dockerfile running

Former-commit-id: 991979dfc6
pull/88/head
Kye 1 year ago
parent 3e6a3f7139
commit 7da009a5ec

@ -0,0 +1,31 @@
# Use an official Python runtime as a parent image
FROM python:3.9-slim
# Set environment variables to make Python output unbuffered and disable the PIP cache
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
ENV PIP_NO_CACHE_DIR off
ENV PIP_DISABLE_PIP_VERSION_CHECK on
ENV PIP_DEFAULT_TIMEOUT 100
# Set the working directory in the container
WORKDIR /usr/src/app
# Copy the current directory contents into the container at /usr/src/app
COPY . .
# Install Poetry
RUN pip install poetry
# Disable virtualenv creation by poetry and install dependencies
RUN poetry config virtualenvs.create false
RUN poetry install --no-interaction --no-ansi
# Install the 'swarms' package if it's not included in the poetry.lock
RUN pip install swarms
# Assuming tests require pytest to run
RUN pip install pytest
# Run pytest on all tests in the tests directory
CMD find ./tests -name '*.py' -exec pytest {} +

@ -2,4 +2,4 @@
Autonomous swarm that optimizes UI autonomously
GPT4Vision ->> GPT4 ->> UI
"""
"""

@ -9,6 +9,6 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from swarms.agents import *
from swarms.swarms import *
from swarms.structs import *
from swarms.models import *
from swarms.models import *
from swarms.chunkers import *
from swarms.workers import *

@ -8,6 +8,7 @@ from swarms.agents.registry import Registry
# from swarms.agents.idea_to_image_agent import Idea2Image
from swarms.agents.simple_agent import SimpleAgent
"""Agent Infrastructure, models, memory, utils, tools"""
__all__ = [

@ -8,7 +8,8 @@ from langchain.chains.llm import LLMChain
from langchain.chat_models.base import BaseChatModel
from langchain.memory import ChatMessageHistory
from langchain.prompts.chat import (
BaseChatPromptTemplate,)
BaseChatPromptTemplate,
)
from langchain.schema import (
BaseChatMessageHistory,
Document,
@ -70,12 +71,14 @@ class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel): # type: ignore[misc]
send_token_limit: int = 4196
def construct_full_prompt(self, goals: List[str]) -> str:
prompt_start = ("Your decisions must always be made independently "
"without seeking user assistance.\n"
"Play to your strengths as an LLM and pursue simple "
"strategies with no legal complications.\n"
"If you have completed all your tasks, make sure to "
'use the "finish" command.')
prompt_start = (
"Your decisions must always be made independently "
"without seeking user assistance.\n"
"Play to your strengths as an LLM and pursue simple "
"strategies with no legal complications.\n"
"If you have completed all your tasks, make sure to "
'use the "finish" command.'
)
# Construct full prompt
full_prompt = (
f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
@ -87,23 +90,25 @@ class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel): # type: ignore[misc]
return full_prompt
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
base_prompt = SystemMessage(
content=self.construct_full_prompt(kwargs["goals"]))
base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"]))
time_prompt = SystemMessage(
content=f"The current time and date is {time.strftime('%c')}")
used_tokens = self.token_counter(
base_prompt.content) + self.token_counter(time_prompt.content)
content=f"The current time and date is {time.strftime('%c')}"
)
used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
time_prompt.content
)
memory: VectorStoreRetriever = kwargs["memory"]
previous_messages = kwargs["messages"]
relevant_docs = memory.get_relevant_documents(
str(previous_messages[-10:]))
relevant_docs = memory.get_relevant_documents(str(previous_messages[-10:]))
relevant_memory = [d.page_content for d in relevant_docs]
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory])
[self.token_counter(doc) for doc in relevant_memory]
)
while used_tokens + relevant_memory_tokens > 2500:
relevant_memory = relevant_memory[:-1]
relevant_memory_tokens = sum(
[self.token_counter(doc) for doc in relevant_memory])
[self.token_counter(doc) for doc in relevant_memory]
)
content_format = (
f"This reminds you of these events from your past:\n{relevant_memory}\n\n"
)
@ -141,23 +146,13 @@ class PromptGenerator:
self.performance_evaluation: List[str] = []
self.response_format = {
"thoughts": {
"text":
"thought",
"reasoning":
"reasoning",
"plan":
"- short bulleted\n- list that conveys\n- long-term plan",
"criticism":
"constructive self-criticism",
"speak":
"thoughts summary to say to user",
},
"command": {
"name": "command name",
"args": {
"arg name": "value"
}
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user",
},
"command": {"name": "command name", "args": {"arg name": "value"}},
}
def add_constraint(self, constraint: str) -> None:
@ -195,9 +190,7 @@ class PromptGenerator:
"""
self.performance_evaluation.append(evaluation)
def _generate_numbered_list(self,
items: list,
item_type: str = "list") -> str:
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
"""
Generate a numbered list from given items based on the item_type.
@ -215,11 +208,16 @@ class PromptGenerator:
for i, item in enumerate(items)
]
finish_description = (
"use this to signal that you have finished all your objectives")
finish_args = ('"response": "final response to let '
'people know you have finished your objectives"')
finish_string = (f"{len(items) + 1}. {FINISH_NAME}: "
f"{finish_description}, args: {finish_args}")
"use this to signal that you have finished all your objectives"
)
finish_args = (
'"response": "final response to let '
'people know you have finished your objectives"'
)
finish_string = (
f"{len(items) + 1}. {FINISH_NAME}: "
f"{finish_description}, args: {finish_args}"
)
return "\n".join(command_strings + [finish_string])
else:
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
@ -240,7 +238,8 @@ class PromptGenerator:
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
"You should only respond in JSON format as described below "
f"\nResponse Format: \n{formatted_response_format} "
"\nEnsure the response can be parsed by Python json.loads")
"\nEnsure the response can be parsed by Python json.loads"
)
return prompt_string
@ -261,11 +260,13 @@ def get_prompt(tools: List[BaseTool]) -> str:
prompt_generator.add_constraint(
"~16000 word limit for short term memory. "
"Your short term memory is short, "
"so immediately save important information to files.")
"so immediately save important information to files."
)
prompt_generator.add_constraint(
"If you are unsure how you previously did something "
"or want to recall past events, "
"thinking about similar events will help you remember.")
"thinking about similar events will help you remember."
)
prompt_generator.add_constraint("No user assistance")
prompt_generator.add_constraint(
'Exclusively use the commands listed in double quotes e.g. "command name"'
@ -277,23 +278,29 @@ def get_prompt(tools: List[BaseTool]) -> str:
# Add resources to the PromptGenerator object
prompt_generator.add_resource(
"Internet access for searches and information gathering.")
"Internet access for searches and information gathering."
)
prompt_generator.add_resource("Long Term memory management.")
prompt_generator.add_resource(
"GPT-3.5 powered Agents for delegation of simple tasks.")
"GPT-3.5 powered Agents for delegation of simple tasks."
)
prompt_generator.add_resource("File output.")
# Add performance evaluations to the PromptGenerator object
prompt_generator.add_performance_evaluation(
"Continuously review and analyze your actions "
"to ensure you are performing to the best of your abilities.")
"to ensure you are performing to the best of your abilities."
)
prompt_generator.add_performance_evaluation(
"Constructively self-criticize your big-picture behavior constantly.")
"Constructively self-criticize your big-picture behavior constantly."
)
prompt_generator.add_performance_evaluation(
"Reflect on past decisions and strategies to refine your approach.")
"Reflect on past decisions and strategies to refine your approach."
)
prompt_generator.add_performance_evaluation(
"Every command has a cost, so be smart and efficient. "
"Aim to complete tasks in the least number of steps.")
"Aim to complete tasks in the least number of steps."
)
# Generate the prompt string
prompt_string = prompt_generator.generate_prompt_string()
@ -364,8 +371,10 @@ class AutoGPT:
)
def run(self, goals: List[str]) -> str:
user_input = ("Determine which next command to use, "
"and respond using the format specified above:")
user_input = (
"Determine which next command to use, "
"and respond using the format specified above:"
)
# Interaction Loop
loop_count = 0
while True:
@ -382,10 +391,8 @@ class AutoGPT:
# Print Assistant thoughts
print(assistant_reply)
self.chat_history_memory.add_message(
HumanMessage(content=user_input))
self.chat_history_memory.add_message(
AIMessage(content=assistant_reply))
self.chat_history_memory.add_message(HumanMessage(content=user_input))
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
# Get command name and arguments
action = self.output_parser.parse(assistant_reply)
@ -411,7 +418,8 @@ class AutoGPT:
result = (
f"Unknown command '{action.name}'. "
"Please refer to the 'COMMANDS' list for available "
"commands and only respond in the specified JSON format.")
"commands and only respond in the specified JSON format."
)
memory_to_add = f"Assistant Reply: {assistant_reply} \nResult: {result} "
if self.feedback_tool is not None:

