From 6cdf3d84c8968d08af41796597d4658428826dc2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=8E=8B=E7=A5=A5=E5=AE=87?= <625024108@qq.com> Date: Thu, 31 Jul 2025 10:07:18 +0800 Subject: [PATCH] update --- examples/utils/misc/conversation_test.py | 103 +++++++++++++++++++---- 1 file changed, 86 insertions(+), 17 deletions(-) diff --git a/examples/utils/misc/conversation_test.py b/examples/utils/misc/conversation_test.py index ec8a0534..ae34692b 100644 --- a/examples/utils/misc/conversation_test.py +++ b/examples/utils/misc/conversation_test.py @@ -1,22 +1,91 @@ from swarms.structs.conversation import Conversation +from dotenv import load_dotenv -# Create a conversation object -conversation = Conversation(backend="in-memory") -# Add a message to the conversation -conversation.add( - role="user", content="Hello, how are you?", category="input" -) +# Load environment variables from .env file +load_dotenv() -# Add a message to the conversation -conversation.add( - role="assistant", - content="I'm good, thank you!", - category="output", -) - -print( - conversation.export_and_count_categories( - tokenizer_model_name="claude-3-5-sonnet-20240620" +def demonstrate_truncation(): + # Using a smaller context length to clearly see the truncation effect + context_length = 25 + print(f"Creating a conversation instance with context length {context_length}") + + # Using Claude model as the tokenizer model + conversation = Conversation( + context_length=context_length, + tokenizer_model_name="claude-3-7-sonnet-20250219" ) -) + + # Adding first message - short message + short_message = "Hello, I am a user." + print(f"\nAdding short message: '{short_message}'") + conversation.add("user", short_message) + + # Display token count + from swarms.utils.litellm_tokenizer import count_tokens + tokens = count_tokens(short_message, conversation.tokenizer_model_name) + print(f"Short message token count: {tokens}") + + # Adding second message - long message, should be truncated + long_message = "I have a question about artificial intelligence. I want to understand how large language models handle long texts, especially under token constraints. This issue is important because it relates to the model's practicality and effectiveness. I hope to get a detailed answer that helps me understand this complex technical problem." + print(f"\nAdding long message:\n'{long_message}'") + conversation.add("assistant", long_message) + + # Display long message token count + tokens = count_tokens(long_message, conversation.tokenizer_model_name) + print(f"Long message token count: {tokens}") + + # Display current conversation total token count + total_tokens = sum(count_tokens(msg["content"], conversation.tokenizer_model_name) + for msg in conversation.conversation_history) + print(f"Total token count before truncation: {total_tokens}") + + # Print the complete conversation history before truncation + print("\nConversation history before truncation:") + for i, msg in enumerate(conversation.conversation_history): + print(f"[{i}] {msg['role']}: {msg['content']}") + print(f" Token count: {count_tokens(msg['content'], conversation.tokenizer_model_name)}") + + # Execute truncation + print("\nExecuting truncation...") + conversation.truncate_memory_with_tokenizer() + + # Print conversation history after truncation + print("\nConversation history after truncation:") + for i, msg in enumerate(conversation.conversation_history): + print(f"[{i}] {msg['role']}: {msg['content']}") + print(f" Token count: {count_tokens(msg['content'], conversation.tokenizer_model_name)}") + + # Display total token count after truncation + total_tokens = sum(count_tokens(msg["content"], conversation.tokenizer_model_name) + for msg in conversation.conversation_history) + print(f"\nTotal token count after truncation: {total_tokens}") + print(f"Context length limit: {context_length}") + + # Verify if successfully truncated below the limit + if total_tokens <= context_length: + print("✅ Success: Total token count is now less than or equal to context length limit") + else: + print("❌ Failure: Total token count still exceeds context length limit") + + # Test sentence boundary truncation + print("\n\nTesting sentence boundary truncation:") + sentence_test = Conversation(context_length=15, tokenizer_model_name="claude-3-opus-20240229") + test_text = "This is the first sentence. This is the second very long sentence that contains a lot of content. This is the third sentence." + print(f"Original text: '{test_text}'") + print(f"Original token count: {count_tokens(test_text, sentence_test.tokenizer_model_name)}") + + # Using binary search for truncation + truncated = sentence_test._binary_search_truncate(test_text, 10, sentence_test.tokenizer_model_name) + print(f"Truncated text: '{truncated}'") + print(f"Truncated token count: {count_tokens(truncated, sentence_test.tokenizer_model_name)}") + + # Check if truncated at period + if truncated.endswith("."): + print("✅ Success: Text was truncated at sentence boundary") + else: + print("Note: Text was not truncated at sentence boundary") + + +if __name__ == "__main__": + demonstrate_truncation() \ No newline at end of file