diff --git a/.env.example b/.env.example
index d1efe4e8..9401588d 100644
--- a/.env.example
+++ b/.env.example
@@ -33,6 +33,7 @@ IFTTTKey="your_iftttkey_here"
BRAVE_API_KEY="your_brave_api_key_here"
SPOONACULAR_KEY="your_spoonacular_key_here"
HF_API_KEY="your_huggingface_api_key_here"
+USE_TELEMTRY=True
REDIS_HOST=
diff --git a/.gitignore b/.gitignore
index a583d768..ba330622 100644
--- a/.gitignore
+++ b/.gitignore
@@ -21,6 +21,7 @@ Cargo.lock
Cargo.lock
swarms/agents/.DS_Store
+logs
_build
conversation.txt
stderr_log.txt
diff --git a/README.md b/README.md
index acecefee..20ce32a3 100644
--- a/README.md
+++ b/README.md
@@ -12,6 +12,7 @@ Orchestrate swarms of agents for production-grade applications.
+Individual agents are barely being deployd into production because of 5 suffocating challanges: short memory, single task threading, hallucinations, high cost, and lack of collaboration. With Multi-agent collaboration, you can effectively eliminate all of these issues. Swarms provides you with simple, reliable, and agile primitives to build your own Swarm for your specific use case. Now, Swarms is being used in production by RBC, John Deere, and many AI startups. To learn more about the unparalled benefits about multi-agent collaboration check out this github repository for research papers or book a call with me!
----
@@ -21,7 +22,7 @@ Orchestrate swarms of agents for production-grade applications.
---
## Usage
-With Swarms, you can create structures, such as Agents, Swarms, and Workflows, that are composed of different types of tasks. Let's build a simple creative agent that will dynamically create a 10,000 word blog on health and wellness.
+
Run example in Collab:
@@ -67,41 +68,60 @@ agent.run("Generate a 10,000 word blog on health and wellness.")
### `ToolAgent`
-ToolAgent is an agent that outputs JSON using any model from huggingface. It takes an example schema and performs a task, outputting JSON. It is versatile, easy to use, and customizable.
+ToolAgent is an agent that can use tools through JSON function calling. It intakes any open source model from huggingface and is extremely modular and plug in and play. We need help adding general support to all models soon.
```python
-# Import necessary libraries
+from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent
+from swarms.utils.json_utils import base_model_to_json
# Load the pre-trained model and tokenizer
-model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
+model = AutoModelForCausalLM.from_pretrained(
+ "databricks/dolly-v2-12b",
+ load_in_4bit=True,
+ device_map="auto",
+)
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
-# Define a JSON schema for person's information
-json_schema = {
- "type": "object",
- "properties": {
- "name": {"type": "string"},
- "age": {"type": "number"},
- "is_student": {"type": "boolean"},
- "courses": {"type": "array", "items": {"type": "string"}},
- },
-}
+
+# Initialize the schema for the person's information
+class Schema(BaseModel):
+ name: str = Field(..., title="Name of the person")
+ agent: int = Field(..., title="Age of the person")
+ is_student: bool = Field(
+ ..., title="Whether the person is a student"
+ )
+ courses: list[str] = Field(
+ ..., title="List of courses the person is taking"
+ )
+
+
+# Convert the schema to a JSON string
+tool_schema = base_model_to_json(Schema)
# Define the task to generate a person's information
-task = "Generate a person's information based on the following schema:"
+task = (
+ "Generate a person's information based on the following schema:"
+)
# Create an instance of the ToolAgent class
-agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
+agent = ToolAgent(
+ name="dolly-function-agent",
+ description="Ana gent to create a child data",
+ model=model,
+ tokenizer=tokenizer,
+ json_schema=tool_schema,
+)
# Run the agent to generate the person's information
generated_data = agent.run(task)
# Print the generated data
-print(generated_data)
+print(f"Generated data: {generated_data}")
+
```
diff --git a/docs/ecosystem.md b/docs/ecosystem.md
new file mode 100644
index 00000000..18750f3b
--- /dev/null
+++ b/docs/ecosystem.md
@@ -0,0 +1,70 @@
+
+# Swarm Ecosystem
+
+Welcome to the Swarm Ecosystem, a comprehensive suite of tools and frameworks designed to empower developers to orhestrate swarms of autonomous agents for a variety of applications. Dive into our ecosystem below:
+
+| Project | Description | Link |
+| ------- | ----------- | ---- |
+| **Swarms Framework** | A Python-based framework that enables the creation, deployment, and scaling of reliable swarms of autonomous agents aimed at automating complex workflows. | [Swarms Framework](https://github.com/kyegomez/swarms) |
+| **Swarms Cloud** | A cloud-based service offering Swarms-as-a-Service with guaranteed 100% uptime, cutting-edge performance, and enterprise-grade reliability for seamless scaling and management of swarms. | [Swarms Cloud](https://github.com/kyegomez/swarms-core) |
+| **Swarms Core** | Provides backend utilities focusing on concurrency, multi-threading, and advanced execution strategies, developed in Rust for maximum efficiency and performance. | [Swarms Core](https://github.com/kyegomez/swarms-core) |
+| **Swarm Foundation Models** | A dedicated repository for the creation, optimization, and training of groundbreaking swarming models. Features innovative models like PSO with transformers, ant colony optimizations, and more, aiming to surpass traditional architectures like Transformers and SSMs. Open for community contributions and ideas. | [Swarm Foundation Models](https://github.com/kyegomez/swarms-pytorch) |
+| **Swarm Platform** | The Swarms dashboard Platform | [Swarm Platform](https://swarms.world/) |
+| **Swarms JS** | Swarms Framework in JS. Orchestrate any agents and enable multi-agent collaboration between various agents! | [Swarm JS](https://github.com/kyegomez/swarms-js) |
+
+
+
+----
+
+## 🫶 Contributions:
+
+The easiest way to contribute is to pick any issue with the `good first issue` tag 💪. Read the Contributing guidelines [here](/CONTRIBUTING.md). Bug Report? [File here](https://github.com/swarms/gateway/issues) | Feature Request? [File here](https://github.com/swarms/gateway/issues)
+
+Swarms is an open-source project, and contributions are VERY welcome. If you want to contribute, you can create new features, fix bugs, or improve the infrastructure. Please refer to the [CONTRIBUTING.md](https://github.com/kyegomez/swarms/blob/master/CONTRIBUTING.md) and our [contributing board](https://github.com/users/kyegomez/projects/1) to participate in Roadmap discussions!
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+----
+
+## Community
+
+Join our growing community around the world, for real-time support, ideas, and discussions on Swarms 😊
+
+- View our official [Blog](https://swarms.apac.ai)
+- Chat live with us on [Discord](https://discord.gg/kS3rwKs3ZC)
+- Follow us on [Twitter](https://twitter.com/kyegomez)
+- Connect with us on [LinkedIn](https://www.linkedin.com/company/the-swarm-corporation)
+- Visit us on [YouTube](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ)
+- [Join the Swarms community on Discord!](https://discord.gg/AJazBmhKnr)
+- Join our Swarms Community Gathering every Thursday at 1pm NYC Time to unlock the potential of autonomous agents in automating your daily tasks [Sign up here](https://lu.ma/5p2jnc2v)
+
+---
+
+## Discovery Call
+Book a discovery call to learn how Swarms can lower your operating costs by 40% with swarms of autonomous agents in lightspeed. [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
+
+
+
+## Accelerate Backlog
+Help us accelerate our backlog by supporting us financially! Note, we're an open source corporation and so all the revenue we generate is through donations at the moment ;)
+
+
+
+---
\ No newline at end of file
diff --git a/example.py b/example.py
index 4d60edf8..9d68c71d 100644
--- a/example.py
+++ b/example.py
@@ -1,15 +1,20 @@
-from swarms import Agent, OpenAIChat
+from swarms import Agent, Anthropic
+
## Initialize the workflow
agent = Agent(
- llm=OpenAIChat(),
+ agent_name="Transcript Generator",
+ agent_description=(
+ "Generate a transcript for a youtube video on what swarms"
+ " are!"
+ ),
+ llm=Anthropic(),
max_loops="auto",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="",
- interactive=True,
)
# Run the workflow on a task
diff --git a/full_stack_agent.py b/full_stack_agent.py
new file mode 100644
index 00000000..510f5c98
--- /dev/null
+++ b/full_stack_agent.py
@@ -0,0 +1,34 @@
+from swarms import Agent, Anthropic, tool
+
+
+# Tool
+@tool # Wrap the function with the tool decorator
+def search_api(query: str, max_results: int = 10):
+ """
+ Search the web for the query and return the top `max_results` results.
+ """
+ return f"Search API: {query} -> {max_results} results"
+
+
+## Initialize the workflow
+agent = Agent(
+ agent_name="Youtube Transcript Generator",
+ agent_description=(
+ "Generate a transcript for a youtube video on what swarms"
+ " are!"
+ ),
+ llm=Anthropic(),
+ max_loops="auto",
+ autosave=True,
+ dashboard=False,
+ streaming_on=True,
+ verbose=True,
+ stopping_token="",
+ tools=[search_api],
+)
+
+# Run the workflow on a task
+agent(
+ "Generate a transcript for a youtube video on what swarms are!"
+ " Output a token when done."
+)
diff --git a/playground/agents/tool_agent_pydantic.py b/playground/agents/tool_agent_pydantic.py
index c61fc7b9..da5f4825 100644
--- a/playground/agents/tool_agent_pydantic.py
+++ b/playground/agents/tool_agent_pydantic.py
@@ -1,9 +1,8 @@
-# Import necessary libraries
+from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
-from pydantic import BaseModel
-# from swarms import ToolAgent
-from swarms.utils.json_utils import base_model_schema_to_json
+from swarms import ToolAgent
+from swarms.utils.json_utils import base_model_to_json
# Load the pre-trained model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
@@ -14,32 +13,37 @@ model = AutoModelForCausalLM.from_pretrained(
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
+# Initialize the schema for the person's information
class Schema(BaseModel):
- name: str
- agent: int
- is_student: bool
- courses: list[str]
-
-
-json_schema = str(base_model_schema_to_json(Schema))
-print(json_schema)
-
-# # Define the task to generate a person's information
-# task = (
-# "Generate a person's information based on the following schema:"
-# )
-
-# # Create an instance of the ToolAgent class
-# agent = ToolAgent(
-# name="dolly-function-agent",
-# description="Ana gent to create a child data",
-# model=model,
-# tokenizer=tokenizer,
-# json_schema=json_schema,
-# )
-
-# # Run the agent to generate the person's information
-# generated_data = agent.run(task)
-
-# # Print the generated data
-# print(f"Generated data: {generated_data}")
+ name: str = Field(..., title="Name of the person")
+ agent: int = Field(..., title="Age of the person")
+ is_student: bool = Field(
+ ..., title="Whether the person is a student"
+ )
+ courses: list[str] = Field(
+ ..., title="List of courses the person is taking"
+ )
+
+
+# Convert the schema to a JSON string
+tool_schema = base_model_to_json(Schema)
+
+# Define the task to generate a person's information
+task = (
+ "Generate a person's information based on the following schema:"
+)
+
+# Create an instance of the ToolAgent class
+agent = ToolAgent(
+ name="dolly-function-agent",
+ description="Ana gent to create a child data",
+ model=model,
+ tokenizer=tokenizer,
+ json_schema=tool_schema,
+)
+
+# Run the agent to generate the person's information
+generated_data = agent.run(task)
+
+# Print the generated data
+print(f"Generated data: {generated_data}")
diff --git a/playground/demos/ai_acceleerated_learning/Vocal.py b/playground/demos/ai_acceleerated_learning/Vocal.py
deleted file mode 100644
index 85470156..00000000
--- a/playground/demos/ai_acceleerated_learning/Vocal.py
+++ /dev/null
@@ -1,46 +0,0 @@
-import pytest
-
-def test_create_youtube_account():
- # Arrange
- # Act
- # Assert
-
-def test_install_video_editing_software():
- # Arrange
- # Act
- # Assert
-
-def test_write_script():
- # Arrange
- # Act
- # Assert
-
-def test_gather_footage():
- # Arrange
- # Act
- # Assert
-
-def test_edit_video():
- # Arrange
- # Act
- # Assert
-
-def test_export_video():
- # Arrange
- # Act
- # Assert
-
-def test_upload_video_to_youtube():
- # Arrange
- # Act
- # Assert
-
-def test_optimize_video_for_search():
- # Arrange
- # Act
- # Assert
-
-def test_share_video():
- # Arrange
- # Act
- # Assert
\ No newline at end of file
diff --git a/playground/models/custom_model_vllm.py b/playground/models/custom_model_vllm.py
index 4f7f2a9b..70a7d710 100644
--- a/playground/models/custom_model_vllm.py
+++ b/playground/models/custom_model_vllm.py
@@ -29,17 +29,17 @@ class vLLMLM(AbstractLLM):
model_name: str = "acebook/opt-13b",
tensor_parallel_size: int = 4,
*args,
- **kwargs
+ **kwargs,
):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.tensor_parallel_size = tensor_parallel_size
-
+
self.llm = LLM(
model_name=self.model_name,
tensor_parallel_size=self.tensor_parallel_size,
)
-
+
def run(self, task: str, *args, **kwargs):
"""
Runs the LLM model to generate output for the given task.
@@ -54,8 +54,8 @@ class vLLMLM(AbstractLLM):
"""
return self.llm.generate(task)
-
-
+
+
# Initializing the agent with the vLLMLM instance and other parameters
model = vLLMLM(
"facebook/opt-13b",
@@ -86,4 +86,4 @@ agent = Agent(
docs_folder="docs",
),
stopping_condition="finish",
-)
\ No newline at end of file
+)
diff --git a/playground/swarms/hierarchical_swarm.py b/playground/swarms/hierarchical_swarm.py
new file mode 100644
index 00000000..f0357711
--- /dev/null
+++ b/playground/swarms/hierarchical_swarm.py
@@ -0,0 +1,26 @@
+"""
+Boss selects what agent to use
+B -> W1, W2, W3
+"""
+from typing import List, Optional
+from pydantic import BaseModel, Field
+from swarms.utils.json_utils import str_to_json
+
+
+class HierarchicalSwarm(BaseModel):
+ class Config:
+ arbitrary_types_allowed = True
+
+ agents: Optional[List[str]] = Field(
+ None, title="List of agents in the hierarchical swarm"
+ )
+ task: Optional[str] = Field(
+ None, title="Task to be done by the agents"
+ )
+
+
+all_agents = HierarchicalSwarm()
+
+agents_schema = HierarchicalSwarm.model_json_schema()
+agents_schema = str_to_json(agents_schema)
+print(agents_schema)
diff --git a/pyproject.toml b/pyproject.toml
index a9954fd8..d92aa27d 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
-version = "4.3.0"
+version = "4.3.3"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez "]
@@ -24,49 +24,41 @@ classifiers = [
[tool.poetry.dependencies]
-python = "^3.9"
-torch = "2.1.1"
-transformers = "4.37.1"
-openai = "0.28.0"
-langchain = "0.0.333"
-asyncio = "3.4.3"
+python = ">=3.9,<4.0"
+torch = ">=2.1.1,<3.0"
+transformers = "*"
+asyncio = ">=3.4.3,<4.0"
einops = "0.7.0"
google-generativeai = "0.3.1"
langchain-experimental = "0.0.10"
-opencv-python-headless = "4.8.1.78"
+langchain-community = "0.0.29"
faiss-cpu = "1.7.4"
backoff = "2.2.1"
datasets = "*"
optimum = "1.15.0"
diffusers = "*"
+langchain = "0.1.7"
toml = "*"
pypdf = "4.0.1"
accelerate = "*"
-anthropic = "*"
sentencepiece = "0.1.98"
httpx = "0.24.1"
tiktoken = "0.4.0"
ratelimit = "2.2.1"
loguru = "0.7.2"
huggingface-hub = "*"
-pydantic = "*"
+pydantic = "2.6.4"
tenacity = "8.2.2"
Pillow = "9.4.0"
-chromadb = "*"
+chromadb = "0.4.24"
termcolor = "2.2.0"
torchvision = "0.16.1"
rich = "13.5.2"
-sqlalchemy = "*"
bitsandbytes = "*"
-pgvector = "*"
-cohere = "*"
sentence-transformers = "*"
peft = "*"
psutil = "*"
-ultralytics = "*"
timm = "*"
-supervision = "*"
-roboflow = "*"
[tool.poetry.dev-dependencies]
black = "23.3.0"
@@ -81,8 +73,6 @@ types-chardet = "^5.0.4.6"
mypy-protobuf = "^3.0.0"
-
-
[tool.ruff]
line-length = 70
# Enable Pyflakes (`F`) and a subset of the pycodestyle (`E`) codes by default.
diff --git a/requirements.txt b/requirements.txt
index 6cf9831d..b8d654c3 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,24 +1,19 @@
torch==2.1.1
transformers
-pandas==2.2.1
-langchain==0.0.333
-langchain-experimental==0.0.10
+pandas
+langchain==0.1.7
+langchain-experimental
httpx==0.24.1
Pillow==9.4.0
-faiss-cpu==1.7.4
-openai==0.28.0
datasets==2.14.5
-pydantic==1.10.12
-bitsandbytes
+pydantic==2.6.4
huggingface-hub
-google-generativeai==0.3.1
-sentencepiece==0.1.98
requests_mock
pypdf==4.0.1
accelerate==0.22.0
loguru==0.7.2
-chromadb
optimum
+diffusers
toml
tiktoken==0.4.0
colored
@@ -26,25 +21,13 @@ addict
backoff==2.2.1
ratelimit==2.2.1
termcolor==2.2.0
-diffusers
-einops==0.7.0
-opencv-python-headless==4.8.1.78
-numpy
-openai==0.28.0
-opencv-python==4.9.0.80
+langchain-community
timm
-cohere==4.53
torchvision==0.16.1
rich==13.5.2
mkdocs
mkdocs-material
mkdocs-glightbox
pre-commit==3.6.2
-peft
psutil
-ultralytics
-supervision
-anthropic
-pinecone-client
-roboflow
black
\ No newline at end of file
diff --git a/swarm_network_example.py b/swarm_network_example.py
index e29c919f..f073719c 100644
--- a/swarm_network_example.py
+++ b/swarm_network_example.py
@@ -64,10 +64,3 @@ out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
-
-
-# # Run all the agents in the swarm network on a task
-# out = swarmnet.run_many_agents(
-# f"Summarize the blog and create a social media post: {out}"
-# )
-# print(out)
diff --git a/swarms/__init__.py b/swarms/__init__.py
index 220f729f..b9eb1426 100644
--- a/swarms/__init__.py
+++ b/swarms/__init__.py
@@ -1,16 +1,18 @@
-# from swarms.telemetry.main import Telemetry # noqa: E402, F403
-from swarms.telemetry.bootup import bootup # noqa: E402, F403
import os
+from swarms.telemetry.bootup import bootup # noqa: E402, F403
+from swarms.telemetry.sentry_active import activate_sentry
+
os.environ["WANDB_SILENT"] = "true"
bootup()
+activate_sentry()
from swarms.agents import * # noqa: E402, F403
from swarms.artifacts import * # noqa: E402, F403
from swarms.chunkers import * # noqa: E402, F403
-from swarms.loaders import * # noqa: E402, F403
+from swarms.memory import * # noqa: E402, F403
from swarms.models import * # noqa: E402, F403
from swarms.prompts import * # noqa: E402, F403
from swarms.structs import * # noqa: E402, F403
@@ -18,4 +20,3 @@ from swarms.telemetry import * # noqa: E402, F403
from swarms.tokenizers import * # noqa: E402, F403
from swarms.tools import * # noqa: E402, F403
from swarms.utils import * # noqa: E402, F403
-from swarms.memory import * # noqa: E402, F403
diff --git a/swarms/agents/base.py b/swarms/agents/base.py
index 73066865..cfad5729 100644
--- a/swarms/agents/base.py
+++ b/swarms/agents/base.py
@@ -1,4 +1,5 @@
-from typing import Dict, List
+from abc import abstractmethod
+from typing import Dict, List, Union, Optional
class AbstractAgent:
@@ -36,7 +37,8 @@ class AbstractAgent:
def reset(self):
"""(Abstract method) Reset the agent."""
- def run(self, task: str):
+ @abstractmethod
+ def run(self, task: str, *args, **kwargs):
"""Run the agent once"""
def _arun(self, taks: str):
@@ -53,3 +55,65 @@ class AbstractAgent:
def _astep(self, message: str):
"""Asynchronous step"""
+
+ def send(
+ self,
+ message: Union[Dict, str],
+ recipient, # add AbstractWorker
+ request_reply: Optional[bool] = None,
+ ):
+ """(Abstract method) Send a message to another worker."""