@ -4,13 +4,13 @@ import time
import openai_model
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
class OpenAI:
def __init__(
self,
api_key,
@ -68,13 +68,16 @@ class OpenAI:
temperature=temperature,
)
with open("openai.logs", "a") as log_file:
log_file.write("\n" + "-----------" + "\n" + "Prompt : " +
prompt + "\n")
log_file.write(
"\n" + "-----------" + "\n" + "Prompt : " + prompt + "\n"
)
return response
except openai_model.error.RateLimitError as e:
sleep_duratoin = os.environ.get("OPENAI_RATE_TIMEOUT", 30)
print(f"{str(e)}, sleep for {sleep_duratoin}s, set it by env"
" OPENAI_RATE_TIMEOUT")
print(
f"{str(e)}, sleep for {sleep_duratoin}s, set it by env"
" OPENAI_RATE_TIMEOUT"
)
time.sleep(sleep_duratoin)
def openai_choice2text_handler(self, choice):
@ -97,16 +100,11 @@ class OpenAI:
else:
response = self.run(prompt, 300, 0.5, k)
thoughts = [
self.openai_choice2text_handler(choice)
for choice in response.choices
self.openai_choice2text_handler(choice) for choice in response.choices
]
return thoughts
def generate_thoughts(self,
state,
k,
initial_prompt,
rejected_solutions=None):
def generate_thoughts(self, state, k, initial_prompt, rejected_solutions=None):
if isinstance(state, str):
pass
else:
@ -179,8 +177,7 @@ class OpenAI:
"""
response = self.run(prompt, 10, 1)
try:
value_text = self.openai_choice2text_handler(
response.choices[0])
value_text = self.openai_choice2text_handler(response.choices[0])
# print(f'state: {value_text}')
value = float(value_text)
print(f"Evaluated Thought Value: {value}")
@ -190,12 +187,10 @@ class OpenAI:
return state_values
else:
raise ValueError(
"Invalid evaluation strategy. Choose 'value' or 'vote'.")
raise ValueError("Invalid evaluation strategy. Choose 'value' or 'vote'.")
class AoTAgent:
def __init__(
self,
num_thoughts: int = None,
@ -227,8 +222,7 @@ class AoTAgent:
return None
best_state, _ = max(self.output, key=lambda x: x[1])
solution = self.model.generate_solution(self.initial_prompt,
best_state)
solution = self.model.generate_solution(self.initial_prompt, best_state)
print(f"Solution is {solution}")
return solution if solution else best_state
except Exception as error:
@ -245,8 +239,11 @@ class AoTAgent:
for next_state in thoughts:
state_value = self.evaluated_thoughts[next_state]
if state_value > self.value_threshold:
child = ((state, next_state) if isinstance(state, str) else
(*state, next_state))
child = (
(state, next_state)
if isinstance(state, str)
else (*state, next_state)
)
self.dfs(child, step + 1)
# backtracking
@ -256,14 +253,17 @@ class AoTAgent:
continue
def generate_and_filter_thoughts(self, state):
thoughts = self.model.generate_thoughts(state, self.num_thoughts,
self.initial_prompt)
thoughts = self.model.generate_thoughts(
state, self.num_thoughts, self.initial_prompt
)
self.evaluated_thoughts = self.model.evaluate_states(
thoughts, self.initial_prompt)
thoughts, self.initial_prompt
)
filtered_thoughts = [
thought for thought in thoughts
thought
for thought in thoughts
if self.evaluated_thoughts[thought] >= self.pruning_threshold
]
print(f"filtered_thoughts: {filtered_thoughts}")

@ -38,8 +38,7 @@ def record(agent_name: str, autotab_ext_path: Optional[str] = None):
if not os.path.exists("agents"):
os.makedirs("agents")
if os.path.exists(
f"agents/{agent_name}.py") and config.environment != "local":
if os.path.exists(f"agents/{agent_name}.py") and config.environment != "local":
if not _is_blank_agent(agent_name=agent_name):
raise Exception(f"Agent with name {agent_name} already exists")
driver = get_driver( # noqa: F841
@ -55,10 +54,12 @@ def record(agent_name: str, autotab_ext_path: Optional[str] = None):
print(
"\033[34mYou have the Python debugger open, you can run commands in it like you"
" would in a normal Python shell.\033[0m")
" would in a normal Python shell.\033[0m"
)
print(
"\033[34mTo exit, type 'q' and press enter. For a list of commands type '?' and"
" press enter.\033[0m")
" press enter.\033[0m"
)
breakpoint()
@ -78,13 +79,12 @@ def extract_domain_from_url(url: str):
class AutotabChromeDriver(uc.Chrome):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def find_element_with_retry(self,
by=By.ID,
value: Optional[str] = None) -> WebElement:
def find_element_with_retry(
self, by=By.ID, value: Optional[str] = None
) -> WebElement:
try:
return super().find_element(by, value)
except Exception as e:
@ -102,8 +102,11 @@ def open_plugin(driver: AutotabChromeDriver):
def open_plugin_and_login(driver: AutotabChromeDriver):
if config.autotab_api_key is not None:
backend_url = ("http://localhost:8000" if config.environment == "local"
else "https://api.autotab.com")
backend_url = (
"http://localhost:8000"
if config.environment == "local"
else "https://api.autotab.com"
)
driver.get(f"{backend_url}/auth/signin-api-key-page")
response = requests.post(
f"{backend_url}/auth/signin-api-key",
@ -116,7 +119,8 @@ def open_plugin_and_login(driver: AutotabChromeDriver):
else:
raise Exception(
f"Error {response.status_code} from backend while logging you in"
f" with your API key: {response.text}")
f" with your API key: {response.text}"
)
cookie["name"] = cookie["key"]
del cookie["key"]
driver.add_cookie(cookie)
@ -126,21 +130,26 @@ def open_plugin_and_login(driver: AutotabChromeDriver):
else:
print("No autotab API key found, heading to autotab.com to sign up")
url = ("http://localhost:3000/dashboard" if config.environment
== "local" else "https://autotab.com/dashboard")
url = (
"http://localhost:3000/dashboard"
if config.environment == "local"
else "https://autotab.com/dashboard"
)
driver.get(url)
time.sleep(0.5)
open_plugin(driver)
def get_driver(autotab_ext_path: Optional[str] = None,
record_mode: bool = False) -> AutotabChromeDriver:
def get_driver(
autotab_ext_path: Optional[str] = None, record_mode: bool = False
) -> AutotabChromeDriver:
options = webdriver.ChromeOptions()
options.add_argument("--no-sandbox") # Necessary for running
options.add_argument(
"--user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36")
" (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
)
options.add_argument("--enable-webgl")
options.add_argument("--enable-3d-apis")
options.add_argument("--enable-clipboard-read-write")
@ -229,8 +238,7 @@ class Config(BaseModel):
return cls(
autotab_api_key=autotab_api_key,
credentials=_credentials,
google_credentials=GoogleCredentials(
credentials=google_credentials),
google_credentials=GoogleCredentials(credentials=google_credentials),
chrome_binary_location=config.get("chrome_binary_location"),
environment=config.get("environment", "prod"),
)
@ -248,9 +256,9 @@ def is_signed_in_to_google(driver):
return len([c for c in cookies if c["name"] == "SAPISID"]) != 0
def google_login(driver,
credentials: Optional[SiteCredentials] = None,
navigate: bool = True):
def google_login(
driver, credentials: Optional[SiteCredentials] = None, navigate: bool = True
):
print("Logging in to Google")
if navigate:
driver.get("https://accounts.google.com/")
@ -282,7 +290,8 @@ def google_login(driver,
email_input.send_keys(credentials.email)
email_input.send_keys(Keys.ENTER)
WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.CSS_SELECTOR, "[type='password']")))
EC.element_to_be_clickable((By.CSS_SELECTOR, "[type='password']"))
)
password_input = driver.find_element(By.CSS_SELECTOR, "[type='password']")
password_input.send_keys(credentials.password)
@ -305,20 +314,21 @@ def google_login(driver,
cookies = driver.get_cookies()
cookie_names = ["__Host-GAPS", "SMSV", "NID", "ACCOUNT_CHOOSER"]
google_cookies = [
cookie for cookie in cookies
if cookie["domain"] in [".google.com", "accounts.google.com"] and
cookie["name"] in cookie_names
cookie
for cookie in cookies
if cookie["domain"] in [".google.com", "accounts.google.com"]
and cookie["name"] in cookie_names
]
with open("google_cookies.json", "w") as f:
json.dump(google_cookies, f)
# Log back in
login_button = driver.find_element(
By.CSS_SELECTOR, f"[data-identifier='{credentials.email}']")
By.CSS_SELECTOR, f"[data-identifier='{credentials.email}']"
)
login_button.click()
time.sleep(1)
password_input = driver.find_element(By.CSS_SELECTOR,
"[type='password']")
password_input = driver.find_element(By.CSS_SELECTOR, "[type='password']")
password_input.send_keys(credentials.password)
password_input.send_keys(Keys.ENTER)
@ -333,7 +343,8 @@ def login(driver, url: str):
login_url = credentials.login_url
if credentials.login_with_google_account:
google_credentials = config.google_credentials.credentials[
credentials.login_with_google_account]
credentials.login_with_google_account
]
_login_with_google(driver, login_url, google_credentials)
else:
_login(driver, login_url, credentials=credentials)
@ -360,15 +371,16 @@ def _login_with_google(driver, url: str, google_credentials: SiteCredentials):
driver.get(url)
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.TAG_NAME, "body")))
EC.presence_of_element_located((By.TAG_NAME, "body"))
)
main_window = driver.current_window_handle
xpath = (
"//*[contains(text(), 'Continue with Google') or contains(text(), 'Sign in with"
" Google') or contains(@title, 'Sign in with Google')]")
" Google') or contains(@title, 'Sign in with Google')]"
)
WebDriverWait(driver,
10).until(EC.presence_of_element_located((By.XPATH, xpath)))
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.XPATH, xpath)))
driver.find_element(
By.XPATH,
xpath,
@ -376,8 +388,8 @@ def _login_with_google(driver, url: str, google_credentials: SiteCredentials):
driver.switch_to.window(driver.window_handles[-1])
driver.find_element(
By.XPATH,
f"//*[contains(text(), '{google_credentials.email}')]").click()
By.XPATH, f"//*[contains(text(), '{google_credentials.email}')]"
).click()
driver.switch_to.window(main_window)
@ -430,11 +442,8 @@ def should_update():
# Parse the XML file
root = ET.fromstring(xml_content)
namespaces = {
"ns": "http://www.google.com/update2/response"
} # add namespaces
xml_version = root.find(".//ns:app/ns:updatecheck",
namespaces).get("version")
namespaces = {"ns": "http://www.google.com/update2/response"} # add namespaces
xml_version = root.find(".//ns:app/ns:updatecheck", namespaces).get("version")
# Load the local JSON file
with open("src/extension/autotab/manifest.json", "r") as f:

