diff --git a/docs/swarms/index.md b/docs/swarms/index.md index b052b6ce..57092588 100644 --- a/docs/swarms/index.md +++ b/docs/swarms/index.md @@ -54,14 +54,8 @@ agent = Agent( # dynamic_temperature=False, # Set to 'True' for dynamic temperature handling. ) -# out = agent.load_state("flow_state.json") -# temp = agent.dynamic_temperature() -# filter = agent.add_response_filter("Trump") +# Load the agent with a task out = agent.run("Generate a 10,000 word blog on health and wellness.") -# out = agent.validate_response(out) -# out = agent.analyze_feedback(out) -# out = agent.print_history_and_memory() -# # out = agent.save_state("flow_state.json") # print(out) ``` diff --git a/playground/structs/agent_basic_customize.py b/playground/structs/agent_basic_customize.py index 8ff45802..64169391 100644 --- a/playground/structs/agent_basic_customize.py +++ b/playground/structs/agent_basic_customize.py @@ -24,12 +24,6 @@ agent = Agent( # dynamic_temperature=False, # Set to 'True' for dynamic temperature handling. ) -# out = agent.load_state("flow_state.json") -# temp = agent.dynamic_temperature() -# filter = agent.add_response_filter("Trump") +# Run the workflow on a task out = agent.run("Generate a 10,000 word blog on health and wellness.") -# out = agent.validate_response(out) -# out = agent.analyze_feedback(out) -# out = agent.print_history_and_memory() -# # out = agent.save_state("flow_state.json") -# print(out) +print(out) \ No newline at end of file diff --git a/playground/structs/build_your_own_swarm.py b/playground/structs/build_your_own_swarm.py index a809221a..73cb910c 100644 --- a/playground/structs/build_your_own_swarm.py +++ b/playground/structs/build_your_own_swarm.py @@ -16,9 +16,7 @@ class MySwarm(BaseSwarm): # Add your custom swarm to the AutoSwarmRouter -router = AutoSwarmRouter( - swarms=[MySwarm] -) +router = AutoSwarmRouter(swarms=[MySwarm]) # Create an AutoSwarm instance diff --git a/playground/swarms_example.ipynb b/playground/swarms_example.ipynb index cdd2ebb7..7c854d35 100644 --- a/playground/swarms_example.ipynb +++ b/playground/swarms_example.ipynb @@ -1,21 +1,4 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "private_outputs": true, - "provenance": [], - "gpuType": "T4" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU" - }, "cells": [ { "cell_type": "code", @@ -30,16 +13,21 @@ }, { "cell_type": "markdown", + "metadata": { + "id": "-d9k3egzgp2_" + }, "source": [ "Copied from the repo, example.py\n", "Enter your OpenAI API key here." - ], - "metadata": { - "id": "-d9k3egzgp2_" - } + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "K1Sbq4UkgVjk" + }, + "outputs": [], "source": [ "from swarms.models import OpenAIChat\n", "from swarms.structs import Agent\n", @@ -76,37 +64,45 @@ " \"Generate a 10,000 word blog on mental clarity and the benefits\"\n", " \" of meditation.\"\n", ")\n", - "# out = agent.validate_response(out)\n", - "# out = agent.analyze_feedback(out)\n", - "# out = agent.print_history_and_memory()\n", - "# # out = agent.save_state(\"flow_state.json\")\n", - "# print(out)" - ], - "metadata": { - "id": "K1Sbq4UkgVjk" - }, - "execution_count": null, - "outputs": [] + "print(out)" + ] }, { "cell_type": "markdown", - "source": [ - "Look at the log, which may be empty." - ], "metadata": { "id": "6VtgQ0F4BNc-" - } + }, + "source": [ + "Look at the log, which may be empty." + ] }, { "cell_type": "code", - "source": [ - "!cat errors.txt" - ], + "execution_count": null, "metadata": { "id": "RqL5LL3xBLWR" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "!cat errors.txt" + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "private_outputs": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/swarms/structs/rearrange.py b/swarms/structs/rearrange.py index e69de29b..19fac057 100644 --- a/swarms/structs/rearrange.py +++ b/swarms/structs/rearrange.py @@ -0,0 +1,140 @@ +import logging +from collections import defaultdict +from swarms.utils.loguru_logger import logger +from swarms.structs.agent import Agent +from typing import Sequence, Callable, List, Dict, Union + + +class AgentRearrange: + def __init__( + self, + agents: Sequence[Agent] = None, + verbose: bool = False, + custom_prompt: str = None, + callbacks: Sequence[Callable] = None, + *args, + **kwargs, + ): + """ + Initialize with a dictionary of Agent objects keyed by their names. + """ + if not all(isinstance(agent, Agent) for agent in agents): + raise ValueError( + "All elements must be instances of the Agent class." + ) + self.agents = agents + self.verbose = verbose + self.custom_prompt = custom_prompt + self.callbacks = callbacks + self.flows = defaultdict(list) + + def parse_pattern(self, pattern: str): + """ + Parse the interaction pattern and setup task flows. + + Pattern format: "a -> b, c -> d, e -> f" + """ + try: + for flow in pattern.split(","): + parts = [part.strip() for part in flow.split("->")] + if len(parts) != 2: + logging.error( + f"Invalid flow pattern: {flow}. Each flow" + " must have exactly one '->'." + ) + return False + + source_name, destinations_str = parts + source = self.find_agent_by_name(source_name) + if source is None: + logging.error( + f"Source agent {source_name} not found." + ) + return False + + destinations_names = destinations_str.split() + for dest_name in destinations_names: + dest = self.find_agent_by_name(dest_name) + if dest is None: + logging.error( + f"Destination agent {dest_name} not" + " found." + ) + return False + self.flows[source.agent_name].append( + dest.agent_name + ) + return True + except Exception as e: + logger.error(f"Error: {e}") + raise e + + def self_find_agen_by_name(self, name: str): + for agent in self.agents: + if agent.agent_name == name: + return agent + return None + + def __call__( + self, + agents: Sequence[Agent] = None, + pattern: str = None, + task: str = None, + *args, + **kwargs, + ): + """ + Execute the task based on the specified pattern. + """ + try: + if agents: + self.flows.clear() # Reset previous flows + if not self.parse_pattern(pattern): + return # Pattern parsing failed + + for source, destinations in self.flows.items(): + for dest in destinations: + # agents[dest].runt(f"{task} (from {source})") + dest_agent = self.self_find_agen_by_name(dest) + + if self.custom_prompt: + dest_agent.run( + f"{task} {self.custom_prompt}" + ) + else: + dest_agent.run(f"{task} (from {source})") + + else: + self.flows.clear() # Reset previous flows + if not self.parse_pattern(pattern): + return # Pattern parsing failed + + for source, destinations in self.flows.items(): + for dest in destinations: + dest_agent = self.self_find_agen_by_name(dest) + if self.custom_prompt: + dest_agent.run( + f"{task} {self.custom_prompt}" + ) + else: + dest_agent.run(f"{task} (from {source})") + except Exception as e: + logger.error( + f"Error: {e} try again by providing agents and" + " pattern" + ) + raise e + + +# # Example usage +# try: +# agents = [ +# Agent(name=f"b{i}") for i in range(1, 4) +# ] # Creating agents b1, b2, b3 +# agents.append(Agent(name="d")) # Adding agent d +# rearranger = Rearrange(agents) + +# # Specifying a complex pattern for task execution +# rearranger.execute("d -> b1 b2 b3, b2 -> b3", "Analyze data") +# except ValueError as e: +# logging.error(e)