+
+ async def a_send(
+ self,
+ message: Union[Dict, str],
+ recipient, # add AbstractWorker
+ request_reply: Optional[bool] = None,
+ ):
+ """(Aabstract async method) Send a message to another worker."""
+
+ def receive(
+ self,
+ message: Union[Dict, str],
+ sender, # add AbstractWorker
+ request_reply: Optional[bool] = None,
+ ):
+ """(Abstract method) Receive a message from another worker."""
+
+ async def a_receive(
+ self,
+ message: Union[Dict, str],
+ sender, # add AbstractWorker
+ request_reply: Optional[bool] = None,
+ ):
+ """(Abstract async method) Receive a message from another worker."""
+
+ def generate_reply(
+ self,
+ messages: Optional[List[Dict]] = None,
+ sender=None, # Optional["AbstractWorker"] = None,
+ **kwargs,
+ ) -> Union[str, Dict, None]:
+ """(Abstract method) Generate a reply based on the received messages.
+
+ Args:
+ messages (list[dict]): a list of messages received.
+ sender: sender of an Agent instance.
+ Returns:
+ str or dict or None: the generated reply. If None, no reply is generated.
+ """
+
+ async def a_generate_reply(
+ self,
+ messages: Optional[List[Dict]] = None,
+ sender=None, # Optional["AbstractWorker"] = None,
+ **kwargs,
+ ) -> Union[str, Dict, None]:
+ """(Abstract async method) Generate a reply based on the received messages.
+
+ Args:
+ messages (list[dict]): a list of messages received.
+ sender: sender of an Agent instance.
+ Returns:
+ str or dict or None: the generated reply. If None, no reply is generated.
+ """
diff --git a/swarms/agents/multion_agent.py b/swarms/agents/multion_agent.py
deleted file mode 100644
index efeb5a43..00000000
--- a/swarms/agents/multion_agent.py
+++ /dev/null
@@ -1,70 +0,0 @@
-import os
-
-import multion
-from dotenv import load_dotenv
-
-from swarms.models.base_llm import AbstractLLM
-
-# Load environment variables
-load_dotenv()
-
-# Muliton key
-MULTION_API_KEY = os.getenv("MULTION_API_KEY")
-
-
-class MultiOnAgent(AbstractLLM):
- """
- Represents a multi-on agent that performs browsing tasks.
-
- Args:
- max_steps (int): The maximum number of steps to perform during browsing.
- starting_url (str): The starting URL for browsing.
-
- Attributes:
- max_steps (int): The maximum number of steps to perform during browsing.
- starting_url (str): The starting URL for browsing.
- """
-
- def __init__(
- self,
- multion_api_key: str = MULTION_API_KEY,
- max_steps: int = 4,
- starting_url: str = "https://www.google.com",
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.multion_api_key = multion_api_key
- self.max_steps = max_steps
- self.starting_url = starting_url
-
- def run(self, task: str, *args, **kwargs):
- """
- Runs a browsing task.
-
- Args:
- task (str): The task to perform during browsing.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
-
- Returns:
- dict: The response from the browsing task.
- """
- multion.login(
- use_api=True,
- multion_api_key=str(self.multion_api_key),
- *args,
- **kwargs,
- )
-
- response = multion.browse(
- {
- "cmd": task,
- "url": self.starting_url,
- "maxSteps": self.max_steps,
- },
- *args,
- **kwargs,
- )
-
- return response.result, response.status, response.lastUrl
diff --git a/swarms/agents/omni_modal_agent.py b/swarms/agents/omni_modal_agent.py
index 8f2dabc5..4af03906 100644
--- a/swarms/agents/omni_modal_agent.py
+++ b/swarms/agents/omni_modal_agent.py
@@ -9,11 +9,11 @@ from langchain_experimental.autonomous_agents.hugginggpt.task_planner import (
load_chat_planner,
)
from transformers import load_tool
+from swarms.utils.loguru_logger import logger
+from swarms.structs.agent import Agent
-from swarms.structs.message import Message
-
-class OmniModalAgent:
+class OmniModalAgent(Agent):
"""
OmniModalAgent
LLM -> Plans -> Tasks -> Tools -> Response
@@ -42,9 +42,13 @@ class OmniModalAgent:
def __init__(
self,
llm: BaseLanguageModel,
- # tools: List[BaseTool]
+ verbose: bool = False,
+ *args,
+ **kwargs,
):
+ super().__init__(llm=llm, *args, **kwargs)
self.llm = llm
+ self.verbose = verbose
print("Loading tools...")
self.tools = [
@@ -67,79 +71,29 @@ class OmniModalAgent:
]
]
+ # Load the chat planner and response generator
self.chat_planner = load_chat_planner(llm)
self.response_generator = load_response_generator(llm)
- # self.task_executor = TaskExecutor
+ self.task_executor = TaskExecutor
self.history = []
- def run(self, input: str) -> str:
+ def run(self, task: str) -> str:
"""Run the OmniAgent"""
- plan = self.chat_planner.plan(
- inputs={
- "input": input,
- "hf_tools": self.tools,
- }
- )
- self.task_executor = TaskExecutor(plan)
- self.task_executor.run()
-
- response = self.response_generator.generate(
- {"task_execution": self.task_executor}
- )
-
- return response
-
- def chat(self, msg: str = None, streaming: bool = False):
- """
- Run chat
-
- Args:
- msg (str, optional): Message to send to the agent. Defaults to None.
- language (str, optional): Language to use. Defaults to None.
- streaming (bool, optional): Whether to stream the response. Defaults to False.
-
- Returns:
- str: Response from the agent
-
- Usage:
- --------------
- agent = MultiModalAgent()
- agent.chat("Hello")
-
- """
-
- # add users message to the history
- self.history.append(Message("User", msg))
-
- # process msg
try:
- response = self.agent.run(msg)
-
- # add agent's response to the history
- self.history.append(Message("Agent", response))
-
- # if streaming is = True
- if streaming:
- return self._stream_response(response)
- else:
- response
-
+ plan = self.chat_planner.plan(
+ inputs={
+ "input": task,
+ "hf_tools": self.tools,
+ }
+ )
+ self.task_executor = TaskExecutor(plan)
+ self.task_executor.run()
+
+ response = self.response_generator.generate(
+ {"task_execution": self.task_executor}
+ )
+
+ return response
except Exception as error:
- error_message = f"Error processing message: {str(error)}"
-
- # add error to history
- self.history.append(Message("Agent", error_message))
-
- return error_message
-
- def _stream_response(self, response: str = None):
- """
- Yield the response token by token (word by word)
-
- Usage:
- --------------
- for token in _stream_response(response):
- print(token)
-
- """
- yield from response.split()
+ logger.error(f"Error running the agent: {error}")
+ return f"Error running the agent: {error}"
diff --git a/swarms/agents/tool_agent.py b/swarms/agents/tool_agent.py
index 8e6adf9d..55733215 100644
--- a/swarms/agents/tool_agent.py
+++ b/swarms/agents/tool_agent.py
@@ -1,10 +1,10 @@
-from typing import Any
+from typing import Any, Optional, Callable
-from swarms.models.base_llm import AbstractLLM
+from swarms.structs.agent import Agent
from swarms.tools.format_tools import Jsonformer
-class ToolAgent(AbstractLLM):
+class ToolAgent(Agent):
"""
Represents a tool agent that performs a specific task using a model and tokenizer.
@@ -67,16 +67,23 @@ class ToolAgent(AbstractLLM):
tokenizer: Any = None,
json_schema: Any = None,
max_number_tokens: int = 500,
+ parsing_function: Optional[Callable] = None,
*args,
**kwargs,
):
- super().__init__(*args, **kwargs)
+ super().__init__(
+ agent_name=name,
+ agent_description=description,
+ sop=f"{name} {description} {str(json_schema)}" * args,
+ **kwargs,
+ )
self.name = name
self.description = description
self.model = model
self.tokenizer = tokenizer
self.json_schema = json_schema
self.max_number_tokens = max_number_tokens
+ self.parsing_function = parsing_function
def run(self, task: str, *args, **kwargs):
"""
@@ -104,7 +111,11 @@ class ToolAgent(AbstractLLM):
**kwargs,
)
- out = self.toolagent()
+ if self.parsing_function:
+ out = self.parsing_function(self.toolagent())
+ else:
+ out = self.toolagent()
+
return out
except Exception as error:
print(f"[Error] [ToolAgent] {error}")
diff --git a/swarms/loaders/__init__.py b/swarms/loaders/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/swarms/memory/__init__.py b/swarms/memory/__init__.py
index 72318d28..0dafab08 100644
--- a/swarms/memory/__init__.py
+++ b/swarms/memory/__init__.py
@@ -4,22 +4,18 @@ from swarms.memory.base_vectordb import AbstractVectorDatabase
from swarms.memory.chroma_db import ChromaDB
from swarms.memory.dict_internal_memory import DictInternalMemory
from swarms.memory.dict_shared_memory import DictSharedMemory
-from swarms.memory.lanchain_chroma import LangchainChromaVectorMemory
from swarms.memory.short_term_memory import ShortTermMemory
from swarms.memory.sqlite import SQLiteDB
from swarms.memory.visual_memory import VisualShortTermMemory
-from swarms.memory.weaviate_db import WeaviateDB
__all__ = [
"AbstractVectorDatabase",
"AbstractDatabase",
"ShortTermMemory",
"SQLiteDB",
- "WeaviateDB",
"VisualShortTermMemory",
"ActionSubtaskEntry",
"ChromaDB",
"DictInternalMemory",
"DictSharedMemory",
- "LangchainChromaVectorMemory",
]
diff --git a/swarms/memory/chroma_db.py b/swarms/memory/chroma_db.py
index df59ea99..0ef34286 100644
--- a/swarms/memory/chroma_db.py
+++ b/swarms/memory/chroma_db.py
@@ -47,8 +47,6 @@ class ChromaDB:
limit_tokens: Optional[int] = 1000,
n_results: int = 2,
embedding_function: Callable = None,
- data_loader: Callable = None,
- multimodal: bool = False,
docs_folder: str = None,
verbose: bool = False,
*args,
@@ -75,22 +73,12 @@ class ChromaDB:
**kwargs,
)
- # Data loader
- if data_loader:
- self.data_loader = data_loader
- else:
- self.data_loader = None
-
# Embedding model
if embedding_function:
self.embedding_function = embedding_function
else:
self.embedding_function = None
- # If multimodal set the embedding model to OpenCLIP
- if multimodal:
- self.embedding_function = None
-
# Create ChromaDB client
self.client = chromadb.Client()
diff --git a/swarms/models/__init__.py b/swarms/models/__init__.py
index 3f8fb3e2..92b0e929 100644
--- a/swarms/models/__init__.py
+++ b/swarms/models/__init__.py
@@ -1,56 +1,51 @@
-from swarms.models.anthropic import Anthropic # noqa: E402
from swarms.models.base_embedding_model import BaseEmbeddingModel
from swarms.models.base_llm import AbstractLLM # noqa: E402
from swarms.models.base_multimodal_model import BaseMultiModalModel
-
-# noqa: E402
from swarms.models.biogpt import BioGPT # noqa: E402
from swarms.models.clipq import CLIPQ # noqa: E402
-
-# from swarms.models.dalle3 import Dalle3
-# from swarms.models.distilled_whisperx import DistilWhisperModel # noqa: E402
-# from swarms.models.whisperx_model import WhisperX # noqa: E402
-# from swarms.models.kosmos_two import Kosmos # noqa: E402
-# from swarms.models.cog_agent import CogAgent # noqa: E402
-## Function calling models
from swarms.models.fire_function import FireFunctionCaller
from swarms.models.fuyu import Fuyu # noqa: E402
from swarms.models.gemini import Gemini # noqa: E402
-from swarms.models.gigabind import Gigabind # noqa: E402
from swarms.models.gpt4_vision_api import GPT4VisionAPI # noqa: E402
from swarms.models.huggingface import HuggingfaceLLM # noqa: E402
from swarms.models.idefics import Idefics # noqa: E402
from swarms.models.kosmos_two import Kosmos # noqa: E402
from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA
-
-# noqa: E402
from swarms.models.llava import LavaMultiModal # noqa: E402
from swarms.models.mistral import Mistral # noqa: E402
from swarms.models.mixtral import Mixtral # noqa: E402
from swarms.models.mpt import MPT7B # noqa: E402
from swarms.models.nougat import Nougat # noqa: E402
-from swarms.models.openai_models import (
- AzureOpenAI,
- OpenAI,
- OpenAIChat,
-)
-
-# noqa: E402
from swarms.models.openai_tts import OpenAITTS # noqa: E402
from swarms.models.petals import Petals # noqa: E402
+from swarms.models.popular_llms import (
+ AnthropicChat as Anthropic,
+)
+from swarms.models.popular_llms import (
+ AzureOpenAILLM as AzureOpenAI,
+)
+from swarms.models.popular_llms import (
+ CohereChat as Cohere,
+)
+from swarms.models.popular_llms import (
+ MosaicMLChat as MosaicML,
+)
+from swarms.models.popular_llms import (
+ OpenAIChatLLM as OpenAIChat,
+)
+from swarms.models.popular_llms import (
+ OpenAILLM as OpenAI,
+)
+from swarms.models.popular_llms import (
+ ReplicateLLM as Replicate,
+)
from swarms.models.qwen import QwenVLMultiModal # noqa: E402
-from swarms.models.roboflow_model import RoboflowMultiModal
+
+# from swarms.models.roboflow_model import RoboflowMultiModal
from swarms.models.sam_supervision import SegmentAnythingMarkGenerator
from swarms.models.sampling_params import SamplingParams, SamplingType
from swarms.models.timm import TimmModel # noqa: E402
-
-# from swarms.models.modelscope_pipeline import ModelScopePipeline
-# from swarms.models.modelscope_llm import (
-# ModelScopeAutoModel,
-# ) # noqa: E402
from swarms.models.together import TogetherLLM # noqa: E402
-
-############## Types
from swarms.models.types import ( # noqa: E402
AudioModality,
ImageModality,
@@ -58,61 +53,54 @@ from swarms.models.types import ( # noqa: E402
TextModality,
VideoModality,
)
-from swarms.models.ultralytics_model import UltralyticsModel
-# noqa: E402
+# from swarms.models.ultralytics_model import UltralyticsModel
from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.wizard_storytelling import WizardLLMStoryTeller
-
-# noqa: E402
-# from swarms.models.vllm import vLLM # noqa: E402
from swarms.models.zephyr import Zephyr # noqa: E402
from swarms.models.zeroscope import ZeroscopeTTV # noqa: E402
__all__ = [
"AbstractLLM",
"Anthropic",
- "Petals",
- "Mistral",
- "OpenAI",
"AzureOpenAI",
- "OpenAIChat",
- "Zephyr",
+ "BaseEmbeddingModel",
"BaseMultiModalModel",
- "Idefics",
- "Vilt",
- "Nougat",
- "LayoutLMDocumentQA",
"BioGPT",
- "HuggingfaceLLM",
- "MPT7B",
- "WizardLLMStoryTeller",
- # "Dalle3",
- # "DistilWhisperModel",
+ "CLIPQ",
+ "Cohere",
+ "FireFunctionCaller",
+ "Fuyu",
"GPT4VisionAPI",
- # "vLLM",
- "OpenAITTS",
"Gemini",
- "Gigabind",
+ "HuggingfaceLLM",
+ "Idefics",
+ "Kosmos",
+ "LayoutLMDocumentQA",
+ "LavaMultiModal",
+ "Replicate",
+ "MPT7B",
+ "Mistral",
"Mixtral",
- "ZeroscopeTTV",
+ "MosaicML",
+ "Nougat",
+ "OpenAI",
+ "OpenAIChat",
+ "OpenAITTS",
+ "Petals",
+ "QwenVLMultiModal",
+ "SamplingParams",
+ "SamplingType",
+ "SegmentAnythingMarkGenerator",
"TextModality",
- "ImageModality",
- "AudioModality",
+ "TimmModel",
+ "TogetherLLM",
+ "Vilt",
"VideoModality",
+ "WizardLLMStoryTeller",
+ "Zephyr",
+ "ZeroscopeTTV",
+ "AudioModality",
+ "ImageModality",
"MultimodalData",
- "TogetherLLM",
- "TimmModel",
- "UltralyticsModel",
- "LavaMultiModal",
- "QwenVLMultiModal",
- "CLIPQ",
- "Kosmos",
- "Fuyu",
- "BaseEmbeddingModel",
- "RoboflowMultiModal",
- "SegmentAnythingMarkGenerator",
- "SamplingType",
- "SamplingParams",
- "FireFunctionCaller",
]
diff --git a/swarms/models/anthropic.py b/swarms/models/anthropic.py
deleted file mode 100644
index 5193a6bc..00000000
--- a/swarms/models/anthropic.py
+++ /dev/null
@@ -1,575 +0,0 @@
-import contextlib
-import datetime
-import functools
-import importlib
-import re
-import warnings
-from importlib.metadata import version
-from typing import (
- Any,
- AsyncIterator,
- Callable,
- Dict,
- Iterator,
- List,
- Mapping,
- Optional,
- Set,
- Tuple,
- Union,
-)
-
-from langchain.callbacks.manager import (
- AsyncCallbackManagerForLLMRun,
- CallbackManagerForLLMRun,
-)
-from langchain.llms.base import LLM
-from langchain.schema.language_model import BaseLanguageModel
-from langchain.schema.output import GenerationChunk
-from langchain.schema.prompt import PromptValue
-from langchain.utils import get_from_dict_or_env
-from packaging.version import parse
-from pydantic import Field, SecretStr, root_validator
-from requests import HTTPError, Response
-
-
-def xor_args(*arg_groups: Tuple[str, ...]) -> Callable:
- """Validate specified keyword args are mutually exclusive."""
-
- def decorator(func: Callable) -> Callable:
- @functools.wraps(func)
- def wrapper(*args: Any, **kwargs: Any) -> Any:
- """Validate exactly one arg in each group is not None."""
- counts = [
- sum(
- 1
- for arg in arg_group
- if kwargs.get(arg) is not None
- )
- for arg_group in arg_groups
- ]
- invalid_groups = [
- i for i, count in enumerate(counts) if count != 1
- ]
- if invalid_groups:
- invalid_group_names = [
- ", ".join(arg_groups[i]) for i in invalid_groups
- ]
- raise ValueError(
- "Exactly one argument in each of the following"
- " groups must be defined:"
- f" {', '.join(invalid_group_names)}"
- )
- return func(*args, **kwargs)
-
- return wrapper
-
- return decorator
-
-
-def raise_for_status_with_text(response: Response) -> None:
- """Raise an error with the response text."""
- try:
- response.raise_for_status()
- except HTTPError as e:
- raise ValueError(response.text) from e
-
-
-@contextlib.contextmanager
-def mock_now(dt_value): # type: ignore
- """Context manager for mocking out datetime.now() in unit tests.
-
- Example:
- with mock_now(datetime.datetime(2011, 2, 3, 10, 11)):
- assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11)
- """
-
- class MockDateTime(datetime.datetime):
- """Mock datetime.datetime.now() with a fixed datetime."""
-
- @classmethod
- def now(cls): # type: ignore
- # Create a copy of dt_value.
- return datetime.datetime(
- dt_value.year,
- dt_value.month,
- dt_value.day,
- dt_value.hour,
- dt_value.minute,
- dt_value.second,
- dt_value.microsecond,
- dt_value.tzinfo,
- )
-
- real_datetime = datetime.datetime
- datetime.datetime = MockDateTime
- try:
- yield datetime.datetime
- finally:
- datetime.datetime = real_datetime
-
-
-def guard_import(
- module_name: str,
- *,
- pip_name: Optional[str] = None,
- package: Optional[str] = None,
-) -> Any:
- """Dynamically imports a module and raises a helpful exception if the module is not
- installed."""
- try:
- module = importlib.import_module(module_name, package)
- except ImportError:
- raise ImportError(
- f"Could not import {module_name} python package. Please"
- " install it with `pip install"
- f" {pip_name or module_name}`."
- )
- return module
-
-
-def check_package_version(
- package: str,
- lt_version: Optional[str] = None,
- lte_version: Optional[str] = None,
- gt_version: Optional[str] = None,
- gte_version: Optional[str] = None,
-) -> None:
- """Check the version of a package."""
- imported_version = parse(version(package))
- if lt_version is not None and imported_version >= parse(
- lt_version
- ):
- raise ValueError(
- f"Expected {package} version to be < {lt_version}."
- f" Received {imported_version}."
- )
- if lte_version is not None and imported_version > parse(
- lte_version
- ):
- raise ValueError(
- f"Expected {package} version to be <= {lte_version}."
- f" Received {imported_version}."
- )
- if gt_version is not None and imported_version <= parse(
- gt_version
- ):
- raise ValueError(
- f"Expected {package} version to be > {gt_version}."
- f" Received {imported_version}."