@ -56,24 +56,23 @@ HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [
def get_remote_tools(organization="huggingface-tools"):
if is_offline_mode():
logger.info(
"You are in offline mode, so remote tools are not available.")
logger.info("You are in offline mode, so remote tools are not available.")
return {}
spaces = list_spaces(author=organization)
tools = {}
for space_info in spaces:
repo_id = space_info.id
resolved_config_file = hf_hub_download(repo_id,
TOOL_CONFIG_FILE,
repo_type="space")
resolved_config_file = hf_hub_download(
repo_id, TOOL_CONFIG_FILE, repo_type="space"
)
with open(resolved_config_file, encoding="utf-8") as reader:
config = json.load(reader)
task = repo_id.split("/")[-1]
tools[config["name"]] = PreTool(task=task,
description=config["description"],
repo_id=repo_id)
tools[config["name"]] = PreTool(
task=task, description=config["description"], repo_id=repo_id
)
return tools
@ -93,7 +92,8 @@ def _setup_default_tools():
tool_class = getattr(tools_module, tool_class_name)
description = tool_class.description
HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(
task=task_name, description=description, repo_id=None)
task=task_name, description=description, repo_id=None
)
if not is_offline_mode():
for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB:
@ -197,19 +197,18 @@ class Agent:
one of the default tools, that default tool will be overridden.
"""
def __init__(self,
chat_prompt_template=None,
run_prompt_template=None,
additional_tools=None):
def __init__(
self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
):
_setup_default_tools()
agent_name = self.__class__.__name__
self.chat_prompt_template = download_prompt(chat_prompt_template,
agent_name,
mode="chat")
self.run_prompt_template = download_prompt(run_prompt_template,
agent_name,
mode="run")
self.chat_prompt_template = download_prompt(
chat_prompt_template, agent_name, mode="chat"
)
self.run_prompt_template = download_prompt(
run_prompt_template, agent_name, mode="run"
)
self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy()
self.log = print
if additional_tools is not None:
@ -225,16 +224,17 @@ class Agent:
}
self._toolbox.update(additional_tools)
if len(replacements) > 1:
names = "\n".join(
[f"- {n}: {t}" for n, t in replacements.items()])
names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()])
logger.warning(
"The following tools have been replaced by the ones provided in"
f" `additional_tools`:\n{names}.")
f" `additional_tools`:\n{names}."
)
elif len(replacements) == 1:
name = list(replacements.keys())[0]
logger.warning(
f"{name} has been replaced by {replacements[name]} as provided in"
" `additional_tools`.")
" `additional_tools`."
)
self.prepare_for_new_chat()
@ -244,20 +244,17 @@ class Agent:
return self._toolbox
def format_prompt(self, task, chat_mode=False):
description = "\n".join([
f"- {name}: {tool.description}"
for name, tool in self.toolbox.items()
])
description = "\n".join(
[f"- {name}: {tool.description}" for name, tool in self.toolbox.items()]
)
if chat_mode:
if self.chat_history is None:
prompt = self.chat_prompt_template.replace(
"<<all_tools>>", description)
prompt = self.chat_prompt_template.replace("<<all_tools>>", description)
else:
prompt = self.chat_history
prompt += CHAT_MESSAGE_PROMPT.replace("<<task>>", task)
else:
prompt = self.run_prompt_template.replace("<<all_tools>>",
description)
prompt = self.run_prompt_template.replace("<<all_tools>>", description)
prompt = prompt.replace("<<prompt>>", task)
return prompt
@ -306,19 +303,14 @@ class Agent:
if not return_code:
self.log("\n\n==Result==")
self.cached_tools = resolve_tools(
code,
self.toolbox,
remote=remote,
cached_tools=self.cached_tools)
code, self.toolbox, remote=remote, cached_tools=self.cached_tools
)
self.chat_state.update(kwargs)
return evaluate(code,
self.cached_tools,
self.chat_state,
chat_mode=True)
return evaluate(
code, self.cached_tools, self.chat_state, chat_mode=True
)
else:
tool_code = get_tool_creation_code(code,
self.toolbox,
remote=remote)
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
return f"{tool_code}\n{code}"
def prepare_for_new_chat(self):
@ -360,15 +352,12 @@ class Agent:
self.log(f"\n\n==Code generated by the agent==\n{code}")
if not return_code:
self.log("\n\n==Result==")
self.cached_tools = resolve_tools(code,
self.toolbox,
remote=remote,
cached_tools=self.cached_tools)
self.cached_tools = resolve_tools(
code, self.toolbox, remote=remote, cached_tools=self.cached_tools
)
return evaluate(code, self.cached_tools, state=kwargs.copy())
else:
tool_code = get_tool_creation_code(code,
self.toolbox,
remote=remote)
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
return f"{tool_code}\n{code}"
def generate_one(self, prompt, stop):
@ -428,7 +417,8 @@ class HFAgent(Agent):
):
if not is_openai_available():
raise ImportError(
"Using `OpenAiAgent` requires `openai`: `pip install openai`.")
"Using `OpenAiAgent` requires `openai`: `pip install openai`."
)
if api_key is None:
api_key = os.environ.get("OPENAI_API_KEY", None)
@ -436,7 +426,8 @@ class HFAgent(Agent):
raise ValueError(
"You need an openai key to use `OpenAIAgent`. You can get one here: Get"
" one here https://openai.com/api/`. If you have one, set it in your"
" env with `os.environ['OPENAI_API_KEY'] = xxx.")
" env with `os.environ['OPENAI_API_KEY'] = xxx."
)
else:
openai.api_key = api_key
self.model = model
@ -461,10 +452,7 @@ class HFAgent(Agent):
def _chat_generate(self, prompt, stop):
result = openai.ChatCompletion.create(
model=self.model,
messages=[{
"role": "user",
"content": prompt
}],
messages=[{"role": "user", "content": prompt}],
temperature=0,
stop=stop,
)
@ -542,7 +530,8 @@ class AzureOpenAI(Agent):
):
if not is_openai_available():
raise ImportError(
"Using `OpenAiAgent` requires `openai`: `pip install openai`.")
"Using `OpenAiAgent` requires `openai`: `pip install openai`."
)
self.deployment_id = deployment_id
openai.api_type = "azure"
@ -552,7 +541,8 @@ class AzureOpenAI(Agent):
raise ValueError(
"You need an Azure openAI key to use `AzureOpenAIAgent`. If you have"
" one, set it in your env with `os.environ['AZURE_OPENAI_API_KEY'] ="
" xxx.")
" xxx."
)
else:
openai.api_key = api_key
if resource_name is None:
@ -561,7 +551,8 @@ class AzureOpenAI(Agent):
raise ValueError(
"You need a resource_name to use `AzureOpenAIAgent`. If you have one,"
" set it in your env with `os.environ['AZURE_OPENAI_RESOURCE_NAME'] ="
" xxx.")
" xxx."
)
else:
openai.api_base = f"https://{resource_name}.openai.azure.com"
openai.api_version = api_version
@ -591,10 +582,7 @@ class AzureOpenAI(Agent):
def _chat_generate(self, prompt, stop):
result = openai.ChatCompletion.create(
engine=self.deployment_id,
messages=[{
"role": "user",
"content": prompt
}],
messages=[{"role": "user", "content": prompt}],
temperature=0,
stop=stop,
)

@ -88,8 +88,9 @@ class MetaPrompterAgent:
Assistant:
"""
prompt = PromptTemplate(input_variables=["history", "human_input"],
template=template)
prompt = PromptTemplate(
input_variables=["history", "human_input"], template=template
)
self.chain = LLMChain(
llm=self.llm(),
@ -101,15 +102,13 @@ class MetaPrompterAgent:
def get_chat_history(self, chain_memory):
"""Get Chat History from the memory"""
memory_key = chain_memory.memory_key
chat_history = chain_memory.load_memory_variables(
memory_key)[memory_key]
chat_history = chain_memory.load_memory_variables(memory_key)[memory_key]
return chat_history
def get_new_instructions(self, meta_output):
"""Get New Instructions from the meta_output"""
delimiter = "Instructions: "
new_instructions = meta_output[meta_output.find(delimiter) +
len(delimiter):]
new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :]
return new_instructions
def run(self, task: str):
@ -150,7 +149,8 @@ class MetaPrompterAgent:
meta_chain = self.initialize_meta_chain()
meta_output = meta_chain.predict(
chat_history=self.get_chat_history(chain.memory))
chat_history=self.get_chat_history(chain.memory)
)
print(f"Feedback: {meta_output}")
self.instructions = self.get_new_instructions(meta_output)

File diff suppressed because it is too large Load Diff

@ -2,7 +2,6 @@
class Replicator:
def __init__(
self,
model_name,

@ -3,20 +3,23 @@ from typing import Dict, List
from langchain.base_language import BaseLanguageModel
from langchain.tools.base import BaseTool
from langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator import (
load_response_generator,)
load_response_generator,
)
from langchain_experimental.autonomous_agents.hugginggpt.task_executor import (
TaskExecutor,)
TaskExecutor,
)
from langchain_experimental.autonomous_agents.hugginggpt.task_planner import (
load_chat_planner,)
load_chat_planner,
)
from transformers import load_tool
from swarms.agents.message import Message
class Step:
def __init__(self, task: str, id: int, dep: List[int], args: Dict[str, str],
tool: BaseTool):
def __init__(
self, task: str, id: int, dep: List[int], args: Dict[str, str], tool: BaseTool
):
self.task = task
self.id = id
self.dep = dep
@ -25,7 +28,6 @@ class Step:
class Plan:
def __init__(self, steps: List[Step]):
self.steps = steps
@ -71,7 +73,8 @@ class OmniModalAgent:
print("Loading tools...")
self.tools = [
load_tool(tool_name) for tool_name in [
load_tool(tool_name)
for tool_name in [
"document-question-answering",
"image-captioning",
"image-question-answering",
@ -96,15 +99,18 @@ class OmniModalAgent:
def run(self, input: str) -> str:
"""Run the OmniAgent"""
plan = self.chat_planner.plan(inputs={
"input": input,
"hf_tools": self.tools,
})
plan = self.chat_planner.plan(
inputs={
"input": input,
"hf_tools": self.tools,
}
)
self.task_executor = TaskExecutor(plan)
self.task_executor.run()
response = self.response_generator.generate(
{"task_execution": self.task_executor})
{"task_execution": self.task_executor}
)
return response

