commit
7958fb01e1
@ -0,0 +1,266 @@
|
||||
import discord
|
||||
from discord.ext import commands
|
||||
import asyncio
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from invoke import Executor
|
||||
|
||||
|
||||
class BotCommands(commands.Cog):
|
||||
def __init__(self, bot):
|
||||
self.bot = bot
|
||||
|
||||
@commands.command()
|
||||
async def greet(self, ctx):
|
||||
"""greets the user."""
|
||||
await ctx.send(f"hello, {ctx.author.name}!")
|
||||
|
||||
@commands.command()
|
||||
async def help_me(self, ctx):
|
||||
"""provides a list of commands and their descriptions."""
|
||||
help_text = """
|
||||
- `!greet`: greets you.
|
||||
- `!run [description]`: generates a video based on the given description.
|
||||
- `!help_me`: provides this list of commands and their descriptions.
|
||||
"""
|
||||
await ctx.send(help_text)
|
||||
|
||||
@commands.command()
|
||||
async def join(self, ctx):
|
||||
"""joins the voice channel that the user is in."""
|
||||
if ctx.author.voice:
|
||||
channel = ctx.author.voice.channel
|
||||
await channel.connect()
|
||||
else:
|
||||
await ctx.send("you are not in a voice channel!")
|
||||
|
||||
@commands.command()
|
||||
async def leave(self, ctx):
|
||||
"""leaves the voice channel that the self.bot is in."""
|
||||
if ctx.voice_client:
|
||||
await ctx.voice_client.disconnect()
|
||||
else:
|
||||
await ctx.send("i am not in a voice channel!")
|
||||
|
||||
@commands.command()
|
||||
async def listen(self, ctx):
|
||||
"""starts listening to voice in the voice channel that the bot is in."""
|
||||
if ctx.voice_client:
|
||||
# create a wavesink to record the audio
|
||||
sink = discord.sinks.wavesink("audio.wav")
|
||||
# start recording
|
||||
ctx.voice_client.start_recording(sink)
|
||||
await ctx.send("started listening and recording.")
|
||||
else:
|
||||
await ctx.send("i am not in a voice channel!")
|
||||
|
||||
@commands.command()
|
||||
async def generate_image(self, ctx, *, prompt: str = None, imggen: str = None):
|
||||
"""generates images based on the provided prompt"""
|
||||
await ctx.send(f"generating images for prompt: `{prompt}`...")
|
||||
loop = asyncio.get_event_loop()
|
||||
|
||||
# initialize a future object for the dalle instance
|
||||
future = loop.run_in_executor(Executor, imggen, prompt)
|
||||
|
||||
try:
|
||||
# wait for the dalle request to complete, with a timeout of 60 seconds
|
||||
await asyncio.wait_for(future, timeout=300)
|
||||
print("done generating images!")
|
||||
|
||||
# list all files in the save_directory
|
||||
all_files = [
|
||||
os.path.join(root, file)
|
||||
for root, _, files in os.walk(os.environ("SAVE_DIRECTORY"))
|
||||
for file in files
|
||||
]
|
||||
|
||||
# sort files by their creation time (latest first)
|
||||
sorted_files = sorted(all_files, key=os.path.getctime, reverse=True)
|
||||
|
||||
# get the 4 most recent files
|
||||
latest_files = sorted_files[:4]
|
||||
print(f"sending {len(latest_files)} images to discord...")
|
||||
|
||||
# send all the latest images in a single message
|
||||
# storage_service = os.environ("STORAGE_SERVICE") # "https://storage.googleapis.com/your-bucket-name/
|
||||
# await ctx.send(files=[storage_service.upload(filepath) for filepath in latest_files])
|
||||
|
||||
except asyncio.timeouterror:
|
||||
await ctx.send(
|
||||
"the request took too long! it might have been censored or you're out of boosts. please try entering the prompt again."
|
||||
)
|
||||
except Exception as e:
|
||||
await ctx.send(f"an error occurred: {e}")
|
||||
|
||||
@commands.command()
|
||||
async def send_text(self, ctx, *, text: str, use_agent: bool = True):
|
||||
"""sends the provided text to the worker and returns the response"""
|
||||
if use_agent:
|
||||
response = self.bot.agent.run(text)
|
||||
else:
|
||||
response = self.bot.llm(text)
|
||||
await ctx.send(response)
|
||||
|
||||
@commands.Cog.listener()
|
||||
async def on_ready(self):
|
||||
print(f"we have logged in as {self.bot.user}")
|
||||
|
||||
@commands.Cog.listener()
|
||||
async def on_command_error(self, ctx, error):
|
||||
"""handles errors that occur while executing commands."""
