preferences: dietary restrictions as vegetarian, preferred cuisines as Italian and Indian, a total caloric intake of around 2000 calories per day, and an exclusion of legumes, create a detailed weekly meal plan. Include a variety of meals for breakfast, lunch, dinner, and optional snacks." -IMAGE_ANALYSIS_PROMPT = "Identify the items in this fridge, including their quantities and condition." +IMAGE_ANALYSIS_PROMPT = ( + "Identify the items in this fridge, including their quantities and condition." +) + # Function to encode image to base64 def encode_image(image_path): with open(image_path, "rb") as image_file: - return base64.b64encode(image_file.read()).decode('utf-8') + return base64.b64encode(image_file.read()).decode("utf-8") + # Initialize Language Model (LLM) llm = OpenAIChat( @@ -24,12 +28,13 @@ llm = OpenAIChat( max_tokens=3000, ) + # Function to handle vision tasks def create_vision_agent(image_path): base64_image = encode_image(image_path) headers = { "Content-Type": "application/json", - "Authorization": f"Bearer {openai_api_key}" + "Authorization": f"Bearer {openai_api_key}", } payload = { "model": "gpt-4-vision-preview", @@ -38,28 +43,39 @@ def create_vision_agent(image_path): "role": "user", "content": [ {"type": "text", "text": IMAGE_ANALYSIS_PROMPT}, - {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} - ] + { + "type": "image_url", + "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, + }, + ], } ], - "max_tokens": 300 + "max_tokens": 300, } - response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) + response = requests.post( + "https://api.openai.com/v1/chat/completions", headers=headers, json=payload + ) return response.json() + # Function to generate an integrated shopping list considering meal plan and fridge contents -def generate_integrated_shopping_list(meal_plan_output, image_analysis, user_preferences): +def generate_integrated_shopping_list( + meal_plan_output, image_analysis, user_preferences +): # Prepare the prompt for the LLM - fridge_contents = image_analysis['choices'][0]['message']['content'] - prompt = (f"Based on this meal plan: {meal_plan_output}, " - f"and the following items in the fridge: {fridge_contents}, " - f"considering dietary preferences as vegetarian with a preference for Italian and Indian cuisines, " - f"generate a comprehensive shopping list that includes only the items needed.") + fridge_contents = image_analysis["choices"][0]["message"]["content"] + prompt = ( + f"Based on this meal plan: {meal_plan_output}, " + f"and the following items in the fridge: {fridge_contents}, " + f"considering dietary preferences as vegetarian with a preference for Italian and Indian cuisines, " + f"generate a comprehensive shopping list that includes only the items needed." + ) # Send the prompt to the LLM and return the response response = llm(prompt) return response # assuming the response is a string + # Define agent for meal planning meal_plan_agent = Flow( llm=llm, @@ -74,19 +90,19 @@ user_preferences = { "dietary_restrictions": "vegetarian", "preferred_cuisines": ["Italian", "Indian"], "caloric_intake": 2000, - "other notes": "Doesn't eat legumes" + "other notes": "Doesn't eat legumes", } # Generate Meal Plan -meal_plan_output = meal_plan_agent.run( - f"Generate a meal plan: {user_preferences}" -) +meal_plan_output = meal_plan_agent.run(f"Generate a meal plan: {user_preferences}") # Vision Agent - Analyze an Image image_analysis_output = create_vision_agent("full_fridge.jpg") # Generate Integrated Shopping List -integrated_shopping_list = generate_integrated_shopping_list(meal_plan_output, image_analysis_output, user_preferences) +integrated_shopping_list = generate_integrated_shopping_list( + meal_plan_output, image_analysis_output, user_preferences +) # Print and save the outputs print("Meal Plan:", meal_plan_output) diff --git a/swarms/swarms/multi_agent_collab.py b/swarms/swarms/multi_agent_collab.py index ce5a0dd6..85d9955b 100644 --- a/swarms/swarms/multi_agent_collab.py +++ b/swarms/swarms/multi_agent_collab.py @@ -23,22 +23,6 @@ bid_parser = BidOutputParser( ) -def select_next_speaker_director(step: int, agents, director) -> int: - # if the step if even => director - # => director selects next speaker - if step % 2 == 1: - idx = 0 - else: - idx = director.select_next_speaker() + 1 - return idx - - -# Define a selection function -def select_speaker_round_table(step: int, agents) -> int: - # This function selects the speaker in a round-robin fashion - return step % len(agents) - - # main class MultiAgentCollaboration: """ @@ -49,6 +33,15 @@ class MultiAgentCollaboration: selection_function (callable): The function that selects the next speaker. Defaults to select_next_speaker. max_iters (int): The maximum number of iterations. Defaults to 10. + autosave (bool): Whether to autosave the state of all agents. Defaults to True. + saved_file_path_name (str): The path to the saved file. Defaults to + "multi_agent_collab.json". + stopping_token (str): The token that stops the collaboration. Defaults to + "". + results (list): The results of the collaboration. Defaults to []. + logger (logging.Logger): The logger. Defaults to logger. + logging (bool): Whether to log the collaboration. Defaults to True. + Methods: reset: Resets the state of all agents. @@ -62,18 +55,40 @@ class MultiAgentCollaboration: Usage: - >>> from swarms.models import MultiAgentCollaboration - >>> from swarms.models import Flow >>> from swarms.models import OpenAIChat - >>> from swarms.models import Anthropic - + >>> from swarms.structs import Flow + >>> from swarms.swarms.multi_agent_collab import MultiAgentCollaboration + >>> + >>> # Initialize the language model + >>> llm = OpenAIChat( + >>> temperature=0.5, + >>> ) + >>> + >>> + >>> ## Initialize the workflow + >>> flow = Flow(llm=llm, max_loops=1, dashboard=True) + >>> + >>> # Run the workflow on a task + >>> out = flow.run("Generate a 10,000 word blog on health and wellness.") + >>> + >>> # Initialize the multi-agent collaboration + >>> swarm = MultiAgentCollaboration( + >>> agents=[flow], + >>> max_iters=4, + >>> ) + >>> + >>> # Run the multi-agent collaboration + >>> swarm.run() + >>> + >>> # Format the results of the multi-agent collaboration + >>> swarm.format_results(swarm.results) """ def __init__( self, agents: List[Flow], - selection_function: callable = select_next_speaker_director, + selection_function: callable = None, max_iters: int = 10, autosave: bool = True, saved_file_path_name: str = "multi_agent_collab.json", @@ -165,7 +180,7 @@ class MultiAgentCollaboration: ), retry_error_callback=lambda retry_state: 0, ) - def run(self): + def run_director(self, task: str): """Runs the multi-agent collaboration.""" n = 0 self.reset() @@ -179,6 +194,74 @@ class MultiAgentCollaboration: print("\n") n += 1 + def select_next_speaker_roundtable(self, step: int, agents: List[Flow]) -> int: + """Selects the next speaker.""" + return step % len(agents) + + def select_next_speaker_director(step: int, agents: List[Flow], director) -> int: + # if the step if even => director + # => director selects next speaker + if step % 2 == 1: + idx = 0 + else: + idx = director.select_next_speaker() + 1 + return idx + + # def run(self, task: str): + # """Runs the multi-agent collaboration.""" + # for step in range(self.max_iters): + # speaker_idx = self.select_next_speaker_roundtable(step, self.agents) + # speaker = self.agents[speaker_idx] + # result = speaker.run(task) + # self.results.append({"agent": speaker, "response": result}) + + # if self.autosave: + # self.save_state() + # if result == self.stopping_token: + # break + # return self.results + + # def run(self, task: str): + # for _ in range(self.max_iters): + # for step, agent, in enumerate(self.agents): + # result = agent.run(task) + # self.results.append({"agent": agent, "response": result}) + # if self.autosave: + # self.save_state() + # if result == self.stopping_token: + # break + + # return self.results + + # def run(self, task: str): + # conversation = task + # for _ in range(self.max_iters): + # for agent in self.agents: + # result = agent.run(conversation) + # self.results.append({"agent": agent, "response": result}) + # conversation = result + + # if self.autosave: + # self.save() + # if result == self.stopping_token: + # break + # return self.results + + def run(self, task: str): + conversation = task + for _ in range(self.max_iters): + for agent in self.agents: + result = agent.run(conversation) + self.results.append({"agent": agent, "response": result}) + conversation += result + + if self.autosave: + self.save_state() + if result == self.stopping_token: + break + + return self.results + def format_results(self, results): """Formats the results of the run method""" formatted_results = "\n".join(