@ -145,12 +145,13 @@ def setup_knowledge_base(product_catalog: str = None):
llm = OpenAI(temperature=0)
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_texts(texts,
embeddings,
collection_name="product-knowledge-base")
docsearch = Chroma.from_texts(
texts, embeddings, collection_name="product-knowledge-base"
)
knowledge_base = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=docsearch.as_retriever())
llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
)
return knowledge_base
@ -162,8 +163,8 @@ def get_tools(product_catalog):
Tool(
name="ProductSearch",
func=knowledge_base.run,
description=
("useful for when you need to answer questions about product information"
description=(
"useful for when you need to answer questions about product information"
),
),
# omnimodal agent
@ -193,7 +194,8 @@ class CustomPromptTemplateForTools(StringPromptTemplate):
tools = self.tools_getter(kwargs["input"])
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools])
[f"{tool.name}: {tool.description}" for tool in tools]
)
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
@ -216,7 +218,8 @@ class SalesConvoOutputParser(AgentOutputParser):
print("-------")
if f"{self.ai_prefix}:" in text:
return AgentFinish(
{"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text)
{"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text
)
regex = r"Action: (.*?)[\n]*Action Input: (.*)"
match = re.search(regex, text)
if not match:
@ -225,15 +228,15 @@ class SalesConvoOutputParser(AgentOutputParser):
{
"output": (
"I apologize, I was unable to find the answer to your question."
" Is there anything else I can help with?")
" Is there anything else I can help with?"
)
},
text,
)
# raise OutputParserException(f"Could not parse LLM output: `{text}`")
action = match.group(1)
action_input = match.group(2)
return AgentAction(action.strip(),
action_input.strip(" ").strip('"'), text)
return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text)
@property
def _type(self) -> str:
@ -261,11 +264,13 @@ class ProfitPilot(Chain, BaseModel):
"2": (
"Qualification: Qualify the prospect by confirming if they are the right"
" person to talk to regarding your product/service. Ensure that they have"
" the authority to make purchasing decisions."),
" the authority to make purchasing decisions."
),
"3": (
"Value proposition: Briefly explain how your product/service can benefit"
" the prospect. Focus on the unique selling points and value proposition of"
" your product/service that sets it apart from competitors."),
" your product/service that sets it apart from competitors."
),
"4": (
"Needs analysis: Ask open-ended questions to uncover the prospect's needs"
" and pain points. Listen carefully to their responses and take notes."
@ -277,11 +282,13 @@ class ProfitPilot(Chain, BaseModel):
"6": (
"Objection handling: Address any objections that the prospect may have"
" regarding your product/service. Be prepared to provide evidence or"
" testimonials to support your claims."),
" testimonials to support your claims."
),
"7": (
"Close: Ask for the sale by proposing a next step. This could be a demo, a"
" trial or a meeting with decision-makers. Ensure to summarize what has"
" been discussed and reiterate the benefits."),
" been discussed and reiterate the benefits."
),
}
salesperson_name: str = "Ted Lasso"
@ -291,16 +298,19 @@ class ProfitPilot(Chain, BaseModel):
"Sleep Haven is a premium mattress company that provides customers with the"
" most comfortable and supportive sleeping experience possible. We offer a"
" range of high-quality mattresses, pillows, and bedding accessories that are"
" designed to meet the unique needs of our customers.")
" designed to meet the unique needs of our customers."
)
company_values: str = (
"Our mission at Sleep Haven is to help people achieve a better night's sleep by"
" providing them with the best possible sleep solutions. We believe that"
" quality sleep is essential to overall health and well-being, and we are"
" committed to helping our customers achieve optimal sleep by offering"
" exceptional products and customer service.")
" exceptional products and customer service."
)
conversation_purpose: str = (
"find out whether they are looking to achieve better sleep via buying a premier"
" mattress.")
" mattress."
)
conversation_type: str = "call"
def retrieve_conversation_stage(self, key):
@ -326,7 +336,8 @@ class ProfitPilot(Chain, BaseModel):
)
self.current_conversation_stage = self.retrieve_conversation_stage(
conversation_stage_id)
conversation_stage_id
)
print(f"Conversation Stage: {self.current_conversation_stage}")
@ -380,15 +391,13 @@ class ProfitPilot(Chain, BaseModel):
return {}
@classmethod
def from_llm(cls,
llm: BaseLLM,
verbose: bool = False,
**kwargs): # noqa: F821
def from_llm(cls, llm: BaseLLM, verbose: bool = False, **kwargs): # noqa: F821
"""Initialize the SalesGPT Controller."""
stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)
sales_conversation_utterance_chain = SalesConversationChain.from_llm(
llm, verbose=verbose)
llm, verbose=verbose
)
if "use_tools" in kwargs.keys() and kwargs["use_tools"] is False:
sales_agent_executor = None
@ -421,8 +430,7 @@ class ProfitPilot(Chain, BaseModel):
# WARNING: this output parser is NOT reliable yet
# It makes assumptions about output from LLM which can break and throw an error
output_parser = SalesConvoOutputParser(
ai_prefix=kwargs["salesperson_name"])
output_parser = SalesConvoOutputParser(ai_prefix=kwargs["salesperson_name"])
sales_agent_with_tools = LLMSingleActionAgent(
llm_chain=llm_chain,
@ -433,12 +441,12 @@ class ProfitPilot(Chain, BaseModel):
)
sales_agent_executor = AgentExecutor.from_agent_and_tools(
agent=sales_agent_with_tools, tools=tools, verbose=verbose)
agent=sales_agent_with_tools, tools=tools, verbose=verbose
)
return cls(
stage_analyzer_chain=stage_analyzer_chain,
sales_conversation_utterance_chain=
sales_conversation_utterance_chain,
sales_conversation_utterance_chain=sales_conversation_utterance_chain,
sales_agent_executor=sales_agent_executor,
verbose=verbose,
**kwargs,
@ -450,27 +458,32 @@ config = dict(
salesperson_name="Ted Lasso",
salesperson_role="Business Development Representative",
company_name="Sleep Haven",
company_business=
("Sleep Haven is a premium mattress company that provides customers with the"
" most comfortable and supportive sleeping experience possible. We offer a"
" range of high-quality mattresses, pillows, and bedding accessories that are"
" designed to meet the unique needs of our customers."),
company_values=
("Our mission at Sleep Haven is to help people achieve a better night's sleep by"
" providing them with the best possible sleep solutions. We believe that"
" quality sleep is essential to overall health and well-being, and we are"
" committed to helping our customers achieve optimal sleep by offering"
" exceptional products and customer service."),
conversation_purpose=
("find out whether they are looking to achieve better sleep via buying a premier"
" mattress."),
company_business=(
"Sleep Haven is a premium mattress company that provides customers with the"
" most comfortable and supportive sleeping experience possible. We offer a"
" range of high-quality mattresses, pillows, and bedding accessories that are"
" designed to meet the unique needs of our customers."
),
company_values=(
"Our mission at Sleep Haven is to help people achieve a better night's sleep by"
" providing them with the best possible sleep solutions. We believe that"
" quality sleep is essential to overall health and well-being, and we are"
" committed to helping our customers achieve optimal sleep by offering"
" exceptional products and customer service."
),
conversation_purpose=(
"find out whether they are looking to achieve better sleep via buying a premier"
" mattress."
),
conversation_history=[],
conversation_type="call",
conversation_stage=conversation_stages.get(
"1",
("Introduction: Start the conversation by introducing yourself and your"
" company. Be polite and respectful while keeping the tone of the"
" conversation professional."),
(
"Introduction: Start the conversation by introducing yourself and your"
" company. Be polite and respectful while keeping the tone of the"
" conversation professional."
),
),
use_tools=True,
product_catalog="sample_product_catalog.txt",

@ -1,11 +1,9 @@
class PromptRefiner:
def __init__(self, system_prompt: str, llm):
super().__init__()
self.system_prompt = system_prompt
self.llm = llm
def run(self, task: str):
refine = self.llm(
f"System Prompt: {self.system_prompt} Current task: {task}")
refine = self.llm(f"System Prompt: {self.system_prompt} Current task: {task}")
return refine

@ -10,7 +10,6 @@ class Registry(BaseModel):
entries: Dict = {}
def register(self, key: str):
def decorator(class_builder):
self.entries[key] = class_builder
return class_builder
@ -21,7 +20,8 @@ class Registry(BaseModel):
if type not in self.entries:
raise ValueError(
f"{type} is not registered. Please register with the"
f' .register("{type}") method provided in {self.name} registry')
f' .register("{type}") method provided in {self.name} registry'
)
return self.entries[type](**kwargs)
def get_all_entries(self):

@ -29,8 +29,7 @@ class SimpleAgent:
def run(self, task: str) -> str:
"""Run method"""
metrics = print(
colored(f"Agent {self.name} is running task: {task}", "red"))
metrics = print(colored(f"Agent {self.name} is running task: {task}", "red"))
print(metrics)
response = self.flow.run(task)

@ -10,8 +10,9 @@ from marshmallow.exceptions import RegistryError
@define
class BaseArtifact(ABC):
id: str = field(default=Factory(lambda: uuid.uuid4().hex), kw_only=True)
name: str = field(default=Factory(lambda self: self.id, takes_self=True),
kw_only=True)
name: str = field(
default=Factory(lambda self: self.id, takes_self=True), kw_only=True
)
value: any = field()
type: str = field(
default=Factory(lambda self: self.__class__.__name__, takes_self=True),
@ -53,8 +54,7 @@ class BaseArtifact(ABC):
class_registry.register("ListArtifact", ListArtifactSchema)
try:
return class_registry.get_class(
artifact_dict["type"])().load(artifact_dict)
return class_registry.get_class(artifact_dict["type"])().load(artifact_dict)
except RegistryError:
raise ValueError("Unsupported artifact type")