|
||||
if isinstance(error, commands.CommandNotFound):
|
||||
await ctx.send("that command does not exist!")
|
||||
else:
|
||||
await ctx.send(f"an error occurred: {error}")
|
||||
|
||||
|
||||
|
||||
class Bot:
|
||||
def __init__(self, llm, command_prefix="!"):
|
||||
load_dotenv()
|
||||
|
||||
intents = discord.Intents.default()
|
||||
intents.messages = True
|
||||
intents.guilds = True
|
||||
intents.voice_states = True
|
||||
intents.message_content = True
|
||||
|
||||
# setup
|
||||
self.llm = llm
|
||||
self.bot = commands.Bot(command_prefix="!", intents=intents)
|
||||
self.discord_token = os.getenv("DISCORD_TOKEN")
|
||||
self.storage_service = os.getenv("STORAGE_SERVICE")
|
||||
|
||||
# Load the BotCommands cog
|
||||
self.bot.add_cog(BotCommands(self.bot))
|
||||
|
||||
def run(self):
|
||||
self.bot.run(self.discord_token)
|
||||
self.agent = agent
|
||||
self.bot = commands.bot(command_prefix="!", intents=intents)
|
||||
self.discord_token = os.getenv("DISCORD_TOKEN")
|
||||
self.storage_service = os.getenv("STORAGE_SERVICE")
|
||||
|
||||
@self.bot.event
|
||||
async def on_ready():
|
||||
print(f"we have logged in as {self.bot.user}")
|
||||
|
||||
@self.bot.command()
|
||||
async def greet(ctx):
|
||||
"""greets the user."""
|
||||
await ctx.send(f"hello, {ctx.author.name}!")
|
||||
|
||||
@self.bot.command()
|
||||
async def help_me(ctx):
|
||||
"""provides a list of commands and their descriptions."""
|
||||
help_text = """
|
||||
- `!greet`: greets you.
|
||||
- `!run [description]`: generates a video based on the given description.
|
||||
- `!help_me`: provides this list of commands and their descriptions.
|
||||
"""
|
||||
await ctx.send(help_text)
|
||||
|
||||
@self.bot.event
|
||||
async def on_command_error(ctx, error):
|
||||
"""handles errors that occur while executing commands."""
|
||||
if isinstance(error, commands.commandnotfound):
|
||||
await ctx.send("that command does not exist!")
|
||||
else:
|
||||
await ctx.send(f"an error occurred: {error}")
|
||||
|
||||
@self.bot.command()
|
||||
async def join(ctx):
|
||||
"""joins the voice channel that the user is in."""
|
||||
if ctx.author.voice:
|
||||
channel = ctx.author.voice.channel
|
||||
await channel.connect()
|
||||
else:
|
||||
await ctx.send("you are not in a voice channel!")
|
||||
|
||||
@self.bot.command()
|
||||
async def leave(ctx):
|
||||
"""leaves the voice channel that the self.bot is in."""
|
||||
if ctx.voice_client:
|
||||
await ctx.voice_client.disconnect()
|
||||
else:
|
||||
await ctx.send("i am not in a voice channel!")
|
||||
|
||||
# voice_transcription.py
|
||||
@self.bot.command()
|
||||
async def listen(ctx):
|
||||
"""starts listening to voice in the voice channel that the bot is in."""
|
||||
if ctx.voice_client:
|
||||
# create a wavesink to record the audio
|
||||
sink = discord.sinks.wavesink("audio.wav")
|
||||
# start recording
|
||||
ctx.voice_client.start_recording(sink)
|
||||
await ctx.send("started listening and recording.")
|
||||
else:
|
||||
await ctx.send("i am not in a voice channel!")
|
||||
|
||||
# image_generator.py
|
||||
@self.bot.command()
|
||||
async def generate_image(ctx, *, prompt: str):
|
||||
"""generates images based on the provided prompt"""
|
||||
await ctx.send(f"generating images for prompt: `{prompt}`...")
|
||||
loop = asyncio.get_event_loop()
|
||||
|
||||
# initialize a future object for the dalle instance
|
||||
model_instance = dalle3()
|
||||
future = loop.run_in_executor(Executor, model_instance.run, prompt)
|
||||
|
||||
try:
|
||||
# wait for the dalle request to complete, with a timeout of 60 seconds
|
||||
await asyncio.wait_for(future, timeout=300)
|
||||
print("done generating images!")