- )
- if gte_version is not None and imported_version < parse(
- gte_version
- ):
- raise ValueError(
- f"Expected {package} version to be >= {gte_version}."
- f" Received {imported_version}."
- )
-
-
-def get_pydantic_field_names(pydantic_cls: Any) -> Set[str]:
- """Get field names, including aliases, for a pydantic class.
-
- Args:
- pydantic_cls: Pydantic class."""
- all_required_field_names = set()
- for field in pydantic_cls.__fields__.values():
- all_required_field_names.add(field.name)
- if field.has_alias:
- all_required_field_names.add(field.alias)
- return all_required_field_names
-
-
-def build_extra_kwargs(
- extra_kwargs: Dict[str, Any],
- values: Dict[str, Any],
- all_required_field_names: Set[str],
-) -> Dict[str, Any]:
- """Build extra kwargs from values and extra_kwargs.
-
- Args:
- extra_kwargs: Extra kwargs passed in by user.
- values: Values passed in by user.
- all_required_field_names: All required field names for the pydantic class.
- """
- for field_name in list(values):
- if field_name in extra_kwargs:
- raise ValueError(f"Found {field_name} supplied twice.")
- if field_name not in all_required_field_names:
- warnings.warn(
- f"""WARNING! {field_name} is not default parameter.
- {field_name} was transferred to model_kwargs.
- Please confirm that {field_name} is what you intended."""
- )
- extra_kwargs[field_name] = values.pop(field_name)
-
- invalid_model_kwargs = all_required_field_names.intersection(
- extra_kwargs.keys()
- )
- if invalid_model_kwargs:
- raise ValueError(
- f"Parameters {invalid_model_kwargs} should be specified"
- " explicitly. Instead they were passed in as part of"
- " `model_kwargs` parameter."
- )
-
- return extra_kwargs
-
-
-def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr:
- """Convert a string to a SecretStr if needed."""
- if isinstance(value, SecretStr):
- return value
- return SecretStr(value)
-
-
-class _AnthropicCommon(BaseLanguageModel):
- client: Any = None #: :meta private:
- async_client: Any = None #: :meta private:
- model: str = Field(default="claude-2", alias="model_name")
- """Model name to use."""
-
- max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
- """Denotes the number of tokens to predict per generation."""
-
- temperature: Optional[float] = None
- """A non-negative float that tunes the degree of randomness in generation."""
-
- top_k: Optional[int] = None
- """Number of most likely tokens to consider at each step."""
-
- top_p: Optional[float] = None
- """Total probability mass of tokens to consider at each step."""
-
- streaming: bool = False
- """Whether to stream the results."""
-
- default_request_timeout: Optional[float] = None
- """Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
-
- anthropic_api_url: Optional[str] = None
-
- anthropic_api_key: Optional[SecretStr] = None
-
- HUMAN_PROMPT: Optional[str] = None
- AI_PROMPT: Optional[str] = None
- count_tokens: Optional[Callable[[str], int]] = None
- model_kwargs: Dict[str, Any] = Field(default_factory=dict)
-
- @root_validator(pre=True)
- def build_extra(cls, values: Dict) -> Dict:
- extra = values.get("model_kwargs", {})
- all_required_field_names = get_pydantic_field_names(cls)
- values["model_kwargs"] = build_extra_kwargs(
- extra, values, all_required_field_names
- )
- return values
-
- @root_validator()
- def validate_environment(cls, values: Dict) -> Dict:
- """Validate that api key and python package exists in environment."""
- values["anthropic_api_key"] = convert_to_secret_str(
- get_from_dict_or_env(
- values, "anthropic_api_key", "ANTHROPIC_API_KEY"
- )
- )
- # Get custom api url from environment.
- values["anthropic_api_url"] = get_from_dict_or_env(
- values,
- "anthropic_api_url",
- "ANTHROPIC_API_URL",
- default="https://api.anthropic.com",
- )
-
- try:
- import anthropic
-
- check_package_version("anthropic", gte_version="0.3")
- values["client"] = anthropic.Anthropic(
- base_url=values["anthropic_api_url"],
- api_key=values[
- "anthropic_api_key"
- ].get_secret_value(),
- timeout=values["default_request_timeout"],
- )
- values["async_client"] = anthropic.AsyncAnthropic(
- base_url=values["anthropic_api_url"],
- api_key=values[
- "anthropic_api_key"
- ].get_secret_value(),
- timeout=values["default_request_timeout"],
- )
- values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
- values["AI_PROMPT"] = anthropic.AI_PROMPT
- values["count_tokens"] = values["client"].count_tokens
-
- except ImportError:
- raise ImportError(
- "Could not import anthropic python package. "
- "Please it install it with `pip install anthropic`."
- )
- return values
-
- @property
- def _default_params(self) -> Mapping[str, Any]:
- """Get the default parameters for calling Anthropic API."""
- d = {
- "max_tokens_to_sample": self.max_tokens_to_sample,
- "model": self.model,
- }
- if self.temperature is not None:
- d["temperature"] = self.temperature
- if self.top_k is not None:
- d["top_k"] = self.top_k
- if self.top_p is not None:
- d["top_p"] = self.top_p
- return {**d, **self.model_kwargs}
-
- @property
- def _identifying_params(self) -> Mapping[str, Any]:
- """Get the identifying parameters."""
- return {**{}, **self._default_params}
-
- def _get_anthropic_stop(
- self, stop: Optional[List[str]] = None
- ) -> List[str]:
- if not self.HUMAN_PROMPT or not self.AI_PROMPT:
- raise NameError(
- "Please ensure the anthropic package is loaded"
- )
-
- if stop is None:
- stop = []
-
- # Never want model to invent new turns of Human / Assistant dialog.
- stop.extend([self.HUMAN_PROMPT])
-
- return stop
-
-
-class Anthropic(LLM, _AnthropicCommon):
- """Anthropic large language models.
-
- To use, you should have the ``anthropic`` python package installed, and the
- environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
- it as a named parameter to the constructor.
-
- Example:
- .. code-block:: python
-
- import anthropic
- from langchain.llms import Anthropic
-
- model = Anthropic(model="", anthropic_api_key="my-api-key")
-
- # Simplest invocation, automatically wrapped with HUMAN_PROMPT
- # and AI_PROMPT.
- response = model("What are the biggest risks facing humanity?")
-
- # Or if you want to use the chat mode, build a few-shot-prompt, or
- # put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
- raw_prompt = "What are the biggest risks facing humanity?"
- prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
- response = model(prompt)
- """
-
- class Config:
- """Configuration for this pydantic object."""
-
- allow_population_by_field_name = True
- arbitrary_types_allowed = True
-
- @root_validator()
- def raise_warning(cls, values: Dict) -> Dict:
- """Raise warning that this class is deprecated."""
- warnings.warn(
- "There may be an updated version of"
- f" {cls.__name__} available."
- )
- return values
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "anthropic-llm"
-
- def _wrap_prompt(self, prompt: str) -> str:
- if not self.HUMAN_PROMPT or not self.AI_PROMPT:
- raise NameError(
- "Please ensure the anthropic package is loaded"
- )
-
- if prompt.startswith(self.HUMAN_PROMPT):
- return prompt # Already wrapped.
-
- # Guard against common errors in specifying wrong number of newlines.
- corrected_prompt, n_subs = re.subn(
- r"^\n*Human:", self.HUMAN_PROMPT, prompt
- )
- if n_subs == 1:
- return corrected_prompt
-
- # As a last resort, wrap the prompt ourselves to emulate instruct-style.
- return (
- f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here"
- " you go:\n"
- )
-
- def _call(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- r"""Call out to Anthropic's completion endpoint.
-
- Args:
- prompt: The prompt to pass into the model.
- stop: Optional list of stop words to use when generating.
-
- Returns:
- The string generated by the model.
-
- Example:
- .. code-block:: python
-
- prompt = "What are the biggest risks facing humanity?"
- prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
- response = model(prompt)
-
- """
- if self.streaming:
- completion = ""
- for chunk in self._stream(
- prompt=prompt,
- stop=stop,
- run_manager=run_manager,
- **kwargs,
- ):
- completion += chunk.text
- return completion
-
- stop = self._get_anthropic_stop(stop)
- params = {**self._default_params, **kwargs}
- response = self.client.completions.create(
- prompt=self._wrap_prompt(prompt),
- stop_sequences=stop,
- **params,
- )
- return response.completion
-
- def convert_prompt(self, prompt: PromptValue) -> str:
- return self._wrap_prompt(prompt.to_string())
-
- async def _acall(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- """Call out to Anthropic's completion endpoint asynchronously."""
- if self.streaming:
- completion = ""
- async for chunk in self._astream(
- prompt=prompt,
- stop=stop,
- run_manager=run_manager,
- **kwargs,
- ):
- completion += chunk.text
- return completion
-
- stop = self._get_anthropic_stop(stop)
- params = {**self._default_params, **kwargs}
-
- response = await self.async_client.completions.create(
- prompt=self._wrap_prompt(prompt),
- stop_sequences=stop,
- **params,
- )
- return response.completion
-
- def _stream(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> Iterator[GenerationChunk]:
- r"""Call Anthropic completion_stream and return the resulting generator.
-
- Args:
- prompt: The prompt to pass into the model.
- stop: Optional list of stop words to use when generating.
- Returns:
- A generator representing the stream of tokens from Anthropic.
- Example:
- .. code-block:: python
-
- prompt = "Write a poem about a stream."
- prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
- generator = anthropic.stream(prompt)
- for token in generator:
- yield token
- """
- stop = self._get_anthropic_stop(stop)
- params = {**self._default_params, **kwargs}
-
- for token in self.client.completions.create(
- prompt=self._wrap_prompt(prompt),
- stop_sequences=stop,
- stream=True,
- **params,
- ):
- chunk = GenerationChunk(text=token.completion)
- yield chunk
- if run_manager:
- run_manager.on_llm_new_token(chunk.text, chunk=chunk)
-
- async def _astream(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> AsyncIterator[GenerationChunk]:
- r"""Call Anthropic completion_stream and return the resulting generator.
-
- Args:
- prompt: The prompt to pass into the model.
- stop: Optional list of stop words to use when generating.
- Returns:
- A generator representing the stream of tokens from Anthropic.
- Example:
- .. code-block:: python
- prompt = "Write a poem about a stream."
- prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
- generator = anthropic.stream(prompt)
- for token in generator:
- yield token
- """
- stop = self._get_anthropic_stop(stop)
- params = {**self._default_params, **kwargs}
-
- async for token in await self.async_client.completions.create(
- prompt=self._wrap_prompt(prompt),
- stop_sequences=stop,
- stream=True,
- **params,
- ):
- chunk = GenerationChunk(text=token.completion)
- yield chunk
- if run_manager:
- await run_manager.on_llm_new_token(
- chunk.text, chunk=chunk
- )
-
- def get_num_tokens(self, text: str) -> int:
- """Calculate number of tokens."""
- if not self.count_tokens:
- raise NameError(
- "Please ensure the anthropic package is loaded"
- )
- return self.count_tokens(text)
diff --git a/swarms/models/azure_openai_llm.py b/swarms/models/azure_openai_llm.py
deleted file mode 100644
index aebb03fb..00000000
--- a/swarms/models/azure_openai_llm.py
+++ /dev/null
@@ -1,223 +0,0 @@
-from __future__ import annotations
-
-import logging
-import os
-from typing import Any, Callable, Mapping
-
-import openai
-from langchain_core.pydantic_v1 import (
- Field,
- SecretStr,
- root_validator,
-)
-from langchain_core.utils import (
- convert_to_secret_str,
- get_from_dict_or_env,
-)
-from langchain_openai.llms.base import BaseOpenAI
-
-logger = logging.getLogger(__name__)
-
-
-class AzureOpenAI(BaseOpenAI):
- """Azure-specific OpenAI large language models.
-
- To use, you should have the ``openai`` python package installed, and the
- environment variable ``OPENAI_API_KEY`` set with your API key.
-
- Any parameters that are valid to be passed to the openai.create call can be passed
- in, even if not explicitly saved on this class.
-
- Example:
- .. code-block:: python
-
- from swarms import AzureOpenAI
-
- openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct")
- """
-
- azure_endpoint: str | None = None
- """Your Azure endpoint, including the resource.
-
- Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
-
- Example: `https://example-resource.azure.openai.com/`
- """
- deployment_name: str | None = Field(
- default=None, alias="azure_deployment"
- )
- """A model deployment.
-
- If given sets the base client URL to include `/deployments/{azure_deployment}`.
- Note: this means you won't be able to use non-deployment endpoints.
- """
- openai_api_version: str = Field(default="", alias="api_version")
- """Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
- openai_api_key: SecretStr | None = Field(
- default=None, alias="api_key"
- )
- """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
- azure_ad_token: SecretStr | None = None
- """Your Azure Active Directory token.
-
- Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
-
- For more:
- https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
- """ # noqa: E501
- azure_ad_token_provider: Callable[[], str] | None = None
- """A function that returns an Azure Active Directory token.
-
- Will be invoked on every request.
- """
- openai_api_type: str = ""
- """Legacy, for openai<1.0.0 support."""
- validate_base_url: bool = True
- """For backwards compatibility. If legacy val openai_api_base is passed in, try to
- infer if it is a base_url or azure_endpoint and update accordingly.
- """
-
- @classmethod
- def get_lc_namespace(cls) -> list[str]:
- """Get the namespace of the langchain object."""
- return ["langchain", "llms", "openai"]
-
- @root_validator()
- def validate_environment(cls, values: dict) -> dict:
- """Validate that api key and python package exists in environment."""
- if values["n"] < 1:
- raise ValueError("n must be at least 1.")
- if values["streaming"] and values["n"] > 1:
- raise ValueError("Cannot stream results when n > 1.")
- if values["streaming"] and values["best_of"] > 1:
- raise ValueError(
- "Cannot stream results when best_of > 1."
- )
-
- # Check OPENAI_KEY for backwards compatibility.
- # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
- # other forms of azure credentials.
- openai_api_key = (
- values["openai_api_key"]
- or os.getenv("AZURE_OPENAI_API_KEY")
- or os.getenv("OPENAI_API_KEY")
- )
- values["openai_api_key"] = (
- convert_to_secret_str(openai_api_key)
- if openai_api_key
- else None
- )
-
- values["azure_endpoint"] = values[
- "azure_endpoint"
- ] or os.getenv("AZURE_OPENAI_ENDPOINT")
- azure_ad_token = values["azure_ad_token"] or os.getenv(
- "AZURE_OPENAI_AD_TOKEN"
- )
- values["azure_ad_token"] = (
- convert_to_secret_str(azure_ad_token)
- if azure_ad_token
- else None
- )
- values["openai_api_base"] = values[
- "openai_api_base"
- ] or os.getenv("OPENAI_API_BASE")
- values["openai_proxy"] = get_from_dict_or_env(
- values,
- "openai_proxy",
- "OPENAI_PROXY",
- default="",
- )
- values["openai_organization"] = (
- values["openai_organization"]
- or os.getenv("OPENAI_ORG_ID")
- or os.getenv("OPENAI_ORGANIZATION")
- )
- values["openai_api_version"] = values[
- "openai_api_version"
- ] or os.getenv("OPENAI_API_VERSION")
- values["openai_api_type"] = get_from_dict_or_env(
- values,
- "openai_api_type",
- "OPENAI_API_TYPE",
- default="azure",
- )
- # For backwards compatibility. Before openai v1, no distinction was made
- # between azure_endpoint and base_url (openai_api_base).
- openai_api_base = values["openai_api_base"]
- if openai_api_base and values["validate_base_url"]:
- if "/openai" not in openai_api_base:
- values["openai_api_base"] = (
- values["openai_api_base"].rstrip("/") + "/openai"
- )
- raise ValueError(
- "As of openai>=1.0.0, Azure endpoints should be"
- " specified via the `azure_endpoint` param not"
- " `openai_api_base` (or alias `base_url`)."
- )
- if values["deployment_name"]:
- raise ValueError(
- "As of openai>=1.0.0, if `deployment_name` (or"
- " alias `azure_deployment`) is specified then"
- " `openai_api_base` (or alias `base_url`) should"
- " not be. Instead use `deployment_name` (or alias"
- " `azure_deployment`) and `azure_endpoint`."
- )
- values["deployment_name"] = None
- client_params = {
- "api_version": values["openai_api_version"],
- "azure_endpoint": values["azure_endpoint"],
- "azure_deployment": values["deployment_name"],
- "api_key": (
- values["openai_api_key"].get_secret_value()
- if values["openai_api_key"]
- else None
- ),
- "azure_ad_token": (
- values["azure_ad_token"].get_secret_value()
- if values["azure_ad_token"]
- else None
- ),
- "azure_ad_token_provider": values[
- "azure_ad_token_provider"
- ],
- "organization": values["openai_organization"],
- "base_url": values["openai_api_base"],
- "timeout": values["request_timeout"],
- "max_retries": values["max_retries"],
- "default_headers": values["default_headers"],
- "default_query": values["default_query"],
- "http_client": values["http_client"],
- }
- values["client"] = openai.AzureOpenAI(
- **client_params
- ).completions
- values["async_client"] = openai.AsyncAzureOpenAI(
- **client_params
- ).completions
-
- return values
-
- @property
- def _identifying_params(self) -> Mapping[str, Any]:
- return {
- **{"deployment_name": self.deployment_name},
- **super()._identifying_params,
- }
-
- @property
- def _invocation_params(self) -> dict[str, Any]:
- openai_params = {"model": self.deployment_name}
- return {**openai_params, **super()._invocation_params}
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "azure"
-
- @property
- def lc_attributes(self) -> dict[str, Any]:
- return {
- "openai_api_type": self.openai_api_type,
- "openai_api_version": self.openai_api_version,
- }
diff --git a/swarms/models/base_vision_model.py b/swarms/models/base_vision_model.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/swarms/models/cohere_chat.py b/swarms/models/cohere_chat.py
deleted file mode 100644
index 98cc30bb..00000000
--- a/swarms/models/cohere_chat.py
+++ /dev/null
@@ -1,258 +0,0 @@
-import logging
-from typing import Any, Callable, Dict, List, Optional
-
-from langchain.callbacks.manager import (
- AsyncCallbackManagerForLLMRun,
- CallbackManagerForLLMRun,
-)
-from langchain.llms.base import LLM
-from langchain.llms.utils import enforce_stop_tokens
-from langchain.load.serializable import Serializable
-from langchain.utils import get_from_dict_or_env
-from pydantic import Extra, Field, root_validator
-from tenacity import (
- before_sleep_log,
- retry,
- retry_if_exception_type,
- stop_after_attempt,
- wait_exponential,
-)
-
-logger = logging.getLogger(__name__)
-
-
-def _create_retry_decorator(llm) -> Callable[[Any], Any]:
- import cohere
-
- min_seconds = 4
- max_seconds = 10
- # Wait 2^x * 1 second between each retry starting with
- # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
- return retry(
- reraise=True,
- stop=stop_after_attempt(llm.max_retries),
- wait=wait_exponential(
- multiplier=1, min=min_seconds, max=max_seconds
- ),
- retry=retry_if_exception_type(cohere.error.CohereError),
- before_sleep=before_sleep_log(logger, logging.WARNING),
- )
-
-
-def completion_with_retry(llm, **kwargs: Any) -> Any:
- """Use tenacity to retry the completion call."""
- retry_decorator = _create_retry_decorator(llm)
-
- @retry_decorator
- def _completion_with_retry(**kwargs: Any) -> Any:
- return llm.client.generate(**kwargs)
-
- return _completion_with_retry(**kwargs)
-
-
-def acompletion_with_retry(llm, **kwargs: Any) -> Any:
- """Use tenacity to retry the completion call."""
- retry_decorator = _create_retry_decorator(llm)
-
- @retry_decorator
- async def _completion_with_retry(**kwargs: Any) -> Any:
- return await llm.async_client.generate(**kwargs)
-
- return _completion_with_retry(**kwargs)
-
-
-class BaseCohere(Serializable):
- """Base class for Cohere models."""
-
- client: Any #: :meta private:
- async_client: Any #: :meta private:
- model: Optional[str] = Field(
- default=None, description="Model name to use."
- )
- """Model name to use."""
-
- temperature: float = 0.75
- """A non-negative float that tunes the degree of randomness in generation."""
-
- cohere_api_key: Optional[str] = None
-
- stop: Optional[List[str]] = None
-
- streaming: bool = Field(default=False)
- """Whether to stream the results."""
-
- user_agent: str = "langchain"
- """Identifier for the application making the request."""
-
- @root_validator()
- def validate_environment(cls, values: Dict) -> Dict:
- """Validate that api key and python package exists in environment."""
- try:
- import cohere
- except ImportError:
- raise ImportError(
- "Could not import cohere python package. "
- "Please install it with `pip install cohere`."