@ -15,7 +15,8 @@ class Artifact(BaseModel):
artifact_id: StrictStr = Field(..., description="ID of the artifact")
file_name: StrictStr = Field(..., description="Filename of the artifact")
relative_path: Optional[StrictStr] = Field(
None, description="Relative path of the artifact")
None, description="Relative path of the artifact"
)
__properties = ["artifact_id", "file_name", "relative_path"]
class Config:
@ -48,10 +49,12 @@ class Artifact(BaseModel):
if not isinstance(obj, dict):
return Artifact.parse_obj(obj)
_obj = Artifact.parse_obj({
"artifact_id": obj.get("artifact_id"),
"file_name": obj.get("file_name"),
"relative_path": obj.get("relative_path"),
})
_obj = Artifact.parse_obj(
{
"artifact_id": obj.get("artifact_id"),
"file_name": obj.get("file_name"),
"relative_path": obj.get("relative_path"),
}
)
return _obj

@ -48,13 +48,15 @@ class BaseChunker(ABC):
kw_only=True,
)
tokenizer: OpenAITokenizer = field(
default=Factory(lambda: OpenAITokenizer(
model=OpenAITokenizer.DEFAULT_OPENAI_GPT_3_CHAT_MODEL)),
default=Factory(
lambda: OpenAITokenizer(
model=OpenAITokenizer.DEFAULT_OPENAI_GPT_3_CHAT_MODEL
)
),
kw_only=True,
)
max_tokens: int = field(
default=Factory(lambda self: self.tokenizer.max_tokens,
takes_self=True),
default=Factory(lambda self: self.tokenizer.max_tokens, takes_self=True),
kw_only=True,
)
@ -64,9 +66,8 @@ class BaseChunker(ABC):
return [TextArtifact(c) for c in self._chunk_recursively(text)]
def _chunk_recursively(
self,
chunk: str,
current_separator: Optional[ChunkSeparator] = None) -> list[str]:
self, chunk: str, current_separator: Optional[ChunkSeparator] = None
) -> list[str]:
token_count = self.tokenizer.count_tokens(chunk)
if token_count <= self.max_tokens:
@ -78,8 +79,7 @@ class BaseChunker(ABC):
half_token_count = token_count // 2
if current_separator:
separators = self.separators[self.separators.
index(current_separator):]
separators = self.separators[self.separators.index(current_separator) :]
else:
separators = self.separators
@ -102,19 +102,26 @@ class BaseChunker(ABC):
if separator.is_prefix:
first_subchunk = separator.value + separator.value.join(
subchanks[:balance_index + 1])
subchanks[: balance_index + 1]
)
second_subchunk = separator.value + separator.value.join(
subchanks[balance_index + 1:])
subchanks[balance_index + 1 :]
)
else:
first_subchunk = (separator.value.join(
subchanks[:balance_index + 1]) + separator.value)
first_subchunk = (
separator.value.join(subchanks[: balance_index + 1])
+ separator.value
)
second_subchunk = separator.value.join(
subchanks[balance_index + 1:])
subchanks[balance_index + 1 :]
)
first_subchunk_rec = self._chunk_recursively(
first_subchunk.strip(), separator)
first_subchunk.strip(), separator
)
second_subchunk_rec = self._chunk_recursively(
second_subchunk.strip(), separator)
second_subchunk.strip(), separator
)
if first_subchunk_rec and second_subchunk_rec:
return first_subchunk_rec + second_subchunk_rec

@ -76,7 +76,8 @@ class OmniChunker:
colored(
f"Could not decode file with extension {file_extension}: {e}",
"yellow",
))
)
)
return ""
def chunk_content(self, content: str) -> List[str]:
@ -90,7 +91,7 @@ class OmniChunker:
List[str]: The list of chunks.
"""
return [
content[i:i + self.chunk_size]
content[i : i + self.chunk_size]
for i in range(0, len(content), self.chunk_size)
]
@ -112,4 +113,5 @@ class OmniChunker:
{self.metrics()}
""",
"cyan",
))
)
)

@ -18,9 +18,9 @@ class AsanaReader(BaseReader):
self.client = asana.Client.access_token(asana_token)
def load_data(self,
workspace_id: Optional[str] = None,
project_id: Optional[str] = None) -> List[Document]:
def load_data(
self, workspace_id: Optional[str] = None, project_id: Optional[str] = None
) -> List[Document]:
"""Load data from the workspace.
Args:
@ -31,20 +31,18 @@ class AsanaReader(BaseReader):
"""
if workspace_id is None and project_id is None:
raise ValueError(
"Either workspace_id or project_id must be provided")
raise ValueError("Either workspace_id or project_id must be provided")
if workspace_id is not None and project_id is not None:
raise ValueError(
"Only one of workspace_id or project_id should be provided")
"Only one of workspace_id or project_id should be provided"
)
results = []
if workspace_id is not None:
workspace_name = self.client.workspaces.find_by_id(
workspace_id)["name"]
projects = self.client.projects.find_all(
{"workspace": workspace_id})
workspace_name = self.client.workspaces.find_by_id(workspace_id)["name"]
projects = self.client.projects.find_all({"workspace": workspace_id})
# Case: Only project_id is provided
else: # since we've handled the other cases, this means project_id is not None
@ -52,58 +50,54 @@ class AsanaReader(BaseReader):
workspace_name = projects[0]["workspace"]["name"]
for project in projects:
tasks = self.client.tasks.find_all({
"project":
project["gid"],
"opt_fields":
"name,notes,completed,completed_at,completed_by,assignee,followers,custom_fields",
})
tasks = self.client.tasks.find_all(
{
"project": project["gid"],
"opt_fields": "name,notes,completed,completed_at,completed_by,assignee,followers,custom_fields",
}
)
for task in tasks:
stories = self.client.tasks.stories(task["gid"],
opt_fields="type,text")
comments = "\n".join([
story["text"]
for story in stories
if story.get("type") == "comment" and "text" in story
])
stories = self.client.tasks.stories(task["gid"], opt_fields="type,text")
comments = "\n".join(
[
story["text"]
for story in stories
if story.get("type") == "comment" and "text" in story
]
)
task_metadata = {
"task_id":
task.get("gid", ""),
"name":
task.get("name", ""),
"task_id": task.get("gid", ""),
"name": task.get("name", ""),
"assignee": (task.get("assignee") or {}).get("name", ""),
"completed_on":
task.get("completed_at", ""),
"completed_by": (task.get("completed_by") or
{}).get("name", ""),
"project_name":
project.get("name", ""),
"completed_on": task.get("completed_at", ""),
"completed_by": (task.get("completed_by") or {}).get("name", ""),
"project_name": project.get("name", ""),
"custom_fields": [
i["display_value"]
for i in task.get("custom_fields")
if task.get("custom_fields") is not None
],
"workspace_name":
workspace_name,
"url":
f"https://app.asana.com/0/{project['gid']}/{task['gid']}",
"workspace_name": workspace_name,
"url": f"https://app.asana.com/0/{project['gid']}/{task['gid']}",
}
if task.get("followers") is not None:
task_metadata["followers"] = [
i.get("name")
for i in task.get("followers")
if "name" in i
i.get("name") for i in task.get("followers") if "name" in i
]
else:
task_metadata["followers"] = []
results.append(
Document(
text=task.get("name", "") + " " +
task.get("notes", "") + " " + comments,
text=task.get("name", "")
+ " "
+ task.get("notes", "")
+ " "
+ comments,
extra_info=task_metadata,
))
)
)
return results