|
||||
|
||||
# list all files in the save_directory
|
||||
all_files = [
|
||||
os.path.join(root, file)
|
||||
for root, _, files in os.walk(os.environ("SAVE_DIRECTORY"))
|
||||
for file in files
|
||||
]
|
||||
|
||||
# sort files by their creation time (latest first)
|
||||
sorted_files = sorted(all_files, key=os.path.getctime, reverse=True)
|
||||
|
||||
# get the 4 most recent files
|
||||
latest_files = sorted_files[:4]
|
||||
print(f"sending {len(latest_files)} images to discord...")
|
||||
|
||||
# send all the latest images in a single message
|
||||
storage_service = os.environ(
|
||||
"STORAGE_SERVICE"
|
||||
) # "https://storage.googleapis.com/your-bucket-name/
|
||||
await ctx.send(
|
||||
files=[
|
||||
storage_service.upload(filepath) for filepath in latest_files
|
||||
]
|
||||
)
|
||||
|
||||
except asyncio.timeouterror:
|
||||
await ctx.send(
|
||||
"the request took too long! it might have been censored or you're out of boosts. please try entering the prompt again."
|
||||
)
|
||||
except Exception as e:
|
||||
await ctx.send(f"an error occurred: {e}")
|
||||
|
||||
@self.bot.command()
|
||||
async def send_text(ctx, *, text: str, use_agent: bool = True):
|
||||
"""sends the provided text to the worker and returns the response"""
|
||||
if use_agent:
|
||||
response = self.agent.run(text)
|
||||
else:
|
||||
response = self.llm.run(text)
|
||||
await ctx.send(response)
|
||||
|
||||
def add_command(self, name, func):
|
||||
@self.bot.command()
|
||||
async def command(ctx, *args):
|
||||
reponse = func(*args)
|
||||
await ctx.send(responses)
|
||||
|
||||
|
||||
def run(self):
|
||||
self.bot.run("DISCORD_TOKEN")
|
@ -0,0 +1,6 @@
|
||||
from swarms.models.bing_chat import BingChat
|
||||
# Initialize the EdgeGPTModel
|
||||
bing = BingChat(cookies_path="./cookies.json")
|
||||
task = "generate topics for PositiveMed.com,: 1. Monitor Health Trends: Scan Google Alerts, authoritative health websites, and social media for emerging health, wellness, and medical discussions. 2. Keyword Research: Utilize tools like SEMrush to identify keywords with moderate to high search volume and low competition. Focus on long-tail, conversational keywords. 3. Analyze Site Data: Review PositiveMed's analytics to pinpoint popular articles and areas lacking recent content. 4. Crowdsourcing: Gather topic suggestions from the brand's audience and internal team, ensuring alignment with PositiveMed's mission. 5. Topic Evaluation: Assess topics for audience relevance, uniqueness, brand fit, current relevance, and SEO potential. 6. Tone and Style: Ensure topics can be approached with an educational, empowering, and ethical tone, in line with the brand's voice. Use this framework to generate a list of potential topics that cater to PositiveMed's audience while staying true to its brand ethos. Find trending topics for slowing and reversing aging think step by step and o into as much detail as possible"
|
||||
response = bing(task)
|
||||
print(response)
|
@ -0,0 +1,15 @@
|
||||
from swarms.models.bing_chat import BingChat
|
||||
from swarms.workers.worker import Worker
|
||||
from swarms.tools.autogpt import EdgeGPTTool, tool
|
||||
from swarms.models import OpenAIChat
|
||||
import os
|
||||
|
||||
load_dotenv("../.env")
|
||||
auth_cookie = os.environ.get("AUTH_COOKIE")
|
||||
auth_cookie_SRCHHPGUSR = os.environ.get("AUTH_COOKIE_SRCHHPGUSR")
|
||||
|
||||
# Initialize the EdgeGPTModel
|
||||
bing = BingChat(cookies_path="./cookies.json", auth_cookie_SRCHHPGUSR)
|
||||
task = "generate topics for PositiveMed.com,: 1. Monitor Health Trends: Scan Google Alerts, authoritative health websites, and social media for emerging health, wellness, and medical discussions. 2. Keyword Research: Utilize tools like SEMrush to identify keywords with moderate to high search volume and low competition. Focus on long-tail, conversational keywords. 3. Analyze Site Data: Review PositiveMed's analytics to pinpoint popular articles and areas lacking recent content. 4. Crowdsourcing: Gather topic suggestions from the brand's audience and internal team, ensuring alignment with PositiveMed's mission. 5. Topic Evaluation: Assess topics for audience relevance, uniqueness, brand fit, current relevance, and SEO potential. 6. Tone and Style: Ensure topics can be approached with an educational, empowering, and ethical tone, in line with the brand's voice. Use this framework to generate a list of potential topics that cater to PositiveMed's audience while staying true to its brand ethos. Find trending topics for slowing and reversing aging think step by step and o into as much detail as possible"