- )
- else:
- cohere_api_key = get_from_dict_or_env(
- values, "cohere_api_key", "COHERE_API_KEY"
- )
- client_name = values["user_agent"]
- values["client"] = cohere.Client(
- cohere_api_key, client_name=client_name
- )
- values["async_client"] = cohere.AsyncClient(
- cohere_api_key, client_name=client_name
- )
- return values
-
-
-class Cohere(LLM, BaseCohere):
- """Cohere large language models.
-
- To use, you should have the ``cohere`` python package installed, and the
- environment variable ``COHERE_API_KEY`` set with your API key, or pass
- it as a named parameter to the constructor.
-
- Example:
- .. code-block:: python
-
- from langchain.llms import Cohere
-
- cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
- """
-
- max_tokens: int = 256
- """Denotes the number of tokens to predict per generation."""
-
- k: int = 0
- """Number of most likely tokens to consider at each step."""
-
- p: int = 1
- """Total probability mass of tokens to consider at each step."""
-
- frequency_penalty: float = 0.0
- """Penalizes repeated tokens according to frequency. Between 0 and 1."""
-
- presence_penalty: float = 0.0
- """Penalizes repeated tokens. Between 0 and 1."""
-
- truncate: Optional[str] = None
- """Specify how the client handles inputs longer than the maximum token
- length: Truncate from START, END or NONE"""
-
- max_retries: int = 10
- """Maximum number of retries to make when generating."""
-
- class Config:
- """Configuration for this pydantic object."""
-
- extra = Extra.forbid
-
- @property
- def _default_params(self) -> Dict[str, Any]:
- """Get the default parameters for calling Cohere API."""
- return {
- "max_tokens": self.max_tokens,
- "temperature": self.temperature,
- "k": self.k,
- "p": self.p,
- "frequency_penalty": self.frequency_penalty,
- "presence_penalty": self.presence_penalty,
- "truncate": self.truncate,
- }
-
- @property
- def lc_secrets(self) -> Dict[str, str]:
- return {"cohere_api_key": "COHERE_API_KEY"}
-
- @property
- def _identifying_params(self) -> Dict[str, Any]:
- """Get the identifying parameters."""
- return {**{"model": self.model}, **self._default_params}
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "cohere"
-
- def _invocation_params(
- self, stop: Optional[List[str]], **kwargs: Any
- ) -> dict:
- params = self._default_params
- if self.stop is not None and stop is not None:
- raise ValueError(
- "`stop` found in both the input and default params."
- )
- elif self.stop is not None:
- params["stop_sequences"] = self.stop
- else:
- params["stop_sequences"] = stop
- return {**params, **kwargs}
-
- def _process_response(
- self, response: Any, stop: Optional[List[str]]
- ) -> str:
- text = response.generations[0].text
- # If stop tokens are provided, Cohere's endpoint returns them.
- # In order to make this consistent with other endpoints, we strip them.
- if stop:
- text = enforce_stop_tokens(text, stop)
- return text
-
- def _call(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[CallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- """Call out to Cohere's generate endpoint.
-
- Args:
- prompt: The prompt to pass into the model.
- stop: Optional list of stop words to use when generating.
-
- Returns:
- The string generated by the model.
-
- Example:
- .. code-block:: python
-
- response = cohere("Tell me a joke.")
- """
- params = self._invocation_params(stop, **kwargs)
- response = completion_with_retry(
- self, model=self.model, prompt=prompt, **params
- )
- _stop = params.get("stop_sequences")
- return self._process_response(response, _stop)
-
- async def _acall(
- self,
- prompt: str,
- stop: Optional[List[str]] = None,
- run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
- **kwargs: Any,
- ) -> str:
- """Async call out to Cohere's generate endpoint.
-
- Args:
- prompt: The prompt to pass into the model.
- stop: Optional list of stop words to use when generating.
-
- Returns:
- The string generated by the model.
-
- Example:
- .. code-block:: python
-
- response = await cohere("Tell me a joke.")
- """
- params = self._invocation_params(stop, **kwargs)
- response = await acompletion_with_retry(
- self, model=self.model, prompt=prompt, **params
- )
- _stop = params.get("stop_sequences")
- return self._process_response(response, _stop)
diff --git a/swarms/models/diffusers_general.py b/swarms/models/diffusers_general.py
deleted file mode 100644
index 9d7ea250..00000000
--- a/swarms/models/diffusers_general.py
+++ /dev/null
@@ -1 +0,0 @@
-# Base implementation for the diffusers library
diff --git a/swarms/models/eleven_labs.py b/swarms/models/eleven_labs.py
deleted file mode 100644
index 759c65bb..00000000
--- a/swarms/models/eleven_labs.py
+++ /dev/null
@@ -1,114 +0,0 @@
-import tempfile
-from enum import Enum
-from typing import Any, Dict, Union
-
-from langchain.utils import get_from_dict_or_env
-from pydantic import model_validator
-
-from swarms.tools.tool import BaseTool
-
-
-def _import_elevenlabs() -> Any:
- try:
- import elevenlabs
- except ImportError as e:
- raise ImportError(
- "Cannot import elevenlabs, please install `pip install"
- " elevenlabs`."
- ) from e
- return elevenlabs
-
-
-class ElevenLabsModel(str, Enum):
- """Models available for Eleven Labs Text2Speech."""
-
- MULTI_LINGUAL = "eleven_multilingual_v1"
- MONO_LINGUAL = "eleven_monolingual_v1"
-
-
-class ElevenLabsText2SpeechTool(BaseTool):
- """Tool that queries the Eleven Labs Text2Speech API.
-
- In order to set this up, follow instructions at:
- https://docs.elevenlabs.io/welcome/introduction
-
- Attributes:
- model (ElevenLabsModel): The model to use for text to speech.
- Defaults to ElevenLabsModel.MULTI_LINGUAL.
- name (str): The name of the tool. Defaults to "eleven_labs_text2speech".
- description (str): The description of the tool.
- Defaults to "A wrapper around Eleven Labs Text2Speech. Useful for when you need to convert text to speech. It supports multiple languages, including English, German, Polish, Spanish, Italian, French, Portuguese, and Hindi."
-
-
- Usage:
- >>> from swarms.models import ElevenLabsText2SpeechTool
- >>> stt = ElevenLabsText2SpeechTool()
- >>> speech_file = stt.run("Hello world!")
- >>> stt.play(speech_file)
- >>> stt.stream_speech("Hello world!")
-
- """
-
- model: Union[ElevenLabsModel, str] = ElevenLabsModel.MULTI_LINGUAL
-
- name: str = "eleven_labs_text2speech"
- description: str = (
- "A wrapper around Eleven Labs Text2Speech. Useful for when"
- " you need to convert text to speech. It supports multiple"
- " languages, including English, German, Polish, Spanish,"
- " Italian, French, Portuguese, and Hindi. "
- )
-
- @model_validator(mode="before")
- @classmethod
- def validate_environment(cls, values: Dict) -> Dict:
- """Validate that api key exists in environment."""
- _ = get_from_dict_or_env(
- values, "eleven_api_key", "ELEVEN_API_KEY"
- )
-
- return values
-
- def _run(
- self,
- task: str,
- ) -> str:
- """Use the tool."""
- elevenlabs = _import_elevenlabs()
- try:
- speech = elevenlabs.generate(text=task, model=self.model)
- with tempfile.NamedTemporaryFile(
- mode="bx", suffix=".wav", delete=False
- ) as f:
- f.write(speech)
- return f.name
- except Exception as e:
- raise RuntimeError(
- f"Error while running ElevenLabsText2SpeechTool: {e}"
- )
-
- def play(self, speech_file: str) -> None:
- """Play the text as speech."""
- elevenlabs = _import_elevenlabs()
- with open(speech_file, mode="rb") as f:
- speech = f.read()
-
- elevenlabs.play(speech)
-
- def stream_speech(self, query: str) -> None:
- """Stream the text as speech as it is generated.
- Play the text in your speakers."""
- elevenlabs = _import_elevenlabs()
- speech_stream = elevenlabs.generate(
- text=query, model=self.model, stream=True
- )
- elevenlabs.stream(speech_stream)
-
- def save(self, speech_file: str, path: str) -> None:
- """Save the speech file to a path."""
- raise NotImplementedError(
- "Saving not implemented for this tool."
- )
-
- def __str__(self):
- return "ElevenLabsText2SpeechTool"
diff --git a/swarms/models/inference_engine.py b/swarms/models/inference_engine.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/swarms/models/mistral_function_caller.py b/swarms/models/mistral_function_caller.py
deleted file mode 100644
index f3b0d32f..00000000
--- a/swarms/models/mistral_function_caller.py
+++ /dev/null
@@ -1 +0,0 @@
-""""""
diff --git a/swarms/models/model_registry.py b/swarms/models/model_registry.py
deleted file mode 100644
index ee5bab81..00000000
--- a/swarms/models/model_registry.py
+++ /dev/null
@@ -1,82 +0,0 @@
-import inspect
-import pkgutil
-
-
-class ModelRegistry:
- """
- A registry for storing and querying models.
-
- Attributes:
- models (dict): A dictionary of model names and corresponding model classes.
-
- Methods:
- __init__(): Initializes the ModelRegistry object and retrieves all available models.
- _get_all_models(): Retrieves all available models from the models package.
- query(text): Queries the models based on the given text and returns a dictionary of matching models.
- """
-
- def __init__(self):
- self.models = self._get_all_models()
-
- def _get_all_models(self):
- """
- Retrieves all available models from the models package.
-
- Returns:
- dict: A dictionary of model names and corresponding model classes.
- """
- models = {}
- for importer, modname, ispkg in pkgutil.iter_modules(
- models.__path__
- ):
- module = importer.find_module(modname).load_module(
- modname
- )
- for name, obj in inspect.getmembers(module):
- if inspect.isclass(obj):
- models[name] = obj
- return models
-
- def query(self, text):
- """
- Queries the models based on the given text and returns a dictionary of matching models.
-
- Args:
- text (str): The text to search for in the model names.
-
- Returns:
- dict: A dictionary of matching model names and corresponding model classes.
- """
- return {
- name: model
- for name, model in self.models.items()
- if text in name
- }
-
- def run_model(
- self, model_name: str, task: str, img: str, *args, **kwargs
- ):
- """
- Runs the specified model for the given task and image.
-
- Args:
- model_name (str): The name of the model to run.
- task (str): The task to perform using the model.
- img (str): The image to process.
- *args: Additional positional arguments to pass to the model's run method.
- **kwargs: Additional keyword arguments to pass to the model's run method.
-
- Returns:
- The result of running the model.
-
- Raises:
- ValueError: If the specified model is not found in the model registry.
- """
- if model_name not in self.models:
- raise ValueError(f"Model {model_name} not found")
-
- # Get the model
- model = self.models[model_name]
-
- # Run the model
- return model.run(task, img, *args, **kwargs)
diff --git a/swarms/models/modelscope_llm.py b/swarms/models/modelscope_llm.py
deleted file mode 100644
index 03cd978d..00000000
--- a/swarms/models/modelscope_llm.py
+++ /dev/null
@@ -1,83 +0,0 @@
-from typing import Optional
-
-from modelscope import AutoModelForCausalLM, AutoTokenizer
-
-from swarms.models.base_llm import AbstractLLM
-
-
-class ModelScopeAutoModel(AbstractLLM):
- """
- ModelScopeAutoModel is a class that represents a model for generating text using the ModelScope framework.
-
- Args:
- model_name (str): The name or path of the pre-trained model.
- tokenizer_name (str, optional): The name or path of the tokenizer to use. Defaults to None.
- device (str, optional): The device to use for model inference. Defaults to "cuda".
- device_map (str, optional): The device mapping for multi-GPU setups. Defaults to "auto".
- max_new_tokens (int, optional): The maximum number of new tokens to generate. Defaults to 500.
- skip_special_tokens (bool, optional): Whether to skip special tokens during decoding. Defaults to True.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
-
- Attributes:
- tokenizer (AutoTokenizer): The tokenizer used for tokenizing input text.
- model (AutoModelForCausalLM): The pre-trained model for generating text.
-
- Methods:
- run(task, *args, **kwargs): Generates text based on the given task.
-
- Examples:
- >>> from swarms.models import ModelScopeAutoModel
- >>> mp = ModelScopeAutoModel(
- ... model_name="gpt2",
- ... )
- >>> mp.run("Generate a 10,000 word blog on health and wellness.")
- """
-
- def __init__(
- self,
- model_name: str,
- tokenizer_name: Optional[str] = None,
- device: str = "cuda",
- device_map: str = "auto",
- max_new_tokens: int = 500,
- skip_special_tokens: bool = True,
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.model_name = model_name
- self.tokenizer_name = tokenizer_name
- self.device = device
- self.device_map = device_map
- self.max_new_tokens = max_new_tokens
- self.skip_special_tokens = skip_special_tokens
-
- self.tokenizer = AutoTokenizer.from_pretrained(
- self.tokenizer_name
- )
- self.model = AutoModelForCausalLM.from_pretrained(
- self.model_name, device_map=device_map * args, **kwargs
- )
-
- def run(self, task: str, *args, **kwargs):
- """
- Run the model on the given task.
-
- Parameters:
- task (str): The input task to be processed.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
-
- Returns:
- str: The generated output from the model.
- """
- text = self.tokenizer(task, return_tensors="pt")
-
- outputs = self.model.generate(
- **text, max_new_tokens=self.max_new_tokens, **kwargs
- )
-
- return self.tokenizer.decode(
- outputs[0], skip_special_tokens=self.skip_special_tokens
- )
diff --git a/swarms/models/modelscope_pipeline.py b/swarms/models/modelscope_pipeline.py
deleted file mode 100644
index ed75b33b..00000000
--- a/swarms/models/modelscope_pipeline.py
+++ /dev/null
@@ -1,58 +0,0 @@
-from modelscope.pipelines import pipeline
-
-from swarms.models.base_llm import AbstractLLM
-
-
-class ModelScopePipeline(AbstractLLM):
- """
- A class representing a ModelScope pipeline.
-
- Args:
- type_task (str): The type of task for the pipeline.
- model_name (str): The name of the model for the pipeline.
- *args: Variable length argument list.
- **kwargs: Arbitrary keyword arguments.
-
- Attributes:
- type_task (str): The type of task for the pipeline.
- model_name (str): The name of the model for the pipeline.
- model: The pipeline model.
-
- Methods:
- run: Runs the pipeline for a given task.
-
- Examples:
- >>> from swarms.models import ModelScopePipeline
- >>> mp = ModelScopePipeline(
- ... type_task="text-generation",
- ... model_name="gpt2",
- ... )
- >>> mp.run("Generate a 10,000 word blog on health and wellness.")
-
- """
-
- def __init__(
- self, type_task: str, model_name: str, *args, **kwargs
- ):
- super().__init__(*args, **kwargs)
- self.type_task = type_task
- self.model_name = model_name
-
- self.model = pipeline(
- self.type_task, model=self.model_name, *args, **kwargs
- )
-
- def run(self, task: str, *args, **kwargs):
- """
- Runs the pipeline for a given task.
-
- Args:
- task (str): The task to be performed by the pipeline.
- *args: Variable length argument list.
- **kwargs: Arbitrary keyword arguments.
-
- Returns:
- The result of running the pipeline on the given task.
-
- """
- return self.model(task, *args, **kwargs)
diff --git a/swarms/models/odin.py b/swarms/models/odin.py
index 68bfaffd..288fe0dd 100644
--- a/swarms/models/odin.py
+++ b/swarms/models/odin.py
@@ -2,7 +2,7 @@ import os
import supervision as sv
from tqdm import tqdm
-from ultralytics_example import YOLO
+from ultralytics import YOLO
from swarms.models.base_llm import AbstractLLM
from swarms.utils.download_weights_from_url import (
diff --git a/swarms/models/openai_embeddings.py b/swarms/models/openai_embeddings.py
index c8151bdb..f352ee17 100644
--- a/swarms/models/openai_embeddings.py
+++ b/swarms/models/openai_embeddings.py
@@ -5,7 +5,7 @@ import warnings
from typing import Any, Callable, Literal, Sequence
import numpy as np
-from pydantic import BaseModel, Extra, Field, root_validator
+from pydantic import model_validator, ConfigDict, BaseModel, Field
from tenacity import (
AsyncRetrying,
before_sleep_log,
@@ -179,7 +179,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""
- client: Any #: :meta private:
+ client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: str | None = None
@@ -218,13 +218,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""Whether to show a progress bar when embedding."""
model_kwargs: dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
+ model_config = ConfigDict(extra="forbid")
- class Config:
- """Configuration for this pydantic object."""
-
- extra = Extra.forbid
-
- @root_validator(pre=True)
+ @model_validator(mode="before")
+ @classmethod
def build_extra(cls, values: dict[str, Any]) -> dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
@@ -255,7 +252,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
values["model_kwargs"] = extra
return values
- @root_validator()
+ @model_validator()
+ @classmethod
def validate_environment(cls, values: dict) -> dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
diff --git a/swarms/models/openai_function_caller.py b/swarms/models/openai_function_caller.py
deleted file mode 100644
index e6822793..00000000
--- a/swarms/models/openai_function_caller.py
+++ /dev/null
@@ -1,262 +0,0 @@
-from typing import Any, Dict, List, Optional, Union
-
-import openai
-import requests
-from pydantic import BaseModel, validator
-from tenacity import (
- retry,
- stop_after_attempt,
- wait_random_exponential,
-)
-from termcolor import colored
-
-
-class FunctionSpecification(BaseModel):
- """
- Defines the specification for a function including its parameters and metadata.
-
- Attributes:
- -----------
- name: str
- The name of the function.
- description: str
- A brief description of what the function does.
- parameters: Dict[str, Any]
- The parameters required by the function, with their details.
- required: Optional[List[str]]
- List of required parameter names.
-
- Methods:
- --------
- validate_params(params: Dict[str, Any]) -> None:
- Validates the parameters against the function's specification.
-
-
-
- Example:
-
- # Example Usage
- def get_current_weather(location: str, format: str) -> str:
- ``'
- Example function to get current weather.
-
- Args:
- location (str): The city and state, e.g. San Francisco, CA.
- format (str): The temperature unit, e.g. celsius or fahrenheit.
-
- Returns:
- str: Weather information.
- '''
- # Implementation goes here
- return "Sunny, 23°C"
-
-
- weather_function_spec = FunctionSpecification(
- name="get_current_weather",
- description="Get the current weather",
- parameters={
- "location": {"type": "string", "description": "The city and state"},
- "format": {
- "type": "string",
- "enum": ["celsius", "fahrenheit"],
- "description": "The temperature unit",
- },
- },
- required=["location", "format"],
- )
-
- # Validating parameters for the function
- params = {"location": "San Francisco, CA", "format": "celsius"}
- weather_function_spec.validate_params(params)
-
- # Calling the function
- print(get_current_weather(**params))
- """
-
- name: str
- description: str
- parameters: Dict[str, Any]
- required: Optional[List[str]] = None
-
- @validator("parameters")
- def check_parameters(cls, params):
- if not isinstance(params, dict):
- raise ValueError("Parameters must be a dictionary.")
- return params
-
- def validate_params(self, params: Dict[str, Any]) -> None:
- """
- Validates the parameters against the function's specification.
-
- Args:
- params (Dict[str, Any]): The parameters to validate.
-
- Raises:
- ValueError: If any required parameter is missing or if any parameter is invalid.
- """
- for key, value in params.items():
- if key in self.parameters:
- self.parameters[key]
- # Perform specific validation based on param_spec
- # This can include type checking, range validation, etc.
