From 6f4d449e027abf642490a51e0a25a7abbac818a2 Mon Sep 17 00:00:00 2001 From: Kye Date: Wed, 20 Sep 2023 20:12:26 -0400 Subject: [PATCH] clean up --- swarms/swarms/notes.md | 263 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 263 insertions(+) create mode 100644 swarms/swarms/notes.md diff --git a/swarms/swarms/notes.md b/swarms/swarms/notes.md new file mode 100644 index 00000000..8b367f58 --- /dev/null +++ b/swarms/swarms/notes.md @@ -0,0 +1,263 @@ +# 10 improvements to the `Orchestrator` class to enable more flexibility and usability: + +1. Dynamic Agent Creation: Allow the number of agents to be specified at runtime, rather than being fixed at the time of instantiation. + +``` +def add_agents(self, num_agents: int): + for _ in range(num_agents): + self.agents.put(self.agent()) + self.executor = ThreadPoolExecutor(max_workers=self.agents.qsize()) +``` + +1. Agent Removal: Allow agents to be removed from the pool. + +``` +def remove_agents(self, num_agents: int): + for _ in range(num_agents): + if not self.agents.empty(): + self.agents.get() + self.executor = ThreadPoolExecutor(max_workers=self.agents.qsize()) +``` + +1. Task Prioritization: Allow tasks to be prioritized. + +``` +from queue import PriorityQueue + +def __init__(self, agent, agent_list: List[Any], task_queue: List[Any], collection_name: str = "swarm", api_key: str = None, model_name: str = None): + # ... + self.task_queue = PriorityQueue() + # ... + +def add_task(self, task: Dict[str, Any], priority: int = 0): + self.task_queue.put((priority, task)) +``` + +1. Task Status: Track the status of tasks. + +``` +from enum import Enum + +class TaskStatus(Enum): + QUEUED = 1 + RUNNING = 2 + COMPLETED = 3 + FAILED = 4 + +# In assign_task method +self.current_tasks[id(task)] = TaskStatus.RUNNING +# On successful completion +self.current_tasks[id(task)] = TaskStatus.COMPLETED +# On failure +self.current_tasks[id(task)] = TaskStatus.FAILED +``` + +1. Result Retrieval: Allow results to be retrieved by task ID. + +``` +def retrieve_result(self, task_id: int) -> Any: + return self.collection.query(query_texts=[str(task_id)], n_results=1) +``` + +1. Batch Task Assignment: Allow multiple tasks to be assigned at once. + +``` +def assign_tasks(self, tasks: List[Dict[str, Any]]): + for task in tasks: + self.task_queue.put(task) +``` + +1. Error Handling: Improve error handling by re-queuing failed tasks. + +``` +# In assign_task method +except Exception as error: + logging.error(f"Failed to process task {id(task)} by agent {id(agent)}. Error: {error}") + self.task_queue.put(task) +``` + +1. Agent Status: Track the status of agents (e.g., idle, working). + +``` +self.agent_status = {id(agent): "idle" for agent in self.agents.queue} + +# In assign_task method +self.agent_status[id(agent)] = "working" +# On task completion +self.agent_status[id(agent)] = "idle" +``` + +1. Custom Embedding Function: Allow a custom embedding function to be used. + +``` +def __init__(self, agent, agent_list: List[Any], task_queue: List[Any], collection_name: str = "swarm", api_key: str = None, model_name: str = None, embed_func=None): + # ... + self.embed_func = embed_func if embed_func else self.embed + # ... + +def embed(self, input, api_key, model_name): + # ... + embedding = self.embed_func(input) + # ... +``` + +1. Agent Communication: Allow agents to communicate with each other. + +``` +def communicate(self, sender_id: int, receiver_id: int, message: str): + message_vector = self.embed_func(message) + self.collection.add(embeddings=[message_vector], documents=[message], ids=[f"{sender_id}_to_{receiver_id}"]) +``` + + + +``` +import logging +import queue +import threading +from concurrent.futures import ThreadPoolExecutor +from typing import Any, Dict, List +from enum import Enum + +import chromadb +from chromadb.utils import embedding_functions + +class TaskStatus(Enum): + QUEUED = 1 + RUNNING = 2 + COMPLETED = 3 + FAILED = 4 + +class Orchestrator: + def __init__(self, agent, agent_list: List[Any], task_queue: List[Any], collection_name: str = "swarm", api_key: str = None, model_name: str = None, embed_func=None): + self.agent = agent + self.agents = queue.Queue() + self.agent_status = {} + + self.add_agents(agent_list) + + self.task_queue = queue.PriorityQueue() + + self.chroma_client = chromadb.Client() + + self.collection = self.chroma_client.create_collection(name = collection_name) + + self.current_tasks = {} + + self.lock = threading.Lock() + self.condition = threading.Condition(self.lock) + + self.embed_func = embed_func if embed_func else self.embed + + def add_agents(self, num_agents: int): + for _ in range(num_agents): + agent = self.agent() + self.agents.put(agent) + self.agent_status[id(agent)] = "idle" + self.executor = ThreadPoolExecutor(max_workers=self.agents.qsize()) + + def remove_agents(self, num_agents: int): + for _ in range(num_agents): + if not self.agents.empty(): + agent = self.agents.get() + del self.agent_status[id(agent)] + self.executor = ThreadPoolExecutor(max_workers=self.agents.qsize()) + + def assign_task(self, agent_id: int, task: Dict[str, Any]) -> None: + while True: + with self.condition: + while not self.task_queue: + self.condition.wait() + agent = self.agents.get() + task = self.task_queue.get() + + try: + self.agent_status[id(agent)] = "working" + result = self.worker.run(task["content"]) + + vector_representation = self.embed_func(result) + + self.collection.add(embeddings=[vector_representation], documents=[str(id(task))], ids=[str(id(task))]) + + logging.info(f"Task {id(str)} has been processed by agent {id(agent)} with") + self.current_tasks[id(task)] = TaskStatus.COMPLETED + + except Exception as error: + logging.error(f"Failed to process task {id(task)} by agent {id(agent)}. Error: {error}") + self.current_tasks[id(task)] = TaskStatus.FAILED + self.task_queue.put(task) + finally: + with self.condition: + self.agent_status[id(agent)] = "idle" + self.agents.put(agent) + self.condition.notify() + + def embed(self, input): + openai = embedding_functions.OpenAIEmbeddingFunction(api_key=self.api_key, model_name=self.model_name) + embedding = openai(input) + return embedding + + def retrieve_results(self, agent_id: int) -> Any: + try: + results = self.collection.query(query_texts=[str(agent_id)], n_results=10) + return results + except Exception as e: + logging.error(f"Failed to retrieve results from agent {id(agent_id)}. Error {e}") + raise + + def update_vector_db(self, data) -> None: + try: + self.collection.add(embeddings=[data["vector"]], documents=[str(data["task_id"])], ids=[str(data["task_id"])]) + except Exception as e: + logging.error(f"Failed to update the vector database. Error: {e}") + raise + + def get_vector_db(self): + return self.collection + + def append_to_db(self, result: str): + try: + self.collection.add(documents=[result], ids=[str(id(result))]) + except Exception as e: + logging.error(f"Failed to append the agent output to database. Error: {e}") + raise + + def run(self, objective:str): + if not objective or not isinstance(objective, str): + logging.error("Invalid objective") + raise ValueError("A valid objective is required") + + try: + self.task_queue.put((0, objective)) + + results = [self.assign_task(agent_id, task) for agent_id, task in zip(range(len(self.agents)), self.task_queue)] + + for result in results: + self.append_to_db(result) + + logging.info(f"Successfully ran swarms with results: {results}") + return results + except Exception as e: + logging.error(f"An error occured in swarm: {e}") + return None + + def chat(self, sender_id: int, receiver_id: int, message: str): + message_vector = self.embed_func(message) + + # Store the message in the vector database + self.collection.add(embeddings=[message_vector], documents=[message], ids=[f"{sender_id}_to_{receiver_id}"]) + + def assign_tasks(self, tasks: List[Dict[str, Any]], priority: int = 0): + for task in tasks: + self.task_queue.put((priority, task)) + + def retrieve_result(self, task_id: int) -> Any: + try: + result = self.collection.query(query_texts=[str(task_id)], n_results=1) + return result + except Exception as e: + logging.error(f"Failed to retrieve result for task {task_id}. Error: {e}") + raise +``` + +With these improvements, the `Orchestrator` class now supports dynamic agent creation and removal, task prioritization, task status tracking, result retrieval by task ID, batch task assignment, improved error handling, agent status tracking, custom embedding functions, and agent communication. This should make the class more flexible and easier to use when creating swarms of LLMs. \ No newline at end of file