@ -47,8 +47,7 @@ class BaseComponent(BaseModel):
# TODO: return type here not supported by current mypy version
@classmethod
def from_dict(cls, data: Dict[str, Any],
**kwargs: Any) -> Self: # type: ignore
def from_dict(cls, data: Dict[str, Any], **kwargs: Any) -> Self: # type: ignore
if isinstance(kwargs, dict):
data.update(kwargs)
@ -119,10 +118,12 @@ class BaseNode(BaseComponent):
class Config:
allow_population_by_field_name = True
id_: str = Field(default_factory=lambda: str(uuid.uuid4()),
description="Unique ID of the node.")
id_: str = Field(
default_factory=lambda: str(uuid.uuid4()), description="Unique ID of the node."
)
embedding: Optional[List[float]] = Field(
default=None, description="Embedding of the node.")
default=None, description="Embedding of the node."
)
""""
metadata fields
- injected as part of the text shown to LLMs as context
@ -137,8 +138,7 @@ class BaseNode(BaseComponent):
)
excluded_embed_metadata_keys: List[str] = Field(
default_factory=list,
description=
"Metadata keys that are excluded from text for the embed model.",
description="Metadata keys that are excluded from text for the embed model.",
)
excluded_llm_metadata_keys: List[str] = Field(
default_factory=list,
@ -156,8 +156,7 @@ class BaseNode(BaseComponent):
"""Get Object type."""
@abstractmethod
def get_content(self,
metadata_mode: MetadataMode = MetadataMode.ALL) -> str:
def get_content(self, metadata_mode: MetadataMode = MetadataMode.ALL) -> str:
"""Get object content."""
@abstractmethod
@ -188,8 +187,7 @@ class BaseNode(BaseComponent):
relation = self.relationships[NodeRelationship.SOURCE]
if isinstance(relation, list):
raise ValueError(
"Source object must be a single RelatedNodeInfo object")
raise ValueError("Source object must be a single RelatedNodeInfo object")
return relation
@property
@ -200,8 +198,7 @@ class BaseNode(BaseComponent):
relation = self.relationships[NodeRelationship.PREVIOUS]
if not isinstance(relation, RelatedNodeInfo):
raise ValueError(
"Previous object must be a single RelatedNodeInfo object")
raise ValueError("Previous object must be a single RelatedNodeInfo object")
return relation
@property
@ -212,8 +209,7 @@ class BaseNode(BaseComponent):
relation = self.relationships[NodeRelationship.NEXT]
if not isinstance(relation, RelatedNodeInfo):
raise ValueError(
"Next object must be a single RelatedNodeInfo object")
raise ValueError("Next object must be a single RelatedNodeInfo object")
return relation
@property
@ -224,8 +220,7 @@ class BaseNode(BaseComponent):
relation = self.relationships[NodeRelationship.PARENT]
if not isinstance(relation, RelatedNodeInfo):
raise ValueError(
"Parent object must be a single RelatedNodeInfo object")
raise ValueError("Parent object must be a single RelatedNodeInfo object")
return relation
@property
@ -236,8 +231,7 @@ class BaseNode(BaseComponent):
relation = self.relationships[NodeRelationship.CHILD]
if not isinstance(relation, list):
raise ValueError(
"Child objects must be a list of RelatedNodeInfo objects.")
raise ValueError("Child objects must be a list of RelatedNodeInfo objects.")
return relation
@property
@ -254,10 +248,12 @@ class BaseNode(BaseComponent):
return self.metadata
def __str__(self) -> str:
source_text_truncated = truncate_text(self.get_content().strip(),
TRUNCATE_LENGTH)
source_text_wrapped = textwrap.fill(f"Text: {source_text_truncated}\n",
width=WRAP_WIDTH)
source_text_truncated = truncate_text(
self.get_content().strip(), TRUNCATE_LENGTH
)
source_text_wrapped = textwrap.fill(
f"Text: {source_text_truncated}\n", width=WRAP_WIDTH
)
return f"Node ID: {self.node_id}\n{source_text_wrapped}"
def get_embedding(self) -> List[float]:
@ -283,23 +279,28 @@ class BaseNode(BaseComponent):
class TextNode(BaseNode):
text: str = Field(default="", description="Text content of the node.")
start_char_idx: Optional[int] = Field(
default=None, description="Start char index of the node.")
default=None, description="Start char index of the node."
)
end_char_idx: Optional[int] = Field(
default=None, description="End char index of the node.")
default=None, description="End char index of the node."
)
text_template: str = Field(
default=DEFAULT_TEXT_NODE_TMPL,
description=("Template for how text is formatted, with {content} and "
"{metadata_str} placeholders."),
description=(
"Template for how text is formatted, with {content} and "
"{metadata_str} placeholders."
),
)
metadata_template: str = Field(
default=DEFAULT_METADATA_TMPL,
description=("Template for how metadata is formatted, with {key} and "
"{value} placeholders."),
description=(
"Template for how metadata is formatted, with {key} and "
"{value} placeholders."
),
)
metadata_seperator: str = Field(
default="\n",
description=
"Separator between metadata fields when converting to string.",
description="Separator between metadata fields when converting to string.",
)
@classmethod
@ -313,7 +314,8 @@ class TextNode(BaseNode):
metadata = values.get("metadata", {})
doc_identity = str(text) + str(metadata)
values["hash"] = str(
sha256(doc_identity.encode("utf-8", "surrogatepass")).hexdigest())
sha256(doc_identity.encode("utf-8", "surrogatepass")).hexdigest()
)
return values
@classmethod
@ -321,15 +323,15 @@ class TextNode(BaseNode):
"""Get Object type."""
return ObjectType.TEXT
def get_content(self,
metadata_mode: MetadataMode = MetadataMode.NONE) -> str:
def get_content(self, metadata_mode: MetadataMode = MetadataMode.NONE) -> str:
"""Get object content."""
metadata_str = self.get_metadata_str(mode=metadata_mode).strip()
if not metadata_str:
return self.text
return self.text_template.format(content=self.text,
metadata_str=metadata_str).strip()
return self.text_template.format(
content=self.text, metadata_str=metadata_str
).strip()
def get_metadata_str(self, mode: MetadataMode = MetadataMode.ALL) -> str:
"""Metadata info string."""
@ -346,11 +348,13 @@ class TextNode(BaseNode):
if key in usable_metadata_keys:
usable_metadata_keys.remove(key)
return self.metadata_seperator.join([
self.metadata_template.format(key=key, value=str(value))
for key, value in self.metadata.items()
if key in usable_metadata_keys
])
return self.metadata_seperator.join(
[
self.metadata_template.format(key=key, value=str(value))
for key, value in self.metadata.items()
if key in usable_metadata_keys
]
)
def set_content(self, value: str) -> None:
"""Set the content of the node."""
@ -474,8 +478,7 @@ class NodeWithScore(BaseComponent):
else:
raise ValueError("Node must be a TextNode to get text.")
def get_content(self,
metadata_mode: MetadataMode = MetadataMode.NONE) -> str:
def get_content(self, metadata_mode: MetadataMode = MetadataMode.NONE) -> str:
return self.node.get_content(metadata_mode=metadata_mode)
def get_embedding(self) -> List[float]:
@ -512,10 +515,12 @@ class Document(TextNode):
return self.id_
def __str__(self) -> str:
source_text_truncated = truncate_text(self.get_content().strip(),
TRUNCATE_LENGTH)
source_text_wrapped = textwrap.fill(f"Text: {source_text_truncated}\n",
width=WRAP_WIDTH)
source_text_truncated = truncate_text(
self.get_content().strip(), TRUNCATE_LENGTH
)
source_text_wrapped = textwrap.fill(
f"Text: {source_text_truncated}\n", width=WRAP_WIDTH
)
return f"Doc ID: {self.doc_id}\n{source_text_wrapped}"
def get_doc_id(self) -> str:
@ -531,27 +536,22 @@ class Document(TextNode):
"""Convert struct to Haystack document format."""
from haystack.schema import Document as HaystackDocument
return HaystackDocument(content=self.text,
meta=self.metadata,
embedding=self.embedding,
id=self.id_)
return HaystackDocument(
content=self.text, meta=self.metadata, embedding=self.embedding, id=self.id_
)
@classmethod
def from_haystack_format(cls, doc: "HaystackDocument") -> "Document":
"""Convert struct from Haystack document format."""
return cls(text=doc.content,
metadata=doc.meta,
embedding=doc.embedding,
id_=doc.id)
return cls(
text=doc.content, metadata=doc.meta, embedding=doc.embedding, id_=doc.id
)
def to_embedchain_format(self) -> Dict[str, Any]:
"""Convert struct to EmbedChain document format."""
return {
"doc_id": self.id_,
"data": {
"content": self.text,
"meta_data": self.metadata
},
"data": {"content": self.text, "meta_data": self.metadata},
}
@classmethod
@ -581,8 +581,7 @@ class Document(TextNode):
return cls(
text=doc._text,
metadata={"additional_metadata": doc._additional_metadata},
embedding=doc._embedding.tolist()
if doc._embedding is not None else None,
embedding=doc._embedding.tolist() if doc._embedding is not None else None,
id_=doc._id,
)
@ -590,10 +589,7 @@ class Document(TextNode):
def example(cls) -> "Document":
return Document(
text=SAMPLE_TEXT,
metadata={
"filename": "README.md",
"category": "codebase"
},
metadata={"filename": "README.md", "category": "codebase"},
)
@classmethod

@ -30,25 +30,32 @@ class BaseVectorStore(ABC):
embedding_driver: Any
futures_executor: futures.Executor = field(
default=Factory(lambda: futures.ThreadPoolExecutor()), kw_only=True)
def upsert_text_artifacts(self,
artifacts: dict[str, list[TextArtifact]],
meta: Optional[dict] = None,
**kwargs) -> None:
execute_futures_dict({
namespace:
self.futures_executor.submit(self.upsert_text_artifact, a,
namespace, meta, **kwargs)
for namespace, artifact_list in artifacts.items()
for a in artifact_list
})
def upsert_text_artifact(self,
artifact: TextArtifact,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs) -> str:
default=Factory(lambda: futures.ThreadPoolExecutor()), kw_only=True
)
def upsert_text_artifacts(
self,
artifacts: dict[str, list[TextArtifact]],
meta: Optional[dict] = None,
**kwargs
) -> None:
execute_futures_dict(
{
namespace: self.futures_executor.submit(
self.upsert_text_artifact, a, namespace, meta, **kwargs
)
for namespace, artifact_list in artifacts.items()
for a in artifact_list
}
)
def upsert_text_artifact(
self,
artifact: TextArtifact,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
if not meta:
meta = {}
@ -59,37 +66,39 @@ class BaseVectorStore(ABC):
else:
vector = artifact.generate_embedding(self.embedding_driver)
return self.upsert_vector(vector,
vector_id=artifact.id,
namespace=namespace,
meta=meta,
**kwargs)
def upsert_text(self,
string: str,
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs) -> str:
return self.upsert_vector(self.embedding_driver.embed_string(string),
vector_id=vector_id,
namespace=namespace,
meta=meta if meta else {},
**kwargs)
return self.upsert_vector(
vector, vector_id=artifact.id, namespace=namespace, meta=meta, **kwargs
)
def upsert_text(
self,
string: str,
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
return self.upsert_vector(
self.embedding_driver.embed_string(string),
vector_id=vector_id,
namespace=namespace,
meta=meta if meta else {},
**kwargs
)
@abstractmethod
def upsert_vector(self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs) -> str:
def upsert_vector(
self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
...
@abstractmethod
def load_entry(self,
vector_id: str,
namespace: Optional[str] = None) -> Entry:
def load_entry(self, vector_id: str, namespace: Optional[str] = None) -> Entry:
...
@abstractmethod
@ -97,10 +106,12 @@ class BaseVectorStore(ABC):
...
@abstractmethod
def query(self,
query: str,
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
**kwargs) -> list[QueryResult]:
def query(
self,
query: str,
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
**kwargs
) -> list[QueryResult]:
...