- else:
- raise ValueError(f"Unexpected parameter: {key}")
-
- for req_param in self.required or []:
- if req_param not in params:
- raise ValueError(
- f"Missing required parameter: {req_param}"
- )
-
-
-class OpenAIFunctionCaller:
- def __init__(
- self,
- openai_api_key: str,
- model: str = "text-davinci-003",
- max_tokens: int = 3000,
- temperature: float = 0.5,
- top_p: float = 1.0,
- n: int = 1,
- stream: bool = False,
- stop: Optional[str] = None,
- echo: bool = False,
- frequency_penalty: float = 0.0,
- presence_penalty: float = 0.0,
- logprobs: Optional[int] = None,
- best_of: int = 1,
- logit_bias: Dict[str, float] = None,
- user: str = None,
- messages: List[Dict] = None,
- timeout_sec: Union[float, None] = None,
- ):
- self.openai_api_key = openai_api_key
- self.model = model
- self.max_tokens = max_tokens
- self.temperature = temperature
- self.top_p = top_p
- self.n = n
- self.stream = stream
- self.stop = stop
- self.echo = echo
- self.frequency_penalty = frequency_penalty
- self.presence_penalty = presence_penalty
- self.logprobs = logprobs
- self.best_of = best_of
- self.logit_bias = logit_bias
- self.user = user
- self.messages = messages if messages is not None else []
- self.timeout_sec = timeout_sec
-
- def add_message(self, role: str, content: str):
- self.messages.append({"role": role, "content": content})
-
- @retry(
- wait=wait_random_exponential(multiplier=1, max=40),
- stop=stop_after_attempt(3),
- )
- def chat_completion_request(
- self,
- messages,
- tools=None,
- tool_choice=None,
- ):
- headers = {
- "Content-Type": "application/json",
- "Authorization": "Bearer " + openai.api_key,
- }
- json_data = {"model": self.model, "messages": messages}
- if tools is not None:
- json_data.update({"tools": tools})
- if tool_choice is not None:
- json_data.update({"tool_choice": tool_choice})
- try:
- response = requests.post(
- "https://api.openai.com/v1/chat/completions",
- headers=headers,
- json=json_data,
- )
- return response
- except Exception as e:
- print("Unable to generate ChatCompletion response")
- print(f"Exception: {e}")
- return e
-
- def pretty_print_conversation(self, messages):
- role_to_color = {
- "system": "red",
- "user": "green",
- "assistant": "blue",
- "tool": "magenta",
- }
-
- for message in messages:
- if message["role"] == "system":
- print(
- colored(
- f"system: {message['content']}\n",
- role_to_color[message["role"]],
- )
- )
- elif message["role"] == "user":
- print(
- colored(
- f"user: {message['content']}\n",
- role_to_color[message["role"]],
- )
- )
- elif message["role"] == "assistant" and message.get(
- "function_call"
- ):
- print(
- colored(
- f"assistant: {message['function_call']}\n",
- role_to_color[message["role"]],
- )
- )
- elif message["role"] == "assistant" and not message.get(
- "function_call"
- ):
- print(
- colored(
- f"assistant: {message['content']}\n",
- role_to_color[message["role"]],
- )
- )
- elif message["role"] == "tool":
- print(
- colored(
- (
- f"function ({message['name']}):"
- f" {message['content']}\n"
- ),
- role_to_color[message["role"]],
- )
- )
-
- def call(self, task: str, *args, **kwargs) -> Dict:
- return openai.Completion.create(
- engine=self.model,
- prompt=task,
- max_tokens=self.max_tokens,
- temperature=self.temperature,
- top_p=self.top_p,
- n=self.n,
- stream=self.stream,
- stop=self.stop,
- echo=self.echo,
- frequency_penalty=self.frequency_penalty,
- presence_penalty=self.presence_penalty,
- logprobs=self.logprobs,
- best_of=self.best_of,
- logit_bias=self.logit_bias,
- user=self.user,
- messages=self.messages,
- timeout_sec=self.timeout_sec,
- *args,
- **kwargs,
- )
-
- def run(self, task: str, *args, **kwargs) -> str:
- response = self.call(task, *args, **kwargs)
- return response["choices"][0]["text"].strip()
diff --git a/swarms/models/openai_models.py b/swarms/models/openai_models.py
deleted file mode 100644
index f5273e88..00000000
--- a/swarms/models/openai_models.py
+++ /dev/null
@@ -1,1165 +0,0 @@
-from __future__ import annotations
-
-import asyncio
-import functools
-import logging
-import sys
-from importlib.metadata import version
-from typing import (
- AbstractSet,
- Any,
- AsyncIterator,
- Callable,
- Collection,
- Iterator,
- Literal,
- Mapping,
-)
-
-from langchain.callbacks.manager import (
- AsyncCallbackManagerForLLMRun,
- CallbackManagerForLLMRun,
-)
-from langchain.llms.base import BaseLLM
-from langchain.pydantic_v1 import Field, root_validator
-from langchain.schema import Generation, LLMResult
-from langchain.schema.output import GenerationChunk
-from langchain.utils import (
- get_from_dict_or_env,
- get_pydantic_field_names,
-)
-from langchain.utils.utils import build_extra_kwargs
-from packaging.version import parse
-from tenacity import (
- RetryCallState,
- before_sleep_log,
- retry,
- retry_base,
- retry_if_exception_type,
- stop_after_attempt,
- wait_exponential,
-)
-
-logger = logging.getLogger(__name__)
-
-
-@functools.lru_cache
-def _log_error_once(msg: str) -> None:
- """Log an error once."""
- logger.error(msg)
-
-
-def create_base_retry_decorator(
- error_types: list[type[BaseException]],
- max_retries: int = 1,
- run_manager: (
- AsyncCallbackManagerForLLMRun | CallbackManagerForLLMRun
- )
- | None = None,
-) -> Callable[[Any], Any]:
- """Create a retry decorator for a given LLM and provided list of error types."""
-
- _logging = before_sleep_log(logger, logging.WARNING)
-
- def _before_sleep(retry_state: RetryCallState) -> None:
- _logging(retry_state)
- if run_manager:
- if isinstance(run_manager, AsyncCallbackManagerForLLMRun):
- coro = run_manager.on_retry(retry_state)
- try:
- loop = asyncio.get_event_loop()
- if loop.is_running():
- loop.create_task(coro)
- else:
- asyncio.run(coro)
- except Exception as e:
- _log_error_once(f"Error in on_retry: {e}")
- else:
- run_manager.on_retry(retry_state)
- return None
-
- min_seconds = 4
- max_seconds = 10
- # Wait 2^x * 1 second between each retry starting with
- # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
- retry_instance: retry_base = retry_if_exception_type(
- error_types[0]
- )
- for error in error_types[1:]:
- retry_instance = retry_instance | retry_if_exception_type(
- error
- )
- return retry(
- reraise=True,
- stop=stop_after_attempt(max_retries),
- wait=wait_exponential(
- multiplier=1, min=min_seconds, max=max_seconds
- ),
- retry=retry_instance,
- before_sleep=_before_sleep,
- )
-
-
-def is_openai_v1() -> bool:
- _version = parse(version("openai"))
- return _version.major >= 1
-
-
-def update_token_usage(
- keys: set[str],
- response: dict[str, Any],
- token_usage: dict[str, Any],
-) -> None:
- """Update token usage."""
- _keys_to_use = keys.intersection(response["usage"])
- for _key in _keys_to_use:
- if _key not in token_usage:
- token_usage[_key] = response["usage"][_key]
- else:
- token_usage[_key] += response["usage"][_key]
-
-
-def _stream_response_to_generation_chunk(
- stream_response: dict[str, Any],
-) -> GenerationChunk:
- """Convert a stream response to a generation chunk."""
- return GenerationChunk(
- text=stream_response["choices"][0]["text"],
- generation_info=dict(
- finish_reason=stream_response["choices"][0].get(
- "finish_reason", None
- ),
- logprobs=stream_response["choices"][0].get(
- "logprobs", None
- ),
- ),
- )
-
-
-def _update_response(
- response: dict[str, Any], stream_response: dict[str, Any]
-) -> None:
- """Update response from the stream response."""
- response["choices"][0]["text"] += stream_response["choices"][0][
- "text"
- ]
- response["choices"][0]["finish_reason"] = stream_response[
- "choices"
- ][0].get("finish_reason", None)
- response["choices"][0]["logprobs"] = stream_response["choices"][
- 0
- ]["logprobs"]
-
-
-def _streaming_response_template() -> dict[str, Any]:
- return {
- "choices": [
- {
- "text": "",
- "finish_reason": None,
- "logprobs": None,
- }
- ]
- }
-
-
-def _create_retry_decorator(
- llm: BaseOpenAI | OpenAIChat,
- run_manager: (
- AsyncCallbackManagerForLLMRun | CallbackManagerForLLMRun
- )
- | None = None,
-) -> Callable[[Any], Any]:
- import openai
-
- errors = [
- openai.error.Timeout,
- openai.error.APIError,
- openai.error.APIConnectionError,
- openai.error.RateLimitError,
- openai.error.ServiceUnavailableError,
- ]
- return create_base_retry_decorator(
- error_types=errors,
- max_retries=llm.max_retries,
- run_manager=run_manager,
- )
-
-
-def completion_with_retry(
- llm: BaseOpenAI | OpenAIChat,
- run_manager: CallbackManagerForLLMRun | None = None,
- **kwargs: Any,
-) -> Any:
- """Use tenacity to retry the completion call."""
- retry_decorator = _create_retry_decorator(
- llm, run_manager=run_manager
- )
-
- @retry_decorator
- def _completion_with_retry(**kwargs: Any) -> Any:
- return llm.client.create(**kwargs)
-
- return _completion_with_retry(**kwargs)
-
-
-async def acompletion_with_retry(
- llm: BaseOpenAI | OpenAIChat,
- run_manager: AsyncCallbackManagerForLLMRun | None = None,
- **kwargs: Any,
-) -> Any:
- """Use tenacity to retry the async completion call."""
- retry_decorator = _create_retry_decorator(
- llm, run_manager=run_manager
- )
-
- @retry_decorator
- async def _completion_with_retry(**kwargs: Any) -> Any:
- # Use OpenAI's async api https://github.com/openai/openai-python#async-api
- return await llm.client.acreate(**kwargs)
-
- return await _completion_with_retry(**kwargs)
-
-
-class BaseOpenAI(BaseLLM):
- """Base OpenAI large language model class."""
-
- @property
- def lc_secrets(self) -> dict[str, str]:
- return {"openai_api_key": "OPENAI_API_KEY"}
-
- @property
- def lc_attributes(self) -> dict[str, Any]:
- attributes: dict[str, Any] = {}
- if self.openai_api_base != "":
- attributes["openai_api_base"] = self.openai_api_base
-
- if self.openai_organization != "":
- attributes["openai_organization"] = (
- self.openai_organization
- )
-
- if self.openai_proxy != "":
- attributes["openai_proxy"] = self.openai_proxy
-
- return attributes
-
- @classmethod
- def is_lc_serializable(cls) -> bool:
- return True
-
- client: Any = None #: :meta private:
- model_name: str = Field(
- default="gpt-4-1106-preview", alias="model"
- )
- """Model name to use."""
- temperature: float = 0.7
- """What sampling temperature to use."""
- max_tokens: int = 256
- """The maximum number of tokens to generate in the completion.
- -1 returns as many tokens as possible given the prompt and
- the models maximal context size."""
- top_p: float = 1
- """Total probability mass of tokens to consider at each step."""
- frequency_penalty: float = 0
- """Penalizes repeated tokens according to frequency."""
- presence_penalty: float = 0
- """Penalizes repeated tokens."""
- n: int = 1
- """How many completions to generate for each prompt."""
- best_of: int = 1
- """Generates best_of completions server-side and returns the "best"."""
- model_kwargs: dict[str, Any] = Field(default_factory=dict)
- """Holds any model parameters valid for `create` call not explicitly specified."""
- openai_api_key: str | None = None # | None = None
- openai_api_base: str | None = None
- openai_organization: str | None = None
- # to support explicit proxy for OpenAI
- openai_proxy: str | None = None
- batch_size: int = 20
- """Batch size to use when passing multiple documents to generate."""
- request_timeout: float | tuple[float, float] | None = None
- """Timeout for requests to OpenAI completion API. Default is 600 seconds."""
- logit_bias: dict[str, float] = Field(default_factory=dict)
- """Adjust the probability of specific tokens being generated."""
- max_retries: int = 6
- """Maximum number of retries to make when generating."""
- streaming: bool = False
- """Whether to stream the results or not."""
- allowed_special: Literal["all"] | AbstractSet[str] = set()
- """Set of special tokens that are allowed。"""
- disallowed_special: Literal["all"] | Collection[str] = "all"
- """Set of special tokens that are not allowed。"""
- tiktoken_model_name: str | None = None
- """The model name to pass to tiktoken when using this class.
- Tiktoken is used to count the number of tokens in documents to constrain
- them to be under a certain limit. By default, when set to None, this will
- be the same as the embedding model name. However, there are some cases
- where you may want to use this Embedding class with a model name not
- supported by tiktoken. This can include when using Azure embeddings or
- when using one of the many model providers that expose an OpenAI-like
- API but with different models. In those cases, in order to avoid erroring
- when tiktoken is called, you can specify a model name to use here."""
-
- def __new__(cls, **data: Any) -> OpenAIChat | BaseOpenAI: # type: ignore
- """Initialize the OpenAI object."""
- data.get("model_name", "")
- return super().__new__(cls)
-
- class Config:
- """Configuration for this pydantic object."""
-
- allow_population_by_field_name = True
-
- @root_validator(pre=True)
- def build_extra(cls, values: dict[str, Any]) -> dict[str, Any]:
- """Build extra kwargs from additional params that were passed in."""
- all_required_field_names = get_pydantic_field_names(cls)
- extra = values.get("model_kwargs", {})
- values["model_kwargs"] = build_extra_kwargs(
- extra, values, all_required_field_names
- )
- return values
-
- @root_validator()
- def validate_environment(cls, values: dict) -> dict:
- """Validate that api key and python package exists in environment."""
- values["openai_api_key"] = get_from_dict_or_env(
- values, "openai_api_key", "OPENAI_API_KEY"
- )
- values["openai_api_base"] = get_from_dict_or_env(
- values,
- "openai_api_base",
- "OPENAI_API_BASE",
- default="",
- )
- values["openai_proxy"] = get_from_dict_or_env(
- values,
- "openai_proxy",
- "OPENAI_PROXY",
- default="",
- )
- values["openai_organization"] = get_from_dict_or_env(
- values,
- "openai_organization",
- "OPENAI_ORGANIZATION",
- default="",
- )
- try:
- import openai
-
- values["client"] = openai.Completion
- except ImportError:
- raise ImportError(
- "Could not import openai python package. "
- "Please install it with `pip install openai`."
- )
- if values["streaming"] and values["n"] > 1:
- raise ValueError("Cannot stream results when n > 1.")
- if values["streaming"] and values["best_of"] > 1:
- raise ValueError(
- "Cannot stream results when best_of > 1."
- )
- return values
-
- @property
- def _default_params(self) -> dict[str, Any]:
- """Get the default parameters for calling OpenAI API."""
- normal_params = {
- "temperature": self.temperature,
- "max_tokens": self.max_tokens,
- "top_p": self.top_p,
- "frequency_penalty": self.frequency_penalty,
- "presence_penalty": self.presence_penalty,
- "n": self.n,
- "request_timeout": self.request_timeout,
- "logit_bias": self.logit_bias,
- }
-
- # Azure gpt-35-turbo doesn't support best_of
- # don't specify best_of if it is 1
- if self.best_of > 1:
- normal_params["best_of"] = self.best_of
-
- return {**normal_params, **self.model_kwargs}
-
- def _stream(
- self,
- prompt: str,
- stop: list[str] | None = None,
- run_manager: CallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> Iterator[GenerationChunk]:
- params = {**self._invocation_params, **kwargs, "stream": True}
- self.get_sub_prompts(
- params, [prompt], stop
- ) # this mutates params
- for stream_resp in completion_with_retry(
- self, prompt=prompt, run_manager=run_manager, **params
- ):
- chunk = _stream_response_to_generation_chunk(stream_resp)
- yield chunk
- if run_manager:
- run_manager.on_llm_new_token(
- chunk.text,
- chunk=chunk,
- verbose=self.verbose,
- logprobs=(
- chunk.generation_info["logprobs"]
- if chunk.generation_info
- else None
- ),
- )
-
- async def _astream(
- self,
- prompt: str,
- stop: list[str] | None = None,
- run_manager: AsyncCallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> AsyncIterator[GenerationChunk]:
- params = {**self._invocation_params, **kwargs, "stream": True}
- self.get_sub_prompts(
- params, [prompt], stop
- ) # this mutate params
- async for stream_resp in await acompletion_with_retry(
- self, prompt=prompt, run_manager=run_manager, **params
- ):
- chunk = _stream_response_to_generation_chunk(stream_resp)
- yield chunk
- if run_manager:
- await run_manager.on_llm_new_token(
- chunk.text,
- chunk=chunk,
- verbose=self.verbose,
- logprobs=(
- chunk.generation_info["logprobs"]
- if chunk.generation_info
- else None
- ),
- )
-
- def _generate(
- self,
- prompts: list[str],
- stop: list[str] | None = None,
- run_manager: CallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> LLMResult:
- """Call out to OpenAI's endpoint with k unique prompts.
-
- Args:
- prompts: The prompts to pass into the model.
- stop: Optional list of stop words to use when generating.
-
- Returns:
- The full LLM output.
-
- Example:
- .. code-block:: python
-
- response = openai.generate(["Tell me a joke."])
- """
- # TODO: write a unit test for this
- params = self._invocation_params
- params = {**params, **kwargs}
- sub_prompts = self.get_sub_prompts(params, prompts, stop)
- choices = []
- token_usage: dict[str, int] = {}
- # Get the token usage from the response.
- # Includes prompt, completion, and total tokens used.
- _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
- for _prompts in sub_prompts:
- if self.streaming:
- if len(_prompts) > 1:
- raise ValueError(
- "Cannot stream results with multiple prompts."
- )
-
- generation: GenerationChunk | None = None
- for chunk in self._stream(
- _prompts[0], stop, run_manager, **kwargs
- ):
- if generation is None:
- generation = chunk
- else:
- generation += chunk
- assert generation is not None
- choices.append(
- {
- "text": generation.text,
- "finish_reason": (
- generation.generation_info.get(
- "finish_reason"
- )
- if generation.generation_info
- else None
- ),
- "logprobs": (
- generation.generation_info.get("logprobs")
- if generation.generation_info
- else None
- ),
- }
- )
- else:
- response = completion_with_retry(
- self,
- prompt=_prompts,
- run_manager=run_manager,
- **params,
- )
- choices.extend(response["choices"])
- update_token_usage(_keys, response, token_usage)
- return self.create_llm_result(choices, prompts, token_usage)
-
- async def _agenerate(
- self,
- prompts: list[str],
- stop: list[str] | None = None,
- run_manager: AsyncCallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> LLMResult:
- """Call out to OpenAI's endpoint async with k unique prompts."""
- params = self._invocation_params
- params = {**params, **kwargs}
- sub_prompts = self.get_sub_prompts(params, prompts, stop)
- choices = []
- token_usage: dict[str, int] = {}
- # Get the token usage from the response.
- # Includes prompt, completion, and total tokens used.
- _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
- for _prompts in sub_prompts:
- if self.streaming:
- if len(_prompts) > 1:
- raise ValueError(
- "Cannot stream results with multiple prompts."
- )
-
- generation: GenerationChunk | None = None
- async for chunk in self._astream(
- _prompts[0], stop, run_manager, **kwargs
- ):
- if generation is None:
- generation = chunk
- else:
- generation += chunk
- assert generation is not None
- choices.append(
- {
- "text": generation.text,
- "finish_reason": (
- generation.generation_info.get(
- "finish_reason"
- )
- if generation.generation_info
- else None
- ),
- "logprobs": (
- generation.generation_info.get("logprobs")
- if generation.generation_info
- else None
- ),
- }
- )
- else:
- response = await acompletion_with_retry(
- self,
- prompt=_prompts,
- run_manager=run_manager,
- **params,
- )
- choices.extend(response["choices"])
- update_token_usage(_keys, response, token_usage)
- return self.create_llm_result(choices, prompts, token_usage)
-
- def get_sub_prompts(
- self,
- params: dict[str, Any],
- prompts: list[str],
- stop: list[str] | None = None,
- ) -> list[list[str]]:
- """Get the sub prompts for llm call."""
- if stop is not None:
- if "stop" in params:
- raise ValueError(
- "`stop` found in both the input and default"
- " params."
- )
- params["stop"] = stop
- if params["max_tokens"] == -1:
- if len(prompts) != 1:
- raise ValueError(
- "max_tokens set to -1 not supported for multiple"
- " inputs."
- )
- params["max_tokens"] = self.max_tokens_for_prompt(
- prompts[0]
- )
- sub_prompts = [
- prompts[i : i + self.batch_size]
- for i in range(0, len(prompts), self.batch_size)
- ]
- return sub_prompts
-
- def create_llm_result(
- self,
- choices: Any,
- prompts: list[str],
- token_usage: dict[str, int],
- ) -> LLMResult:
- """Create the LLMResult from the choices and prompts."""
- generations = []
- for i, _ in enumerate(prompts):
- sub_choices = choices[i * self.n : (i + 1) * self.n]
- generations.append(
- [
- Generation(
- text=choice["text"],
- generation_info=dict(
- finish_reason=choice.get("finish_reason"),
- logprobs=choice.get("logprobs"),
- ),
- )
- for choice in sub_choices
- ]
- )
- llm_output = {
- "token_usage": token_usage,
- "model_name": self.model_name,
- }
- return LLMResult(
- generations=generations, llm_output=llm_output
- )
-
- @property
- def _invocation_params(self) -> dict[str, Any]:
- """Get the parameters used to invoke the model."""
- openai_creds: dict[str, Any] = {
- "api_key": self.openai_api_key,
- "api_base": self.openai_api_base,
- "organization": self.openai_organization,
- }
- if self.openai_proxy:
- import openai
-
- openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501
- return {**openai_creds, **self._default_params}
-
- @property
- def _identifying_params(self) -> Mapping[str, Any]:
- """Get the identifying parameters."""