|
||||
|
||||
bing(task)
|
@ -0,0 +1,15 @@
|
||||
import os
|
||||
from swarms.models.bing_chat import BingChat
|
||||
from apps.discord import Bot
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Initialize the EdgeGPTModel
|
||||
cookie = os.environ.get("BING_COOKIE")
|
||||
auth = os.environ.get("AUTH_COOKIE")
|
||||
bing = BingChat(cookies_path="./cookies.json")
|
||||
|
||||
bot = Bot(llm=bing)
|
||||
bot.generate_image(imggen=bing.create_img(auth_cookie=cookie, auth_cookie_SRCHHPGUSR=auth))
|
||||
bot.send_text(use_agent=False)
|
@ -1,32 +0,0 @@
|
||||
from swarms.models.bing_chat import BingChat
|
||||
from swarms.workers.worker import Worker
|
||||
from swarms.tools.autogpt import EdgeGPTTool, tool
|
||||
from swarms.models import OpenAIChat
|
||||
import os
|
||||
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
# Initialize the EdgeGPTModel
|
||||
edgegpt = BingChat(cookies_path="./cookies.txt")
|
||||
|
||||
|
||||
@tool
|
||||
def edgegpt(task: str = None):
|
||||
"""A tool to run infrence on the EdgeGPT Model"""
|
||||
return EdgeGPTTool.run(task)
|
||||
|
||||
|
||||
# Initialize the language model,
|
||||
# This model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
|
||||
llm = OpenAIChat(
|
||||
openai_api_key=api_key,
|
||||
temperature=0.5,
|
||||
)
|
||||
|
||||
# Initialize the Worker with the custom tool
|
||||
worker = Worker(llm=llm, ai_name="EdgeGPT Worker", external_tools=[edgegpt])
|
||||
|
||||
# Use the worker to process a task
|
||||
task = "Hello, my name is ChatGPT"
|
||||
response = worker.run(task)
|
||||
print(response)
|
@ -0,0 +1,29 @@
|
||||
import os
|
||||
import sys
|
||||
from dotenv import load_dotenv
|
||||
from swarms.models.revgptV4 import RevChatGPTModelv4
|
||||
from swarms.models.revgptV1 import RevChatGPTModelv1
|
||||
|
||||
root_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
||||
sys.path.append(root_dir)
|
||||
|
||||
load_dotenv()
|
||||
|
||||
config = {
|
||||
"model": os.getenv("REVGPT_MODEL"),
|
||||
"plugin_ids": [os.getenv("REVGPT_PLUGIN_IDS")],
|
||||
"disable_history": os.getenv("REVGPT_DISABLE_HISTORY") == "True",
|
||||
"PUID": os.getenv("REVGPT_PUID"),
|
||||
"unverified_plugin_domains": [os.getenv("REVGPT_UNVERIFIED_PLUGIN_DOMAINS")],
|
||||
}
|
||||
|
||||
# For v1 model
|
||||
model = RevChatGPTModelv1(access_token=os.getenv("ACCESS_TOKEN"), **config)
|
||||
# model = RevChatGPTModelv4(access_token=os.getenv("ACCESS_TOKEN"), **config)
|
||||
|
||||
# For v3 model
|
||||
# model = RevChatGPTModel(access_token=os.getenv("OPENAI_API_KEY"), **config)
|
||||
|
||||
task = "Write a cli snake game"
|
||||
response = model.run(task)
|
||||
print(response)
|
@ -0,0 +1,67 @@
|
||||
"""Bing-Chat model by Micorsoft"""
|
||||
import os
|
||||
import asyncio
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from EdgeGPT.EdgeGPT import Chatbot, ConversationStyle
|
||||
from EdgeGPT.EdgeUtils import Cookie, ImageQuery, Query
|
||||
from EdgeGPT.ImageGen import ImageGen
|
||||
|
||||
|
||||
class BingChat:
|
||||
"""
|
||||
EdgeGPT model by OpenAI
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cookies_path : str
|
||||
Path to the cookies.json necessary for authenticating with EdgeGPT
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> edgegpt = BingChat(cookies_path="./path/to/cookies.json")
|
||||
>>> response = edgegpt("Hello, my name is ChatGPT")
|
||||
>>> image_path = edgegpt.create_img("Sunset over mountains")
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, cookies_path: str = None):
|
||||
self.cookies = json.loads(open(cookies_path, encoding="utf-8").read())
|
||||
self.bot = asyncio.run(Chatbot.create(cookies=self.cookies))
|
||||
|
||||
def __call__(
|
||||
self, prompt: str, style: ConversationStyle = ConversationStyle.creative
|
||||
) -> str:
|
||||
"""
|
||||
Get a text response using the EdgeGPT model based on the provided prompt.