@ -80,8 +80,10 @@ class Chroma(VectorStore):
import chromadb
import chromadb.config
except ImportError:
raise ImportError("Could not import chromadb python package. "
"Please install it with `pip install chromadb`.")
raise ImportError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
if client is not None:
self._client_settings = client_settings
@ -92,7 +94,8 @@ class Chroma(VectorStore):
# If client_settings is provided with persist_directory specified,
# then it is "in-memory and persisting to disk" mode.
client_settings.persist_directory = (
persist_directory or client_settings.persist_directory)
persist_directory or client_settings.persist_directory
)
if client_settings.persist_directory is not None:
# Maintain backwards compatibility with chromadb < 0.4.0
major, minor, _ = chromadb.__version__.split(".")
@ -105,23 +108,25 @@ class Chroma(VectorStore):
major, minor, _ = chromadb.__version__.split(".")
if int(major) == 0 and int(minor) < 4:
_client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",)
chroma_db_impl="duckdb+parquet",
)
else:
_client_settings = chromadb.config.Settings(
is_persistent=True)
_client_settings = chromadb.config.Settings(is_persistent=True)
_client_settings.persist_directory = persist_directory
else:
_client_settings = chromadb.config.Settings()
self._client_settings = _client_settings
self._client = chromadb.Client(_client_settings)
self._persist_directory = (_client_settings.persist_directory or
persist_directory)
self._persist_directory = (
_client_settings.persist_directory or persist_directory
)
self._embedding_function = embedding_function
self._collection = self._client.get_or_create_collection(
name=collection_name,
embedding_function=self._embedding_function.embed_documents
if self._embedding_function is not None else None,
if self._embedding_function is not None
else None,
metadata=collection_metadata,
)
self.override_relevance_score_fn = relevance_score_fn
@ -144,8 +149,10 @@ class Chroma(VectorStore):
try:
import chromadb # noqa: F401
except ImportError:
raise ValueError("Could not import chromadb python package. "
"Please install it with `pip install chromadb`.")
raise ValueError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
return self._collection.query(
query_texts=query_texts,
query_embeddings=query_embeddings,
@ -195,9 +202,9 @@ class Chroma(VectorStore):
if non_empty_ids:
metadatas = [metadatas[idx] for idx in non_empty_ids]
texts_with_metadatas = [texts[idx] for idx in non_empty_ids]
embeddings_with_metadatas = ([
embeddings[idx] for idx in non_empty_ids
] if embeddings else None)
embeddings_with_metadatas = (
[embeddings[idx] for idx in non_empty_ids] if embeddings else None
)
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
try:
self._collection.upsert(
@ -218,7 +225,8 @@ class Chroma(VectorStore):
if empty_ids:
texts_without_metadatas = [texts[j] for j in empty_ids]
embeddings_without_metadatas = (
[embeddings[j] for j in empty_ids] if embeddings else None)
[embeddings[j] for j in empty_ids] if embeddings else None
)
ids_without_metadatas = [ids[j] for j in empty_ids]
self._collection.upsert(
embeddings=embeddings_without_metadatas,
@ -250,9 +258,7 @@ class Chroma(VectorStore):
Returns:
List[Document]: List of documents most similar to the query text.
"""
docs_and_scores = self.similarity_search_with_score(query,
k,
filter=filter)
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
return [doc for doc, _ in docs_and_scores]
def similarity_search_by_vector(
@ -375,7 +381,8 @@ class Chroma(VectorStore):
raise ValueError(
"No supported normalization function"
f" for distance metric of type: {distance}."
"Consider providing relevance_score_fn to Chroma constructor.")
"Consider providing relevance_score_fn to Chroma constructor."
)
def max_marginal_relevance_search_by_vector(
self,
@ -421,9 +428,7 @@ class Chroma(VectorStore):
candidates = _results_to_docs(results)
selected_results = [
r for i, r in enumerate(candidates) if i in mmr_selected
]
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
return selected_results
def max_marginal_relevance_search(
@ -518,8 +523,10 @@ class Chroma(VectorStore):
It will also be called automatically when the object is destroyed.
"""
if self._persist_directory is None:
raise ValueError("You must specify a persist_directory on"
"creation to persist the collection.")
raise ValueError(
"You must specify a persist_directory on"
"creation to persist the collection."
)
import chromadb
# Maintain backwards compatibility with chromadb < 0.4.0
@ -536,8 +543,7 @@ class Chroma(VectorStore):
"""
return self.update_documents([document_id], [document])
def update_documents(self, ids: List[str],
documents: List[Document]) -> None:
def update_documents(self, ids: List[str], documents: List[Document]) -> None:
"""Update a document in the collection.
Args:
@ -552,16 +558,17 @@ class Chroma(VectorStore):
)
embeddings = self._embedding_function.embed_documents(text)
if hasattr(self._collection._client,
"max_batch_size"): # for Chroma 0.4.10 and above
if hasattr(
self._collection._client, "max_batch_size"
): # for Chroma 0.4.10 and above
from chromadb.utils.batch_utils import create_batches
for batch in create_batches(
api=self._collection._client,
ids=ids,
metadatas=metadata,
documents=text,
embeddings=embeddings,
api=self._collection._client,
ids=ids,
metadatas=metadata,
documents=text,
embeddings=embeddings,
):
self._collection.update(
ids=batch[0],
@ -621,15 +628,16 @@ class Chroma(VectorStore):
)
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
if hasattr(chroma_collection._client,
"max_batch_size"): # for Chroma 0.4.10 and above
if hasattr(
chroma_collection._client, "max_batch_size"
): # for Chroma 0.4.10 and above
from chromadb.utils.batch_utils import create_batches
for batch in create_batches(
api=chroma_collection._client,
ids=ids,
metadatas=metadatas,
documents=texts,
api=chroma_collection._client,
ids=ids,
metadatas=metadatas,
documents=texts,
):
chroma_collection.add_texts(
texts=batch[3] if batch[3] else [],
@ -637,9 +645,7 @@ class Chroma(VectorStore):
ids=batch[0],
)
else:
chroma_collection.add_texts(texts=texts,
metadatas=metadatas,
ids=ids)
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return chroma_collection
@classmethod

@ -19,7 +19,8 @@ def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
if X.shape[1] != Y.shape[1]:
raise ValueError(
f"Number of columns in X and Y must be the same. X has shape {X.shape} "
f"and Y has shape {Y.shape}.")
f"and Y has shape {Y.shape}."
)
try:
import simsimd as simd
@ -32,7 +33,8 @@ def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
except ImportError:
logger.info(
"Unable to import simsimd, defaulting to NumPy implementation. If you want "
"to use simsimd please install with `pip install simsimd`.")
"to use simsimd please install with `pip install simsimd`."
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.

@ -27,7 +27,6 @@ class NotFoundException(Exception):
class TaskDB(ABC):
async def create_task(
self,
input: Optional[str],
@ -68,9 +67,9 @@ class TaskDB(ABC):
async def list_tasks(self) -> List[Task]:
raise NotImplementedError
async def list_steps(self,
task_id: str,
status: Optional[Status] = None) -> List[Step]:
async def list_steps(
self, task_id: str, status: Optional[Status] = None
) -> List[Step]:
raise NotImplementedError
@ -137,8 +136,8 @@ class InMemoryTaskDB(TaskDB):
async def get_artifact(self, task_id: str, artifact_id: str) -> Artifact:
task = await self.get_task(task_id)
artifact = next(
filter(lambda a: a.artifact_id == artifact_id, task.artifacts),
None)
filter(lambda a: a.artifact_id == artifact_id, task.artifacts), None
)
if not artifact:
raise NotFoundException("Artifact", artifact_id)
return artifact
@ -151,9 +150,9 @@ class InMemoryTaskDB(TaskDB):
step_id: Optional[str] = None,
) -> Artifact:
artifact_id = str(uuid.uuid4())
artifact = Artifact(artifact_id=artifact_id,
file_name=file_name,
relative_path=relative_path)
artifact = Artifact(
artifact_id=artifact_id, file_name=file_name, relative_path=relative_path
)
task = await self.get_task(task_id)
task.artifacts.append(artifact)
@ -166,9 +165,9 @@ class InMemoryTaskDB(TaskDB):
async def list_tasks(self) -> List[Task]:
return [task for task in self._tasks.values()]
async def list_steps(self,
task_id: str,
status: Optional[Status] = None) -> List[Step]:
async def list_steps(
self, task_id: str, status: Optional[Status] = None
) -> List[Step]:
task = await self.get_task(task_id)
steps = task.steps
if status:

@ -63,7 +63,8 @@ class OceanDB:
try:
embedding_function = MultiModalEmbeddingFunction(modality=modality)
collection = self.client.create_collection(
collection_name, embedding_function=embedding_function)
collection_name, embedding_function=embedding_function
)
return collection
except Exception as e:
logging.error(f"Failed to create collection. Error {e}")
@ -90,8 +91,7 @@ class OceanDB:
try:
return collection.add(documents=[document], ids=[id])
except Exception as e:
logging.error(
f"Failed to append document to the collection. Error {e}")
logging.error(f"Failed to append document to the collection. Error {e}")
raise
def add_documents(self, collection, documents: List[str], ids: List[str]):
@ -137,8 +137,7 @@ class OceanDB:
the results of the query
"""
try:
results = collection.query(query_texts=query_texts,
n_results=n_results)
results = collection.query(query_texts=query_texts, n_results=n_results)
return results
except Exception as e:
logging.error(f"Failed to query the collection. Error {e}")