- return {
- **{"model_name": self.model_name},
- **self._default_params,
- }
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "openai"
-
- def get_token_ids(self, text: str) -> list[int]:
- """Get the token IDs using the tiktoken package."""
- # tiktoken NOT supported for Python < 3.8
- if sys.version_info[1] < 8:
- return super().get_num_tokens(text)
- try:
- import tiktoken
- except ImportError:
- raise ImportError(
- "Could not import tiktoken python package. This is"
- " needed in order to calculate get_num_tokens. Please"
- " install it with `pip install tiktoken`."
- )
-
- model_name = self.tiktoken_model_name or self.model_name
- try:
- enc = tiktoken.encoding_for_model(model_name)
- except KeyError:
- logger.warning(
- "Warning: model not found. Using cl100k_base"
- " encoding."
- )
- model = "cl100k_base"
- enc = tiktoken.get_encoding(model)
-
- return enc.encode(
- text,
- allowed_special=self.allowed_special,
- disallowed_special=self.disallowed_special,
- )
-
- @staticmethod
- def modelname_to_contextsize(modelname: str) -> int:
- """Calculate the maximum number of tokens possible to generate for a model.
-
- Args:
- modelname: The modelname we want to know the context size for.
-
- Returns:
- The maximum context size
-
- Example:
- .. code-block:: python
-
- max_tokens = openai.modelname_to_contextsize("text-davinci-003")
- """
- model_token_mapping = {
- "gpt-4": 8192,
- "gpt-4-0314": 8192,
- "gpt-4-0613": 8192,
- "gpt-4-32k": 32768,
- "gpt-4-32k-0314": 32768,
- "gpt-4-32k-0613": 32768,
- "gpt-3.5-turbo": 4096,
- "gpt-3.5-turbo-0301": 4096,
- "gpt-3.5-turbo-0613": 4096,
- "gpt-3.5-turbo-16k": 16385,
- "gpt-3.5-turbo-16k-0613": 16385,
- "gpt-3.5-turbo-instruct": 4096,
- "text-ada-001": 2049,
- "ada": 2049,
- "text-babbage-001": 2040,
- "babbage": 2049,
- "text-curie-001": 2049,
- "curie": 2049,
- "davinci": 2049,
- "text-davinci-003": 4097,
- "text-davinci-002": 4097,
- "code-davinci-002": 8001,
- "code-davinci-001": 8001,
- "code-cushman-002": 2048,
- "code-cushman-001": 2048,
- }
-
- # handling finetuned models
- if "ft-" in modelname:
- modelname = modelname.split(":")[0]
-
- context_size = model_token_mapping.get(modelname, None)
-
- if context_size is None:
- raise ValueError(
- f"Unknown model: {modelname}. Please provide a valid"
- " OpenAI model name.Known models are: "
- + ", ".join(model_token_mapping.keys())
- )
-
- return context_size
-
- @property
- def max_context_size(self) -> int:
- """Get max context size for this model."""
- return self.modelname_to_contextsize(self.model_name)
-
- def max_tokens_for_prompt(self, prompt: str) -> int:
- """Calculate the maximum number of tokens possible to generate for a prompt.
-
- Args:
- prompt: The prompt to pass into the model.
-
- Returns:
- The maximum number of tokens to generate for a prompt.
-
- Example:
- .. code-block:: python
-
- max_tokens = openai.max_token_for_prompt("Tell me a joke.")
- """
- num_tokens = self.get_num_tokens(prompt)
- return self.max_context_size - num_tokens
-
-
-class OpenAI(BaseOpenAI):
- """OpenAI large language models.
-
- To use, you should have the ``openai`` python package installed, and the
- environment variable ``OPENAI_API_KEY`` set with your API key.
-
- Any parameters that are valid to be passed to the openai.create call can be passed
- in, even if not explicitly saved on this class.
-
- Example:
- .. code-block:: python
-
- from langchain.llms import OpenAI
-
- openai = OpenAI(model_name="text-davinci-003")
- """
-
- @property
- def _invocation_params(self) -> dict[str, Any]:
- return {
- **{"model": self.model_name},
- **super()._invocation_params,
- }
-
-
-class AzureOpenAI(BaseOpenAI):
- """Azure-specific OpenAI large language models.
-
- To use, you should have the ``openai`` python package installed, and the
- environment variable ``OPENAI_API_KEY`` set with your API key.
-
- Any parameters that are valid to be passed to the openai.create call can be passed
- in, even if not explicitly saved on this class.
-
- Example:
- .. code-block:: python
-
- from langchain.llms import AzureOpenAI
-
- openai = AzureOpenAI(model_name="text-davinci-003")
- """
-
- deployment_name: str = ""
- """Deployment name to use."""
- openai_api_type: str = ""
- openai_api_version: str = ""
-
- @root_validator()
- def validate_azure_settings(cls, values: dict) -> dict:
- values["openai_api_version"] = get_from_dict_or_env(
- values,
- "openai_api_version",
- "OPENAI_API_VERSION",
- )
- values["openai_api_type"] = get_from_dict_or_env(
- values, "openai_api_type", "OPENAI_API_TYPE", "azure"
- )
- return values
-
- @property
- def _identifying_params(self) -> Mapping[str, Any]:
- return {
- **{"deployment_name": self.deployment_name},
- **super()._identifying_params,
- }
-
- @property
- def _invocation_params(self) -> dict[str, Any]:
- openai_params = {
- "engine": self.deployment_name,
- "api_type": self.openai_api_type,
- "api_version": self.openai_api_version,
- }
- return {**openai_params, **super()._invocation_params}
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "azure"
-
- @property
- def lc_attributes(self) -> dict[str, Any]:
- return {
- "openai_api_type": self.openai_api_type,
- "openai_api_version": self.openai_api_version,
- }
-
-
-class OpenAIChat(BaseLLM):
- """OpenAI Chat large language models.
-
- To use, you should have the ``openai`` python package installed, and the
- environment variable ``OPENAI_API_KEY`` set with your API key.
-
- Any parameters that are valid to be passed to the openai.create call can be passed
- in, even if not explicitly saved on this class.
-
- Args:
-
- model_name: The model name to use.
- model_kwargs: Any additional kwargs to pass to the model.
- openai_api_key: The OpenAI API key to use.
- openai_api_base: The OpenAI API base to use.
- openai_proxy: The OpenAI proxy to use.
- max_retries: The maximum number of retries to make when generating.
- prefix_messages: The prefix messages to use.
- streaming: Whether to stream the results or not.
- allowed_special: Set of special tokens that are allowed。
- disallowed_special: Set of special tokens that are not allowed。
-
-
-
- Example:
- .. code-block:: python
-
- from langchain.llms import OpenAIChat
-
- openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
- """
-
- client: Any #: :meta private:
- model_name: str = "gpt-4-1106-preview"
- model_kwargs: dict[str, Any] = Field(default_factory=dict)
- openai_api_key: str | None = None
- openai_api_base: str | None = None
- openai_proxy: str | None = None
- max_retries: int = 6
- """Maximum number of retries to make when generating."""
- prefix_messages: list = Field(default_factory=list)
- """Series of messages for Chat input."""
- streaming: bool = False
- """Whether to stream the results or not."""
- allowed_special: Literal["all"] | AbstractSet[str] = set()
- """Set of special tokens that are allowed。"""
- disallowed_special: Literal["all"] | Collection[str] = "all"
- """Set of special tokens that are not allowed。"""
-
- @root_validator(pre=True)
- def build_extra(cls, values: dict[str, Any]) -> dict[str, Any]:
- """Build extra kwargs from additional params that were passed in."""
- all_required_field_names = {
- field.alias for field in cls.__fields__.values()
- }
-
- extra = values.get("model_kwargs", {})
- for field_name in list(values):
- if field_name not in all_required_field_names:
- if field_name in extra:
- raise ValueError(
- f"Found {field_name} supplied twice."
- )
- extra[field_name] = values.pop(field_name)
- values["model_kwargs"] = extra
- return values
-
- @root_validator()
- def validate_environment(cls, values: dict) -> dict:
- """Validate that api key and python package exists in environment."""
- openai_api_key = get_from_dict_or_env(
- values, "openai_api_key", "OPENAI_API_KEY"
- )
- openai_api_base = get_from_dict_or_env(
- values,
- "openai_api_base",
- "OPENAI_API_BASE",
- default="",
- )
- openai_proxy = get_from_dict_or_env(
- values,
- "openai_proxy",
- "OPENAI_PROXY",
- default="",
- )
- openai_organization = get_from_dict_or_env(
- values,
- "openai_organization",
- "OPENAI_ORGANIZATION",
- default="",
- )
- try:
- import openai
-
- openai.api_key = openai_api_key
- if openai_api_base:
- openai.api_base = openai_api_base
- if openai_organization:
- openai.organization = openai_organization
- if openai_proxy:
- openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
- except ImportError:
- raise ImportError(
- "Could not import openai python package. "
- "Please install it with `pip install openai`."
- )
- try:
- values["client"] = openai.ChatCompletion
- except AttributeError:
- raise ValueError(
- "`openai` has no `ChatCompletion` attribute, this is"
- " likely due to an old version of the openai package."
- " Try upgrading it with `pip install --upgrade"
- " openai`."
- )
- return values
-
- @property
- def _default_params(self) -> dict[str, Any]:
- """Get the default parameters for calling OpenAI API."""
- return self.model_kwargs
-
- def _get_chat_params(
- self, prompts: list[str], stop: list[str] | None = None
- ) -> tuple:
- if len(prompts) > 1:
- raise ValueError(
- "OpenAIChat currently only supports single prompt,"
- f" got {prompts}"
- )
- messages = self.prefix_messages + [
- {"role": "user", "content": prompts[0]}
- ]
- params: dict[str, Any] = {
- **{"model": self.model_name},
- **self._default_params,
- }
- if stop is not None:
- if "stop" in params:
- raise ValueError(
- "`stop` found in both the input and default"
- " params."
- )
- params["stop"] = stop
- if params.get("max_tokens") == -1:
- # for ChatGPT api, omitting max_tokens is equivalent to having no limit
- del params["max_tokens"]
- return messages, params
-
- def _stream(
- self,
- prompt: str,
- stop: list[str] | None = None,
- run_manager: CallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> Iterator[GenerationChunk]:
- messages, params = self._get_chat_params([prompt], stop)
- params = {**params, **kwargs, "stream": True}
- for stream_resp in completion_with_retry(
- self, messages=messages, run_manager=run_manager, **params
- ):
- token = stream_resp["choices"][0]["delta"].get(
- "content", ""
- )
- chunk = GenerationChunk(text=token)
- yield chunk
- if run_manager:
- run_manager.on_llm_new_token(token, chunk=chunk)
-
- async def _astream(
- self,
- prompt: str,
- stop: list[str] | None = None,
- run_manager: AsyncCallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> AsyncIterator[GenerationChunk]:
- messages, params = self._get_chat_params([prompt], stop)
- params = {**params, **kwargs, "stream": True}
- async for stream_resp in await acompletion_with_retry(
- self, messages=messages, run_manager=run_manager, **params
- ):
- token = stream_resp["choices"][0]["delta"].get(
- "content", ""
- )
- chunk = GenerationChunk(text=token)
- yield chunk
- if run_manager:
- await run_manager.on_llm_new_token(token, chunk=chunk)
-
- def _generate(
- self,
- prompts: list[str],
- stop: list[str] | None = None,
- run_manager: CallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> LLMResult:
- if self.streaming:
- generation: GenerationChunk | None = None
- for chunk in self._stream(
- prompts[0], stop, run_manager, **kwargs
- ):
- if generation is None:
- generation = chunk
- else:
- generation += chunk
- assert generation is not None
- return LLMResult(generations=[[generation]])
-
- messages, params = self._get_chat_params(prompts, stop)
- params = {**params, **kwargs}
- full_response = completion_with_retry(
- self, messages=messages, run_manager=run_manager, **params
- )
- llm_output = {
- "token_usage": full_response["usage"],
- "model_name": self.model_name,
- }
- return LLMResult(
- generations=[
- [
- Generation(
- text=full_response["choices"][0]["message"][
- "content"
- ]
- )
- ]
- ],
- llm_output=llm_output,
- )
-
- async def _agenerate(
- self,
- prompts: list[str],
- stop: list[str] | None = None,
- run_manager: AsyncCallbackManagerForLLMRun | None = None,
- **kwargs: Any,
- ) -> LLMResult:
- if self.streaming:
- generation: GenerationChunk | None = None
- async for chunk in self._astream(
- prompts[0], stop, run_manager, **kwargs
- ):
- if generation is None:
- generation = chunk
- else:
- generation += chunk
- assert generation is not None
- return LLMResult(generations=[[generation]])
-
- messages, params = self._get_chat_params(prompts, stop)
- params = {**params, **kwargs}
- full_response = await acompletion_with_retry(
- self, messages=messages, run_manager=run_manager, **params
- )
- llm_output = {
- "token_usage": full_response["usage"],
- "model_name": self.model_name,
- }
- return LLMResult(
- generations=[
- [
- Generation(
- text=full_response["choices"][0]["message"][
- "content"
- ]
- )
- ]
- ],
- llm_output=llm_output,
- )
-
- @property
- def _identifying_params(self) -> Mapping[str, Any]:
- """Get the identifying parameters."""
- return {
- **{"model_name": self.model_name},
- **self._default_params,
- }
-
- @property
- def _llm_type(self) -> str:
- """Return type of llm."""
- return "openai-chat"
-
- def get_token_ids(self, text: str) -> list[int]:
- """Get the token IDs using the tiktoken package."""
- # tiktoken NOT supported for Python < 3.8
- if sys.version_info[1] < 8:
- return super().get_token_ids(text)
- try:
- import tiktoken
- except ImportError:
- raise ImportError(
- "Could not import tiktoken python package. This is"
- " needed in order to calculate get_num_tokens. Please"
- " install it with `pip install tiktoken`."
- )
-
- enc = tiktoken.encoding_for_model(self.model_name)
- return enc.encode(
- text,
- allowed_special=self.allowed_special,
- disallowed_special=self.disallowed_special,
- )
diff --git a/swarms/models/palm.py b/swarms/models/palm.py
index ee0cbea2..1d7f71d6 100644
--- a/swarms/models/palm.py
+++ b/swarms/models/palm.py
@@ -5,7 +5,7 @@ from typing import Any, Callable
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms import BaseLLM
-from langchain.pydantic_v1 import BaseModel, root_validator
+from langchain.pydantic_v1 import BaseModel
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
from tenacity import (
@@ -15,6 +15,7 @@ from tenacity import (
stop_after_attempt,
wait_exponential,
)
+from pydantic import model_validator
logger = logging.getLogger(__name__)
@@ -104,7 +105,8 @@ class GooglePalm(BaseLLM, BaseModel):
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
- @root_validator()
+ @model_validator()
+ @classmethod
def validate_environment(cls, values: dict) -> dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
diff --git a/swarms/models/phi.py b/swarms/models/phi.py
deleted file mode 100644
index 90fca08e..00000000
--- a/swarms/models/phi.py
+++ /dev/null
@@ -1 +0,0 @@
-"""Phi by Microsoft written by Kye"""
diff --git a/swarms/models/popular_llms.py b/swarms/models/popular_llms.py
new file mode 100644
index 00000000..449080b5
--- /dev/null
+++ b/swarms/models/popular_llms.py
@@ -0,0 +1,48 @@
+from langchain_community.chat_models.azure_openai import (
+ AzureChatOpenAI,
+)
+from langchain_community.chat_models.openai import (
+ ChatOpenAI as OpenAIChat,
+)
+from langchain_community.llms import (
+ Anthropic,
+ Cohere,
+ MosaicML,
+ OpenAI,
+ Replicate,
+)
+
+
+class AnthropicChat(Anthropic):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class CohereChat(Cohere):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class MosaicMLChat(MosaicML):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class OpenAILLM(OpenAI):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class ReplicateLLM(Replicate):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class AzureOpenAILLM(AzureChatOpenAI):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
+
+
+class OpenAIChatLLM(OpenAIChat):
+ def __call__(self, *args, **kwargs):
+ return self.invoke(*args, **kwargs)
diff --git a/swarms/models/ssd_1b.py b/swarms/models/ssd_1b.py
index 4479c866..3042d1ab 100644
--- a/swarms/models/ssd_1b.py
+++ b/swarms/models/ssd_1b.py
@@ -10,7 +10,7 @@ import torch
from cachetools import TTLCache
from diffusers import StableDiffusionXLPipeline
from PIL import Image
-from pydantic import validator
+from pydantic import field_validator
from termcolor import colored
@@ -72,7 +72,8 @@ class SSD1B:
arbitrary_types_allowed = True
- @validator("max_retries", "time_seconds")
+ @field_validator("max_retries", "time_seconds")
+ @classmethod
def must_be_positive(cls, value):
if value <= 0:
raise ValueError("Must be positive")
diff --git a/swarms/models/test_fire_function.py b/swarms/models/test_fire_function.py
deleted file mode 100644
index 082d954d..00000000
--- a/swarms/models/test_fire_function.py
+++ /dev/null
@@ -1,44 +0,0 @@
-from unittest.mock import MagicMock
-
-from swarms.models.fire_function import FireFunctionCaller
-
-
-def test_fire_function_caller_run(mocker):
- # Create mock model and tokenizer
- model = MagicMock()
- tokenizer = MagicMock()
- mocker.patch.object(FireFunctionCaller, "model", model)
- mocker.patch.object(FireFunctionCaller, "tokenizer", tokenizer)
-
- # Create mock task and arguments
- task = "Add 2 and 3"
- args = (2, 3)
- kwargs = {}
-
- # Create mock generated_ids and decoded output
- generated_ids = [1, 2, 3]
- decoded_output = "5"
- model.generate.return_value = generated_ids
- tokenizer.batch_decode.return_value = [decoded_output]
-
- # Create FireFunctionCaller instance
- fire_function_caller = FireFunctionCaller()
-
- # Run the function
- fire_function_caller.run(task, *args, **kwargs)
-
- # Assert model.generate was called with the correct inputs
- model.generate.assert_called_once_with(
- tokenizer.apply_chat_template.return_value,
- max_new_tokens=fire_function_caller.max_tokens,
- *args,
- **kwargs,
- )
-
- # Assert tokenizer.batch_decode was called with the correct inputs
- tokenizer.batch_decode.assert_called_once_with(generated_ids)
-
- # Assert the decoded output is printed
- assert decoded_output in mocker.patch.object(
- print, "call_args_list"
- )
diff --git a/swarms/models/vllm.py b/swarms/models/vllm.py
deleted file mode 100644
index cf9cda45..00000000
--- a/swarms/models/vllm.py
+++ /dev/null
@@ -1,97 +0,0 @@
-import torch
-
-from swarms.models.base_llm import AbstractLLM
-
-if torch.cuda.is_available() or torch.cuda.device_count() > 0:
- # Download vllm with pip
- try:
- from vllm import LLM, SamplingParams
- except ImportError as error:
- print(f"[ERROR] [vLLM] {error}")
- raise error
-else:
- from swarms.models.huggingface import HuggingfaceLLM as LLM
-
- SamplingParams = None
-
-
-class vLLM(AbstractLLM):
- """vLLM model
-
-
- Args:
- model_name (str, optional): _description_. Defaults to "facebook/opt-13b".
- tensor_parallel_size (int, optional): _description_. Defaults to 4.
- trust_remote_code (bool, optional): _description_. Defaults to False.
- revision (str, optional): _description_. Defaults to None.
- temperature (float, optional): _description_. Defaults to 0.5.
- top_p (float, optional): _description_. Defaults to 0.95.
- *args: _description_.
- **kwargs: _description_.
-
- Methods:
- run: run the vLLM model
-
- Raises:
- error: _description_
-
- Examples:
- >>> from swarms.models.vllm import vLLM
- >>> vllm = vLLM()
- >>> vllm.run("Hello world!")
-
-
- """
-
- def __init__(
- self,
- model_name: str = "facebook/opt-13b",
- tensor_parallel_size: int = 4,
- trust_remote_code: bool = False,
- revision: str = None,
- temperature: float = 0.5,
- top_p: float = 0.95,
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.model_name = model_name
- self.tensor_parallel_size = tensor_parallel_size
- self.trust_remote_code = trust_remote_code
- self.revision = revision
- self.top_p = top_p
-
- # LLM model
- self.llm = LLM(
- model_name=self.model_name,
- tensor_parallel_size=self.tensor_parallel_size,
- trust_remote_code=self.trust_remote_code,
- revision=self.revision,
- *args,
- **kwargs,
- )
-
- # Sampling parameters
- self.sampling_params = SamplingParams(
- temperature=temperature, top_p=top_p, *args, **kwargs
- )
-
- def run(self, task: str = None, *args, **kwargs):
- """Run the vLLM model
-
- Args:
- task (str, optional): _description_. Defaults to None.