|
||||
"""
|
||||
response = asyncio.run(
|
||||
self.bot.ask(
|
||||
prompt=prompt, conversation_style=style, simplify_response=True
|
||||
)
|
||||
)
|
||||
return response["text"]
|
||||
|
||||
def create_img(
|
||||
self, prompt: str, output_dir: str = "./output", auth_cookie: str = None, auth_cookie_SRCHHPGUSR: str = None
|
||||
) -> str:
|
||||
"""
|
||||
Generate an image based on the provided prompt and save it in the given output directory.
|
||||
Returns the path of the generated image.
|
||||
"""
|
||||
if not auth_cookie:
|
||||
raise ValueError("Auth cookie is required for image generation.")
|
||||
|
||||
image_generator = ImageGen(auth_cookie, auth_cookie_SRCHHPGUSR, quiet=True, )
|
||||
images = image_generator.get_images(prompt)
|
||||
image_generator.save_images(images, output_dir=output_dir)
|
||||
|
||||
return Path(output_dir) / images[0]
|
||||
|
||||
@staticmethod
|
||||
def set_cookie_dir_path(path: str):
|
||||
"""
|
||||
Set the directory path for managing cookies.
|
||||
"""
|
||||
Cookie.dir_path = Path(path)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,55 @@
|
||||
from vllm import LLM, SamplingParams
|
||||
import openai
|
||||
import ray
|
||||
import uvicorn
|
||||
from vllm.entrypoints import api_server as vllm_api_server
|
||||
from vllm.entrypoints.openai import api_server as openai_api_server
|
||||
from skypilot import SkyPilot
|
||||
|
||||
class VLLMModel:
|
||||
def __init__(self, model_name="facebook/opt-125m", tensor_parallel_size=1):
|
||||
self.model_name = model_name
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
self.model = LLM(model_name, tensor_parallel_size=tensor_parallel_size)
|
||||
self.temperature = 1.0
|
||||
self.max_tokens = None
|
||||
self.sampling_params = SamplingParams(temperature=self.temperature)
|
||||
|
||||
def generate_text(self, prompt: str) -> str:
|
||||
output = self.model.generate([prompt], self.sampling_params)
|
||||
return output[0].outputs[0].text
|
||||
|
||||
def set_temperature(self, value: float):
|
||||
self.temperature = value
|
||||
self.sampling_params = SamplingParams(temperature=self.temperature)
|
||||
|
||||
def set_max_tokens(self, value: int):
|
||||
self.max_tokens = value
|
||||
self.sampling_params = SamplingParams(temperature=self.temperature, max_tokens=self.max_tokens)
|
||||
|
||||
def offline_batched_inference(self, prompts: list) -> list:
|
||||
outputs = self.model.generate(prompts, self.sampling_params)
|
||||
return [output.outputs[0].text for output in outputs]
|
||||
|
||||
def start_api_server(self):
|
||||
uvicorn.run(vllm_api_server.app, host="0.0.0.0", port=8000)
|
||||
|
||||
def start_openai_compatible_server(self):
|
||||
uvicorn.run(openai_api_server.app, host="0.0.0.0", port=8000)
|
||||
|
||||
def query_openai_compatible_server(self, prompt: str):
|
||||
openai.api_key = "EMPTY"
|
||||
openai.api_base = "http://localhost:8000/v1"
|
||||
completion = openai.Completion.create(model=self.model_name, prompt=prompt)
|
||||
return completion
|
||||
|
||||
def distributed_inference(self, prompt: str):
|
||||
ray.init()
|
||||
self.model = LLM(self.model_name, tensor_parallel_size=self.tensor_parallel_size)
|
||||
output = self.model.generate(prompt, self.sampling_params)
|
||||
ray.shutdown()
|
||||
return output[0].outputs[0].text
|
||||
|
||||
def run_on_cloud_with_skypilot(self, yaml_file):
|
||||
sky = SkyPilot()
|
||||
sky.launch(yaml_file)
|
Loading…
Reference in new issue