-
- Raises:
- error: _description_
-
- Returns:
- _type_: _description_
- """
- try:
- return self.llm.generate(
- task, self.sampling_params, *args, **kwargs
- )
- except Exception as error:
- print(f"[ERROR] [vLLM] [run] {error}")
- raise error
diff --git a/swarms/prompts/worker_prompt.py b/swarms/prompts/worker_prompt.py
index 08636516..410ecb2a 100644
--- a/swarms/prompts/worker_prompt.py
+++ b/swarms/prompts/worker_prompt.py
@@ -1,11 +1,31 @@
import datetime
+from pydantic import BaseModel, Field
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+class Thoughts(BaseModel):
+ text: str = Field(..., title="Thoughts")
+ reasoning: str = Field(..., title="Reasoning")
+ plan: str = Field(..., title="Plan")
+
+
+class Command(BaseModel):
+ name: str = Field(..., title="Command Name")
+ args: dict = Field({}, title="Command Arguments")
+
+
+class ResponseFormat(BaseModel):
+ thoughts: Thoughts = Field(..., title="Thoughts")
+ command: Command = Field(..., title="Command")
+
+
+response_json = ResponseFormat.model_json_schema()
+
+
def worker_tools_sop_promp(name: str, memory: str, time=time):
- out = """
- You are {name},
+ out = f"""
+ You are {name},
Your decisions must always be made independently without seeking user assistance.
Play to your strengths as an LLM and pursue simple strategies with no legal complications.
If you have completed all your tasks, make sure to use the 'finish' command.
@@ -29,7 +49,7 @@ def worker_tools_sop_promp(name: str, memory: str, time=time):
1. Internet access for searches and information gathering.
2. Long Term memory management.
- 3. GPT-3.5 powered Agents for delegation of simple tasks.
+ 3. Agents for delegation of simple tasks.
4. File output.
Performance Evaluation:
@@ -39,29 +59,18 @@ def worker_tools_sop_promp(name: str, memory: str, time=time):
3. Reflect on past decisions and strategies to refine your approach.
4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.
- You should only respond in JSON format as described below
- Response Format:
- {
- 'thoughts': {
- 'text': 'thoughts',
- 'reasoning': 'reasoning',
- 'plan': '- short bulleted - list that conveys - long-term plan',
- 'criticism': 'constructive self-criticism',
- 'speak': 'thoughts summary to say to user'
- },
- 'command': {
- 'name': 'command name',
- 'args': {
- 'arg name': 'value'
- }
- }
- }
+ You should only respond in JSON format as described below Response Format, you will respond only in markdown format within 6 backticks. The JSON will be in markdown format.
+
+ ```
+ {response_json}
+ ```
+
Ensure the response can be parsed by Python json.loads
System: The current time and date is {time}
System: This reminds you of these events from your past:
[{memory}]
Human: Determine which next command to use, and respond using the format specified above:
- """.format(name=name, time=time, memory=memory)
+ """
return str(out)
diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py
index 44f38f5d..f35e2e04 100644
--- a/swarms/structs/agent.py
+++ b/swarms/structs/agent.py
@@ -6,7 +6,7 @@ import random
import sys
import time
import uuid
-from typing import Any, Callable, Dict, List, Optional, Tuple
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import yaml
from loguru import logger
@@ -174,7 +174,7 @@ class Agent:
agent_name: str = "swarm-worker-01",
agent_description: str = None,
system_prompt: str = AGENT_SYSTEM_PROMPT_3,
- tools: List[BaseTool] = None,
+ tools: Union[List[BaseTool]] = None,
dynamic_temperature_enabled: Optional[bool] = False,
sop: Optional[str] = None,
sop_list: Optional[List[str]] = None,
diff --git a/swarms/structs/schemas.py b/swarms/structs/schemas.py
index e6a801cc..a370334b 100644
--- a/swarms/structs/schemas.py
+++ b/swarms/structs/schemas.py
@@ -7,7 +7,7 @@ from pydantic import BaseModel, Field
class TaskInput(BaseModel):
- __root__: Any = Field(
+ task: Any = Field(
...,
description=(
"The input parameters for the task. Any value is allowed."
@@ -57,7 +57,7 @@ class ArtifactUpload(BaseModel):
class StepInput(BaseModel):
- __root__: Any = Field(
+ step: Any = Field(
...,
description=(
"Input parameters for the task step. Any value is"
@@ -68,7 +68,7 @@ class StepInput(BaseModel):
class StepOutput(BaseModel):
- __root__: Any = Field(
+ step: Any = Field(
...,
description=(
"Output that the task step has produced. Any value is"
diff --git a/swarms/telemetry/__init__.py b/swarms/telemetry/__init__.py
index 8c13871a..442ad55b 100644
--- a/swarms/telemetry/__init__.py
+++ b/swarms/telemetry/__init__.py
@@ -18,25 +18,7 @@ from swarms.telemetry.user_utils import (
get_system_info,
get_user_device_data,
)
-
-# # Capture data from the user's device
-# posthog.capture(
-# "User Device Data",
-# str(get_user_device_data()),
-# )
-
-# # Capture system information
-# posthog.capture(
-# "System Information",
-# str(system_info()),
-# )
-
-# # Capture the user's unique identifier
-# posthog.capture(
-# "User Unique Identifier",
-# str(generate_unique_identifier()),
-# )
-
+from swarms.telemetry.sentry_active import activate_sentry
__all__ = [
"log_all_calls",
@@ -54,4 +36,5 @@ __all__ = [
"get_package_mismatches",
"system_info",
"get_user_device_data",
+ "activate_sentry",
]
diff --git a/swarms/telemetry/sentry_active.py b/swarms/telemetry/sentry_active.py
new file mode 100644
index 00000000..c24c4267
--- /dev/null
+++ b/swarms/telemetry/sentry_active.py
@@ -0,0 +1,20 @@
+import os
+from dotenv import load_dotenv
+import sentry_sdk
+
+load_dotenv()
+
+os.environ["USE_TELEMETRY"] = "True"
+
+use_telementry = os.getenv("USE_TELEMETRY")
+
+def activate_sentry():
+ if use_telementry == "True":
+ sentry_sdk.init(
+ dsn="https://5d72dd59551c02f78391d2ea5872ddd4@o4504578305490944.ingest.us.sentry.io/4506951704444928",
+ traces_sample_rate=1.0,
+ profiles_sample_rate=1.0,
+ enable_tracing=True,
+ debug = True,
+ )
+
\ No newline at end of file
diff --git a/swarms/tokenizers/__init__.py b/swarms/tokenizers/__init__.py
index d62146ca..5d82440b 100644
--- a/swarms/tokenizers/__init__.py
+++ b/swarms/tokenizers/__init__.py
@@ -3,7 +3,6 @@ from swarms.tokenizers.anthropic_tokenizer import (
import_optional_dependency,
)
from swarms.tokenizers.base_tokenizer import BaseTokenizer
-from swarms.tokenizers.cohere_tokenizer import CohereTokenizer
from swarms.tokenizers.openai_tokenizers import OpenAITokenizer
from swarms.tokenizers.r_tokenizers import (
HuggingFaceTokenizer,
@@ -19,5 +18,4 @@ __all__ = [
"OpenAITokenizer",
"import_optional_dependency",
"AnthropicTokenizer",
- "CohereTokenizer",
]
diff --git a/swarms/tokenizers/cohere_tokenizer.py b/swarms/tokenizers/cohere_tokenizer.py
deleted file mode 100644
index e6164f5b..00000000
--- a/swarms/tokenizers/cohere_tokenizer.py
+++ /dev/null
@@ -1,36 +0,0 @@
-from __future__ import annotations
-
-from dataclasses import dataclass
-
-from cohere import Client
-
-
-@dataclass
-class CohereTokenizer:
- """
- A tokenizer class for Cohere models.
- """
-
- model: str
- client: Client
- DEFAULT_MODEL: str = "command"
- DEFAULT_MAX_TOKENS: int = 2048
- max_tokens: int = DEFAULT_MAX_TOKENS
-
- def count_tokens(self, text: str | list) -> int:
- """
- Count the number of tokens in the given text.
-
- Args:
- text (str | list): The input text to tokenize.
-
- Returns:
- int: The number of tokens in the text.
-
- Raises:
- ValueError: If the input text is not a string.
- """
- if isinstance(text, str):
- return len(self.client.tokenize(text=text).tokens)
- else:
- raise ValueError("Text must be a string.")
diff --git a/swarms/tools/__init__.py b/swarms/tools/__init__.py
index 18f91690..6f7e5dc5 100644
--- a/swarms/tools/__init__.py
+++ b/swarms/tools/__init__.py
@@ -1,3 +1,4 @@
+from swarms.tools.tool import BaseTool, Tool, StructuredTool, tool
from swarms.tools.code_executor import CodeExecutor
from swarms.tools.exec_tool import (
AgentAction,
@@ -6,13 +7,12 @@ from swarms.tools.exec_tool import (
execute_tool_by_name,
preprocess_json_input,
)
-from swarms.tools.tool import BaseTool, StructuredTool, Tool, tool
from swarms.tools.tool_utils import (
execute_tools,
extract_tool_commands,
parse_and_execute_tools,
- tool_find_by_name,
scrape_tool_func_docs,
+ tool_find_by_name,
)
__all__ = [
diff --git a/swarms/tools/tool.py b/swarms/tools/tool.py
index 53436614..ee66f596 100644
--- a/swarms/tools/tool.py
+++ b/swarms/tools/tool.py
@@ -1,953 +1,6 @@
-"""Base implementation for tools or skills."""
-
-from __future__ import annotations
-
-import asyncio
-import inspect
-import warnings
-from abc import abstractmethod
-from functools import partial
-from inspect import signature
-from typing import Any, Awaitable, Callable, Dict, Union
-
-from langchain.callbacks.base import BaseCallbackManager
-from langchain.callbacks.manager import (
- AsyncCallbackManager,
- AsyncCallbackManagerForToolRun,
- CallbackManager,
- CallbackManagerForToolRun,
- Callbacks,
-)
-from langchain.load.serializable import Serializable
-from langchain.schema.runnable import (
- Runnable,
- RunnableConfig,
- RunnableSerializable,
-)
-from pydantic import (
- BaseModel,
- Extra,
- Field,
- create_model,
- root_validator,
- validate_arguments,
-)
-
-
-class SchemaAnnotationError(TypeError):
- """Raised when 'args_schema' is missing or has an incorrect type annotation."""
-
-
-def _create_subset_model(
- name: str, model: BaseModel, field_names: list
-) -> type[BaseModel]:
- """Create a pydantic model with only a subset of model's fields."""
- fields = {}
- for field_name in field_names:
- field = model.__fields__[field_name]
- fields[field_name] = (field.outer_type_, field.field_info)
- return create_model(name, **fields) # type: ignore
-
-
-def _get_filtered_args(
- inferred_model: type[BaseModel],
- func: Callable,
-) -> dict:
- """Get the arguments from a function's signature."""
- schema = inferred_model.schema()["properties"]
- valid_keys = signature(func).parameters
- return {
- k: schema[k]
- for k in valid_keys
- if k not in ("run_manager", "callbacks")
- }
-
-
-class _SchemaConfig:
- """Configuration for the pydantic model."""
-
- extra: Any = Extra.forbid
- arbitrary_types_allowed: bool = True
-
-
-def create_schema_from_function(
- model_name: str,
- func: Callable,
-) -> type[BaseModel]:
- """Create a pydantic schema from a function's signature.
- Args:
- model_name: Name to assign to the generated pydandic schema
- func: Function to generate the schema from
- Returns:
- A pydantic model with the same arguments as the function
- """
- # https://docs.pydantic.dev/latest/usage/validation_decorator/
- validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
- inferred_model = validated.model # type: ignore
- if "run_manager" in inferred_model.__fields__:
- del inferred_model.__fields__["run_manager"]
- if "callbacks" in inferred_model.__fields__:
- del inferred_model.__fields__["callbacks"]
- # Pydantic adds placeholder virtual fields we need to strip
- valid_properties = _get_filtered_args(inferred_model, func)
- return _create_subset_model(
- f"{model_name}Schema", inferred_model, list(valid_properties)
- )
-
-
-class ToolException(Exception):
- """An optional exception that tool throws when execution error occurs.
-
- When this exception is thrown, the agent will not stop working,
- but will handle the exception according to the handle_tool_error
- variable of the tool, and the processing result will be returned
- to the agent as observation, and printed in red on the console.
- """
-
-
-class BaseTool(RunnableSerializable[Union[str, Dict], Any]):
- """Interface swarms tools must implement."""
-
- def __init_subclass__(cls, **kwargs: Any) -> None:
- """Create the definition of the new tool class."""
- super().__init_subclass__(**kwargs)
-
- args_schema_type = cls.__annotations__.get(
- "args_schema", None
- )
-
- if args_schema_type is not None:
- if (
- args_schema_type is None
- or args_schema_type == BaseModel
- ):
- # Throw errors for common mis-annotations.
- # TODO: Use get_args / get_origin and fully
- # specify valid annotations.
- typehint_mandate = """
-class ChildTool(BaseTool):
- ...
- args_schema: Type[BaseModel] = SchemaClass
- ..."""
- name = cls.__name__
- raise SchemaAnnotationError(
- f"Tool definition for {name} must include valid"
- " type annotations for argument 'args_schema' to"
- " behave as expected.\nExpected annotation of"
- " 'Type[BaseModel]' but got"
- f" '{args_schema_type}'.\nExpected class looks"
- f" like:\n{typehint_mandate}"
- )
-
- name: str
- """The unique name of the tool that clearly communicates its purpose."""
- description: str
- """Used to tell the model how/when/why to use the tool.
-
- You can provide few-shot examples as a part of the description.
- """
- args_schema: type[BaseModel] | None = None
- """Pydantic model class to validate and parse the tool's input arguments."""
- return_direct: bool = False
- """Whether to return the tool's output directly. Setting this to True means
-
- that after the tool is called, the AgentExecutor will stop looping.
- """
- verbose: bool = False
- """Whether to log the tool's progress."""
-
- callbacks: Callbacks = Field(default=None, exclude=True)
- """Callbacks to be called during tool execution."""
- callback_manager: BaseCallbackManager | None = Field(
- default=None, exclude=True
- )
- """Deprecated. Please use callbacks instead."""
- tags: list[str] | None = None
- """Optional list of tags associated with the tool. Defaults to None
- These tags will be associated with each call to this tool,
- and passed as arguments to the handlers defined in `callbacks`.
- You can use these to eg identify a specific instance of a tool with its use case.
- """
- metadata: dict[str, Any] | None = None
- """Optional metadata associated with the tool. Defaults to None
- This metadata will be associated with each call to this tool,
- and passed as arguments to the handlers defined in `callbacks`.
- You can use these to eg identify a specific instance of a tool with its use case.
- """
-
- handle_tool_error: (
- bool | str | Callable[[ToolException], str] | None
- ) = False
- """Handle the content of the ToolException thrown."""
-
- class Config(Serializable.Config):
- """Configuration for this pydantic object."""
-
- arbitrary_types_allowed = True
-
- @property
- def is_single_input(self) -> bool:
- """Whether the tool only accepts a single input."""
- keys = {k for k in self.args if k != "kwargs"}
- return len(keys) == 1
-
- @property
- def args(self) -> dict:
- if self.args_schema is not None:
- return self.args_schema.schema()["properties"]
- else:
- schema = create_schema_from_function(self.name, self._run)
- return schema.schema()["properties"]
-
- # --- Runnable ---
-
- @property
- def input_schema(self) -> type[BaseModel]:
- """The tool's input schema."""
- if self.args_schema is not None:
- return self.args_schema
- else:
- return create_schema_from_function(self.name, self._run)
-
- def invoke(
- self,
- input: str | dict,
- config: RunnableConfig | None = None,
- **kwargs: Any,
- ) -> Any:
- config = config or {}
- return self.run(
- input,
- callbacks=config.get("callbacks"),
- tags=config.get("tags"),
- metadata=config.get("metadata"),
- run_name=config.get("run_name"),
- **kwargs,
- )
-
- async def ainvoke(
- self,
- input: str | dict,
- config: RunnableConfig | None = None,
- **kwargs: Any,
- ) -> Any:
- config = config or {}
- return await self.arun(
- input,
- callbacks=config.get("callbacks"),
- tags=config.get("tags"),
- metadata=config.get("metadata"),
- run_name=config.get("run_name"),
- **kwargs,
- )
-
- # --- Tool ---
-
- def _parse_input(
- self,
- tool_input: str | dict,
- ) -> str | dict[str, Any]:
- """Convert tool input to pydantic model."""
- input_args = self.args_schema
- if isinstance(tool_input, str):
- if input_args is not None:
- key_ = next(iter(input_args.__fields__.keys()))
- input_args.validate({key_: tool_input})
- return tool_input
- else:
- if input_args is not None:
- result = input_args.parse_obj(tool_input)
- return {
- k: v
- for k, v in result.dict().items()
- if k in tool_input
- }
- return tool_input
-
- @root_validator(skip_on_failure=True)
- def raise_deprecation(cls, values: dict) -> dict:
- """Raise deprecation warning if callback_manager is used."""
- if values.get("callback_manager") is not None:
- warnings.warn(
- (
- "callback_manager is deprecated. Please use"
- " callbacks instead."
- ),
- DeprecationWarning,
- )
- values["callbacks"] = values.pop("callback_manager", None)
- return values
-
- @abstractmethod
- def _run(
- self,
- *args: Any,
- **kwargs: Any,
- ) -> Any:
- """Use the tool.
-
- Add run_manager: Optional[CallbackManagerForToolRun] = None
- to child implementations to enable tracing,
- """
-
- async def _arun(
- self,
- *args: Any,
- **kwargs: Any,
- ) -> Any:
- """Use the tool asynchronously.
-
- Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
- to child implementations to enable tracing,
- """
- return await asyncio.get_running_loop().run_in_executor(
- None,
- partial(self._run, **kwargs),
- *args,
- )
-
- def _to_args_and_kwargs(
- self, tool_input: str | dict
- ) -> tuple[tuple, dict]:
- # For backwards compatibility, if run_input is a string,
- # pass as a positional argument.
- if isinstance(tool_input, str):
- return (tool_input,), {}
- else:
- return (), tool_input
-
- def run(
- self,
- tool_input: str | dict,
- verbose: bool | None = None,
- start_color: str | None = "green",
- color: str | None = "green",
- callbacks: Callbacks = None,
- *,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- **kwargs: Any,
- ) -> Any:
- """Run the tool."""
- parsed_input = self._parse_input(tool_input)
- if not self.verbose and verbose is not None:
- verbose_ = verbose
- else:
- verbose_ = self.verbose
- callback_manager = CallbackManager.configure(
- callbacks,
- self.callbacks,
- verbose_,
- tags,
- self.tags,
- metadata,
- self.metadata,
- )
- # TODO: maybe also pass through run_manager is _run supports kwargs
- new_arg_supported = signature(self._run).parameters.get(
- "run_manager"
- )
- run_manager = callback_manager.on_tool_start(
- {"name": self.name, "description": self.description},
- (
- tool_input
- if isinstance(tool_input, str)
- else str(tool_input)
- ),
- color=start_color,
- name=run_name,
- **kwargs,
- )
- try:
- tool_args, tool_kwargs = self._to_args_and_kwargs(
- parsed_input
- )
- observation = (
- self._run(
- *tool_args, run_manager=run_manager, **tool_kwargs
- )
- if new_arg_supported
- else self._run(*tool_args, **tool_kwargs)
- )
- except ToolException as e:
- if not self.handle_tool_error:
- run_manager.on_tool_error(e)
- raise e
- elif isinstance(self.handle_tool_error, bool):
- if e.args:
- observation = e.args[0]
- else:
- observation = "Tool execution error"
- elif isinstance(self.handle_tool_error, str):
- observation = self.handle_tool_error
- elif callable(self.handle_tool_error):
- observation = self.handle_tool_error(e)
- else:
- raise ValueError(
- "Got unexpected type of `handle_tool_error`."
- " Expected bool, str or callable. Received:"
- f" {self.handle_tool_error}"
- )
- run_manager.on_tool_end(
- str(observation),
- color="red",
- name=self.name,
- **kwargs,
- )
- return observation
- except (Exception, KeyboardInterrupt) as e:
- run_manager.on_tool_error(e)
- raise e
- else:
- run_manager.on_tool_end(
- str(observation),
- color=color,
- name=self.name,
- **kwargs,
- )
- return observation
-
- async def arun(
- self,
- tool_input: str | dict,
- verbose: bool | None = None,
- start_color: str | None = "green",
- color: str | None = "green",
- callbacks: Callbacks = None,
- *,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- **kwargs: Any,
- ) -> Any:
- """Run the tool asynchronously."""
- parsed_input = self._parse_input(tool_input)
- if not self.verbose and verbose is not None:
- verbose_ = verbose
- else:
- verbose_ = self.verbose
- callback_manager = AsyncCallbackManager.configure(
- callbacks,
- self.callbacks,
- verbose_,
- tags,
- self.tags,
- metadata,
- self.metadata,
- )
- new_arg_supported = signature(self._arun).parameters.get(
- "run_manager"
- )
- run_manager = await callback_manager.on_tool_start(
- {"name": self.name, "description": self.description},
- (
- tool_input
- if isinstance(tool_input, str)
- else str(tool_input)
- ),
- color=start_color,
- name=run_name,
- **kwargs,
- )
- try:
- # We then call the tool on the tool input to get an observation
- tool_args, tool_kwargs = self._to_args_and_kwargs(
- parsed_input
- )
- observation = (
- await self._arun(
- *tool_args, run_manager=run_manager, **tool_kwargs
- )
- if new_arg_supported
- else await self._arun(*tool_args, **tool_kwargs)
- )
- except ToolException as e:
- if not self.handle_tool_error:
- await run_manager.on_tool_error(e)
- raise e
- elif isinstance(self.handle_tool_error, bool):
- if e.args:
- observation = e.args[0]
- else:
- observation = "Tool execution error"
- elif isinstance(self.handle_tool_error, str):
- observation = self.handle_tool_error
- elif callable(self.handle_tool_error):
- observation = self.handle_tool_error(e)
- else:
- raise ValueError(
- "Got unexpected type of `handle_tool_error`."
- " Expected bool, str or callable. Received:"
- f" {self.handle_tool_error}"
- )
- await run_manager.on_tool_end(
- str(observation),
- color="red",
- name=self.name,
- **kwargs,
- )
- return observation
- except (Exception, KeyboardInterrupt) as e:
- await run_manager.on_tool_error(e)
- raise e
- else:
- await run_manager.on_tool_end(
- str(observation),
- color=color,
- name=self.name,
- **kwargs,
- )
- return observation
-
- def __call__(
- self, tool_input: str, callbacks: Callbacks = None
- ) -> str:
- """Make tool callable."""
- return self.run(tool_input, callbacks=callbacks)
-
-
-class Tool(BaseTool):
- """Tool that takes in function or coroutine directly."""
-
- description: str = ""
- func: Callable[..., str] | None
- """The function to run when the tool is called."""
- coroutine: Callable[..., Awaitable[str]] | None = None
- """The asynchronous version of the function."""
-
- # --- Runnable ---
- async def ainvoke(
- self,
- input: str | dict,
- config: RunnableConfig | None = None,
- **kwargs: Any,
- ) -> Any:
- if not self.coroutine:
- # If the tool does not implement async, fall back to default implementation
- return await asyncio.get_running_loop().run_in_executor(
- None, partial(self.invoke, input, config, **kwargs)
- )
-
- return await super().ainvoke(input, config, **kwargs)
-
- # --- Tool ---
-
- @property
- def args(self) -> dict:
- """The tool's input arguments."""
- if self.args_schema is not None:
- return self.args_schema.schema()["properties"]
- # For backwards compatibility, if the function signature is ambiguous,
- # assume it takes a single string input.
- return {"tool_input": {"type": "string"}}
-
- def _to_args_and_kwargs(
- self, tool_input: str | dict
- ) -> tuple[tuple, dict]:
- """Convert tool input to pydantic model."""
- args, kwargs = super()._to_args_and_kwargs(tool_input)
- # For backwards compatibility. The tool must be run with a single input
- all_args = list(args) + list(kwargs.values())
- if len(all_args) != 1:
- raise ToolException(
- "Too many arguments to single-input tool"
- f" {self.name}. Args: {all_args}"
- )
- return tuple(all_args), {}
-
- def _run(
- self,
- *args: Any,
- run_manager: CallbackManagerForToolRun | None = None,
- **kwargs: Any,
- ) -> Any:
- """Use the tool."""
- if self.func:
- new_argument_supported = signature(
- self.func
- ).parameters.get("callbacks")
- return (
- self.func(
- *args,
- callbacks=(
- run_manager.get_child()
- if run_manager
- else None
- ),
- **kwargs,
- )
- if new_argument_supported
- else self.func(*args, **kwargs)
- )
- raise NotImplementedError("Tool does not support sync")
-
- async def _arun(
- self,
- *args: Any,
- run_manager: AsyncCallbackManagerForToolRun | None = None,
- **kwargs: Any,
- ) -> Any:
- """Use the tool asynchronously."""
- if self.coroutine:
- new_argument_supported = signature(
- self.coroutine
- ).parameters.get("callbacks")
- return (
- await self.coroutine(
- *args,
- callbacks=(
- run_manager.get_child()
- if run_manager
- else None
- ),
- **kwargs,
- )
- if new_argument_supported
- else await self.coroutine(*args, **kwargs)
- )
- else:
- return await asyncio.get_running_loop().run_in_executor(
- None,
- partial(self._run, run_manager=run_manager, **kwargs),
- *args,
- )
-
- # TODO: this is for backwards compatibility, remove in future
- def __init__(
- self,
- name: str,
- func: Callable | None,
- description: str,
- **kwargs: Any,
- ) -> None:
- """Initialize tool."""
- super().__init__(
- name=name, func=func, description=description, **kwargs
- )
-
- @classmethod
- def from_function(
- cls,
- func: Callable | None,
- name: str, # We keep these required to support backwards compatibility
- description: str,
- return_direct: bool = False,
- args_schema: type[BaseModel] | None = None,
- coroutine: (Callable[..., Awaitable[Any]])
- | None = None, # This is last for compatibility, but should be after func
- **kwargs: Any,
- ) -> Tool:
- """Initialize tool from a function."""
- if func is None and coroutine is None:
- raise ValueError(
- "Function and/or coroutine must be provided"
- )
- return cls(
- name=name,
- func=func,
- coroutine=coroutine,
- description=description,
- return_direct=return_direct,
- args_schema=args_schema,
- **kwargs,
- )
-
-
-class StructuredTool(BaseTool):
- """Tool that can operate on any number of inputs."""
-
- description: str = ""
- args_schema: type[BaseModel] = Field(
- ..., description="The tool schema."
- )
- """The input arguments' schema."""
- func: Callable[..., Any] | None
- """The function to run when the tool is called."""
- coroutine: Callable[..., Awaitable[Any]] | None = None
- """The asynchronous version of the function."""
-
- # --- Runnable ---
- async def ainvoke(
- self,
- input: str | dict,
- config: RunnableConfig | None = None,
- **kwargs: Any,
- ) -> Any:
- if not self.coroutine:
- # If the tool does not implement async, fall back to default implementation
- return await asyncio.get_running_loop().run_in_executor(
- None, partial(self.invoke, input, config, **kwargs)
- )
-
- return await super().ainvoke(input, config, **kwargs)
-
- # --- Tool ---
-
- @property
- def args(self) -> dict:
- """The tool's input arguments."""
- return self.args_schema.schema()["properties"]
-
- def _run(
- self,
- *args: Any,
- run_manager: CallbackManagerForToolRun | None = None,
- **kwargs: Any,
- ) -> Any:
- """Use the tool."""
- if self.func:
- new_argument_supported = signature(
- self.func
- ).parameters.get("callbacks")
- return (
- self.func(
- *args,
- callbacks=(
- run_manager.get_child()
- if run_manager
- else None
- ),
- **kwargs,
- )
- if new_argument_supported
- else self.func(*args, **kwargs)
- )
- raise NotImplementedError("Tool does not support sync")
-
- async def _arun(
- self,
- *args: Any,
- run_manager: AsyncCallbackManagerForToolRun | None = None,
- **kwargs: Any,
- ) -> str:
- """Use the tool asynchronously."""
- if self.coroutine:
- new_argument_supported = signature(
- self.coroutine
- ).parameters.get("callbacks")
- return (
- await self.coroutine(
- *args,
- callbacks=(
- run_manager.get_child()
- if run_manager
- else None
- ),
- **kwargs,
- )
- if new_argument_supported
- else await self.coroutine(*args, **kwargs)
- )
- return await asyncio.get_running_loop().run_in_executor(
- None,
- partial(self._run, run_manager=run_manager, **kwargs),
- *args,
- )
-
- @classmethod
- def from_function(
- cls,
- func: Callable | None = None,
- coroutine: Callable[..., Awaitable[Any]] | None = None,
- name: str | None = None,
- description: str | None = None,
- return_direct: bool = False,
- args_schema: type[BaseModel] | None = None,
- infer_schema: bool = True,
- **kwargs: Any,
- ) -> StructuredTool:
- """Create tool from a given function.
-
- A classmethod that helps to create a tool from a function.
-
- Args:
- func: The function from which to create a tool
- coroutine: The async function from which to create a tool
- name: The name of the tool. Defaults to the function name
- description: The description of the tool. Defaults to the function docstring
- return_direct: Whether to return the result directly or as a callback
- args_schema: The schema of the tool's input arguments
- infer_schema: Whether to infer the schema from the function's signature
- **kwargs: Additional arguments to pass to the tool
-
- Returns:
- The tool
-
- Examples:
-
- .. code-block:: python
-
- def add(a: int, b: int) -> int:
- \"\"\"Add two numbers\"\"\"
- return a + b
- tool = StructuredTool.from_function(add)
- tool.run(1, 2) # 3
- """
-
- if func is not None:
- source_function = func
- elif coroutine is not None:
- source_function = coroutine
- else:
- raise ValueError(
- "Function and/or coroutine must be provided"
- )
- name = name or source_function.__name__
- description = description or source_function.__doc__
- if description is None:
- raise ValueError(
- "Function must have a docstring if description not"
- " provided."
- )
-
- # Description example:
- # search_api(query: str) - Searches the API for the query.
- sig = signature(source_function)
- description = f"{name}{sig} - {description.strip()}"
- _args_schema = args_schema
- if _args_schema is None and infer_schema:
- _args_schema = create_schema_from_function(
- f"{name}Schema", source_function
- )
- return cls(
- name=name,
- func=func,
- coroutine=coroutine,
- args_schema=_args_schema,
- description=description,
- return_direct=return_direct,
- **kwargs,
- )
-
-
-def tool(
- *args: str | Callable | Runnable,
- return_direct: bool = False,
- args_schema: type[BaseModel] | None = None,
- infer_schema: bool = True,
-) -> Callable:
- """Make tools out of functions, can be used with or without arguments.
-
- Args:
- *args: The arguments to the tool.
- return_direct: Whether to return directly from the tool rather
- than continuing the agent loop.
- args_schema: optional argument schema for user to specify
- infer_schema: Whether to infer the schema of the arguments from
- the function's signature. This also makes the resultant tool
- accept a dictionary input to its `run()` function.
-
- Requires:
- - Function must be of type (str) -> str
- - Function must have a docstring
-
- Examples:
- .. code-block:: python
-
- @tool
- def search_api(query: str) -> str:
- # Searches the API for the query.
- return
-
-
- @tool("search", return_direct=True)
- def search_api(query: str) -> str:
- # Searches the API for the query.
- return
- """
-
- def _make_with_name(tool_name: str) -> Callable:
- def _make_tool(dec_func: Callable | Runnable) -> BaseTool:
- if isinstance(dec_func, Runnable):
- runnable = dec_func
-
- if (
- runnable.input_schema.schema().get("type")
- != "object"
- ):
- raise ValueError(
- "Runnable must have an object schema."
- )
-
- async def ainvoke_wrapper(
- callbacks: Callbacks | None = None,
- **kwargs: Any,
- ) -> Any:
- return await runnable.ainvoke(
- kwargs, {"callbacks": callbacks}
- )
-
- def invoke_wrapper(
- callbacks: Callbacks | None = None,
- **kwargs: Any,
- ) -> Any:
- return runnable.invoke(
- kwargs, {"callbacks": callbacks}
- )
-
- coroutine = ainvoke_wrapper
- func = invoke_wrapper
- schema: type[BaseModel] | None = runnable.input_schema
- description = repr(runnable)
- elif inspect.iscoroutinefunction(dec_func):
- coroutine = dec_func
- func = None
- schema = args_schema
- description = None
- else:
- coroutine = None
- func = dec_func
- schema = args_schema
- description = None
-
- if infer_schema or args_schema is not None:
- return StructuredTool.from_function(
- func,
- coroutine,
- name=tool_name,
- description=description,
- return_direct=return_direct,
- args_schema=schema,
- infer_schema=infer_schema,
- )
- # If someone doesn't want a schema applied, we must treat it as
- # a simple string->string function
- if func.__doc__ is None:
- raise ValueError(
- "Function must have a docstring if description"
- " not provided and infer_schema is False."
- )
- return Tool(
- name=tool_name,
- func=func,
- description=f"{tool_name} tool",
- return_direct=return_direct,
- coroutine=coroutine,
- )
-
- return _make_tool
-
- if (
- len(args) == 2
- and isinstance(args[0], str)
- and isinstance(args[1], Runnable)
- ):
- return _make_with_name(args[0])(args[1])
- elif len(args) == 1 and isinstance(args[0], str):
- # if the argument is a string, then we use the string as the tool name
- # Example usage: @tool("search", return_direct=True)
- return _make_with_name(args[0])
- elif len(args) == 1 and callable(args[0]):
- # if the argument is a function, then we use the function name as the tool name
- # Example usage: @tool
- return _make_with_name(args[0].__name__)(args[0])
- elif len(args) == 0:
- # if there are no arguments, then we use the function name as the tool name
- # Example usage: @tool(return_direct=True)
- def _partial(func: Callable[[str], str]) -> BaseTool:
- return _make_with_name(func.__name__)(func)
-
- return _partial
- else:
- raise ValueError("Too many arguments for tool decorator")
+from langchain.tools import (
+ BaseTool,
+ Tool,
+ StructuredTool,
+ tool,
+) # noqa F401
diff --git a/swarms/tools/tool_type.py b/swarms/tools/tool_type.py
new file mode 100644
index 00000000..6f84b54e
--- /dev/null
+++ b/swarms/tools/tool_type.py
@@ -0,0 +1,65 @@
+from typing import Any, List, Union
+
+from pydantic import BaseModel
+
+from swarms.tools.tool import BaseTool
+from swarms.utils.loguru_logger import logger
+
+
+class OmniTool(BaseModel):
+ """
+ A class representing an OmniTool.
+
+ Attributes:
+ tools (Union[List[BaseTool], List[BaseModel], List[Any]]): A list of tools.
+ verbose (bool): A flag indicating whether to enable verbose mode.
+
+ Methods:
+ transform_models_to_tools(): Transforms models to tools.
+ __call__(*args, **kwargs): Calls the tools.
+
+ """
+
+ tools: Union[List[BaseTool], List[BaseModel], List[Any]]
+ verbose: bool = False
+
+ def transform_models_to_tools(self):
+ """
+ Transforms models to tools.
+ """
+ for i, tool in enumerate(self.tools):
+ if isinstance(tool, BaseModel):
+ tool_json = tool.model_dump_json()
+ # Assuming BaseTool has a method to load from json
+ self.tools[i] = BaseTool.load_from_json(tool_json)
+
+ def __call__(self, *args, **kwargs):
+ """
+ Calls the tools.
+
+ Args:
+ *args: Variable length argument list.
+ **kwargs: Arbitrary keyword arguments.
+
+ Returns:
+ Tuple: A tuple containing the arguments and keyword arguments.
+
+ """
+ try:
+ self.transform_models_to_tools()
+ logger.info(f"Number of tools: {len(self.tools)}")
+ try:
+ for tool in self.tools:
+ logger.info(f"Running tool: {tool}")
+ tool(*args, **kwargs)
+ except Exception as e:
+ logger.error(
+ f"Error occurred while running tools: {e}"
+ )
+ return args, kwargs
+
+ except Exception as error:
+ logger.error(
+ f"Error occurred while running tools: {error}"
+ )
+ return args, kwargs
diff --git a/swarms/utils/json_utils.py b/swarms/utils/json_utils.py
index 62dc2323..0902d2c7 100644
--- a/swarms/utils/json_utils.py
+++ b/swarms/utils/json_utils.py
@@ -3,7 +3,7 @@ import json
from pydantic import BaseModel
-def base_model_schema_to_json(model: BaseModel):
+def base_model_to_json(model: BaseModel, indent: int = 3):
"""
Converts the JSON schema of a base model to a formatted JSON string.
@@ -13,7 +13,8 @@ def base_model_schema_to_json(model: BaseModel):
Returns:
str: The JSON schema of the base model as a formatted JSON string.
"""
- return json.dumps(model.model_json_schema(), indent=2)
+ out = model.model_json_schema()
+ return str_to_json(out, indent=indent)
def extract_json_from_str(response: str):
@@ -34,17 +35,16 @@ def extract_json_from_str(response: str):
return json.loads(response[json_start : json_end + 1])
-def base_model_to_json(base_model_instance: BaseModel) -> str:
+def str_to_json(response: str, indent: int = 3):
"""
- Convert a Pydantic base model instance to a JSON string.
+ Converts a string representation of JSON to a JSON object.
Args:
- base_model_instance (BaseModel): Instance of the Pydantic base model.
+ response (str): The string representation of JSON.
+ indent (int, optional): The number of spaces to use for indentation in the JSON output. Defaults to 3.
Returns:
- str: JSON string representation of the base model instance.
- """
- model_dict = base_model_instance.dict()
- json_string = json.dumps(model_dict)
+ str: The JSON object as a string.
- return json_string
+ """
+ return json.dumps(response, indent=indent)
diff --git a/swarms/utils/serializable.py b/swarms/utils/serializable.py
index 9e85e783..cb0fc791 100644
--- a/swarms/utils/serializable.py
+++ b/swarms/utils/serializable.py
@@ -1,7 +1,7 @@
from abc import ABC
from typing import Any, Dict, List, Literal, TypedDict, Union, cast
-from pydantic import BaseModel, PrivateAttr
+from pydantic import ConfigDict, BaseModel, PrivateAttr
class BaseSerialized(TypedDict):
@@ -65,8 +65,7 @@ class Serializable(BaseModel, ABC):
"""
return {}
- class Config:
- extra = "ignore"
+ model_config = ConfigDict(extra="ignore")
_lc_kwargs = PrivateAttr(default_factory=dict)
diff --git a/swarms/workers/__init__.py b/swarms/workers/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/swarms/workers/base.py b/swarms/workers/base.py
deleted file mode 100644
index 358810bd..00000000
--- a/swarms/workers/base.py
+++ /dev/null
@@ -1,93 +0,0 @@
-from typing import Dict, List, Optional, Union
-
-
-class AbstractWorker:
- """(In preview) An abstract class for AI worker.
-
- An worker can communicate with other workers and perform actions.
- Different workers can differ in what actions they perform in the `receive` method.
- """
-
- def __init__(
- self,
- name: str,
- ):
- """
- Args:
- name (str): name of the worker.
- """
- # a dictionary of conversations, default value is list
- self._name = name
-
- @property
- def name(self):
- """Get the name of the worker."""
- return self._name
-
- def run(self, task: str):
- """Run the worker agent once"""
-
- def send(
- self,
- message: Union[Dict, str],
- recipient, # add AbstractWorker
- request_reply: Optional[bool] = None,
- ):
- """(Abstract method) Send a message to another worker."""
-
- async def a_send(
- self,
- message: Union[Dict, str],
- recipient, # add AbstractWorker
- request_reply: Optional[bool] = None,
- ):
- """(Aabstract async method) Send a message to another worker."""
-
- def receive(
- self,
- message: Union[Dict, str],
- sender, # add AbstractWorker
- request_reply: Optional[bool] = None,
- ):
- """(Abstract method) Receive a message from another worker."""
-
- async def a_receive(
- self,
- message: Union[Dict, str],
- sender, # add AbstractWorker
- request_reply: Optional[bool] = None,
- ):
- """(Abstract async method) Receive a message from another worker."""
-
- def reset(self):
- """(Abstract method) Reset the worker."""
-
- def generate_reply(
- self,
- messages: Optional[List[Dict]] = None,
- sender=None, # Optional["AbstractWorker"] = None,
- **kwargs,
- ) -> Union[str, Dict, None]:
- """(Abstract method) Generate a reply based on the received messages.
-
- Args:
- messages (list[dict]): a list of messages received.
- sender: sender of an Agent instance.
- Returns:
- str or dict or None: the generated reply. If None, no reply is generated.
- """
-
- async def a_generate_reply(
- self,
- messages: Optional[List[Dict]] = None,
- sender=None, # Optional["AbstractWorker"] = None,
- **kwargs,
- ) -> Union[str, Dict, None]:
- """(Abstract async method) Generate a reply based on the received messages.
-
- Args:
- messages (list[dict]): a list of messages received.
- sender: sender of an Agent instance.
- Returns:
- str or dict or None: the generated reply. If None, no reply is generated.
- """