@ -88,12 +88,12 @@ class PgVectorVectorStore(BaseVectorStore):
create_engine_params: dict = field(factory=dict, kw_only=True)
engine: Optional[Engine] = field(default=None, kw_only=True)
table_name: str = field(kw_only=True)
_model: any = field(default=Factory(
lambda self: self.default_vector_model(), takes_self=True))
_model: any = field(
default=Factory(lambda self: self.default_vector_model(), takes_self=True)
)
@connection_string.validator
def validate_connection_string(self, _,
connection_string: Optional[str]) -> None:
def validate_connection_string(self, _, connection_string: Optional[str]) -> None:
# If an engine is provided, the connection string is not used.
if self.engine is not None:
return
@ -122,8 +122,9 @@ class PgVectorVectorStore(BaseVectorStore):
If not, a connection string is used to create a new database connection here.
"""
if self.engine is None:
self.engine = create_engine(self.connection_string,
**self.create_engine_params)
self.engine = create_engine(
self.connection_string, **self.create_engine_params
)
def setup(
self,
@ -141,12 +142,14 @@ class PgVectorVectorStore(BaseVectorStore):
if create_schema:
self._model.metadata.create_all(self.engine)
def upsert_vector(self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs) -> str:
def upsert_vector(
self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
"""Inserts or updates a vector in the collection."""
with Session(self.engine) as session:
obj = self._model(
@ -161,9 +164,9 @@ class PgVectorVectorStore(BaseVectorStore):
return str(obj.id)
def load_entry(self,
vector_id: str,
namespace: Optional[str] = None) -> BaseVectorStore.Entry:
def load_entry(
self, vector_id: str, namespace: Optional[str] = None
) -> BaseVectorStore.Entry:
"""Retrieves a specific vector entry from the collection based on its identifier and optional namespace."""
with Session(self.engine) as session:
result = session.get(self._model, vector_id)
@ -176,8 +179,8 @@ class PgVectorVectorStore(BaseVectorStore):
)
def load_entries(
self,
namespace: Optional[str] = None) -> list[BaseVectorStore.Entry]:
self, namespace: Optional[str] = None
) -> list[BaseVectorStore.Entry]:
"""Retrieves all vector entries from the collection, optionally filtering to only
those that match the provided namespace.
"""
@ -194,16 +197,19 @@ class PgVectorVectorStore(BaseVectorStore):
vector=result.vector,
namespace=result.namespace,
meta=result.meta,
) for result in results
)
for result in results
]
def query(self,
query: str,
count: Optional[int] = BaseVectorStore.DEFAULT_QUERY_COUNT,
namespace: Optional[str] = None,
include_vectors: bool = False,
distance_metric: str = "cosine_distance",
**kwargs) -> list[BaseVectorStore.QueryResult]:
def query(
self,
query: str,
count: Optional[int] = BaseVectorStore.DEFAULT_QUERY_COUNT,
namespace: Optional[str] = None,
include_vectors: bool = False,
distance_metric: str = "cosine_distance",
**kwargs
) -> list[BaseVectorStore.QueryResult]:
"""Performs a search on the collection to find vectors similar to the provided input vector,
optionally filtering to only those that match the provided namespace.
"""
@ -239,7 +245,8 @@ class PgVectorVectorStore(BaseVectorStore):
score=result[1],
meta=result[0].meta,
namespace=result[0].namespace,
) for result in results
)
for result in results
]
def default_vector_model(self) -> any:

@ -102,12 +102,14 @@ class PineconeVectorStoreStore(BaseVector):
self.index = pinecone.Index(self.index_name)
def upsert_vector(self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs) -> str:
def upsert_vector(
self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
"""Upsert vector"""
vector_id = vector_id if vector_id else str_to_hash(str(vector))
@ -118,12 +120,10 @@ class PineconeVectorStoreStore(BaseVector):
return vector_id
def load_entry(
self,
vector_id: str,
namespace: Optional[str] = None) -> Optional[BaseVector.Entry]:
self, vector_id: str, namespace: Optional[str] = None
) -> Optional[BaseVector.Entry]:
"""Load entry"""
result = self.index.fetch(ids=[vector_id],
namespace=namespace).to_dict()
result = self.index.fetch(ids=[vector_id], namespace=namespace).to_dict()
vectors = list(result["vectors"].values())
if len(vectors) > 0:
@ -138,8 +138,7 @@ class PineconeVectorStoreStore(BaseVector):
else:
return None
def load_entries(self,
namespace: Optional[str] = None) -> list[BaseVector.Entry]:
def load_entries(self, namespace: Optional[str] = None) -> list[BaseVector.Entry]:
"""Load entries"""
# This is a hacky way to query up to 10,000 values from Pinecone. Waiting on an official API for fetching
# all values from a namespace:
@ -158,18 +157,20 @@ class PineconeVectorStoreStore(BaseVector):
vector=r["values"],
meta=r["metadata"],
namespace=results["namespace"],
) for r in results["matches"]
)
for r in results["matches"]
]
def query(
self,
query: str,
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
# PineconeVectorStoreStorageDriver-specific params:
include_metadata=True,
**kwargs) -> list[BaseVector.QueryResult]:
self,
query: str,
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
# PineconeVectorStoreStorageDriver-specific params:
include_metadata=True,
**kwargs
) -> list[BaseVector.QueryResult]:
"""Query vectors"""
vector = self.embedding_driver.embed_string(query)
@ -189,14 +190,12 @@ class PineconeVectorStoreStore(BaseVector):
score=r["score"],
meta=r["metadata"],
namespace=results["namespace"],
) for r in results["matches"]
)
for r in results["matches"]
]
def create_index(self, name: str, **kwargs) -> None:
"""Create index"""
params = {
"name": name,
"dimension": self.embedding_driver.dimensions
} | kwargs
params = {"name": name, "dimension": self.embedding_driver.dimensions} | kwargs
pinecone.create_index(**params)

@ -20,9 +20,9 @@ class Artifact(BaseModel):
description="Id of the artifact",
example="b225e278-8b4c-4f99-a696-8facf19f0e56",
)
file_name: str = Field(...,
description="Filename of the artifact",
example="main.py")
file_name: str = Field(
..., description="Filename of the artifact", example="main.py"
)
relative_path: Optional[str] = Field(
None,
description="Relative path of the artifact in the agent's workspace",
@ -50,8 +50,7 @@ class StepInput(BaseModel):
class StepOutput(BaseModel):
__root__: Any = Field(
...,
description=
"Output that the task step has produced. Any value is allowed.",
description="Output that the task step has produced. Any value is allowed.",
example='{\n"tokens": 7894,\n"estimated_cost": "0,24$"\n}',
)
@ -82,9 +81,9 @@ class Task(TaskRequestBody):
class StepRequestBody(BaseModel):
input: Optional[str] = Field(None,
description="Input prompt for the step.",
example="Washington")
input: Optional[str] = Field(
None, description="Input prompt for the step.", example="Washington"
)
additional_input: Optional[StepInput] = None
@ -105,19 +104,22 @@ class Step(StepRequestBody):
description="The ID of the task step.",
example="6bb1801a-fd80-45e8-899a-4dd723cc602e",
)
name: Optional[str] = Field(None,
description="The name of the task step.",
example="Write to file")
name: Optional[str] = Field(
None, description="The name of the task step.", example="Write to file"
)
status: Status = Field(..., description="The status of the task step.")
output: Optional[str] = Field(
None,
description="Output of the task step.",
example=
("I am going to use the write_to_file command and write Washington to a file"
" called output.txt <write_to_file('output.txt', 'Washington')"),
example=(
"I am going to use the write_to_file command and write Washington to a file"
" called output.txt <write_to_file('output.txt', 'Washington')"
),
)
additional_output: Optional[StepOutput] = None
artifacts: List[Artifact] = Field(
[], description="A list of artifacts that the step has produced.")
[], description="A list of artifacts that the step has produced."
)
is_last: Optional[bool] = Field(
False, description="Whether this is the last step in the task.")
False, description="Whether this is the last step in the task."
)

@ -43,8 +43,9 @@ def maximal_marginal_relevance(
if i in idxs:
continue
redundant_score = max(similarity_to_selected[i])
equation_score = (lambda_mult * query_score -
(1 - lambda_mult) * redundant_score)
equation_score = (
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
)
if equation_score > best_score:
best_score = equation_score
idx_to_add = i
@ -56,8 +57,8 @@ def maximal_marginal_relevance(
def filter_complex_metadata(
documents: List[Document],
*,
allowed_types: Tuple[Type,
...] = (str, bool, int, float)) -> List[Document]:
allowed_types: Tuple[Type, ...] = (str, bool, int, float)
) -> List[Document]:
"""Filter out metadata types that are not supported for a vector store."""
updated_documents = []
for document in documents:

@ -41,24 +41,21 @@ def xor_args(*arg_groups: Tuple[str, ...]) -> Callable:
"""Validate specified keyword args are mutually exclusive."""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
"""Validate exactly one arg in each group is not None."""
counts = [
sum(1
for arg in arg_group
if kwargs.get(arg) is not None)
sum(1 for arg in arg_group if kwargs.get(arg) is not None)
for arg_group in arg_groups
]
invalid_groups = [i for i, count in enumerate(counts) if count != 1]
if invalid_groups:
invalid_group_names = [
", ".join(arg_groups[i]) for i in invalid_groups
]
raise ValueError("Exactly one argument in each of the following"
" groups must be defined:"
f" {', '.join(invalid_group_names)}")
invalid_group_names = [", ".join(arg_groups[i]) for i in invalid_groups]
raise ValueError(
"Exactly one argument in each of the following"
" groups must be defined:"
f" {', '.join(invalid_group_names)}"
)
return func(*args, **kwargs)
return wrapper
@ -108,10 +105,9 @@ def mock_now(dt_value): # type: ignore
datetime.datetime = real_datetime
def guard_import(module_name: str,
*,
pip_name: Optional[str] = None,
package: Optional[str] = None) -> Any:
def guard_import(
module_name: str, *, pip_name: Optional[str] = None, package: Optional[str] = None
) -> Any:
"""Dynamically imports a module and raises a helpful exception if the module is not
installed."""
try:
@ -119,7 +115,8 @@ def guard_import(module_name: str,
except ImportError:
raise ImportError(
f"Could not import {module_name} python package. "
f"Please install it with `pip install {pip_name or module_name}`.")
f"Please install it with `pip install {pip_name or module_name}`."
)
return module
@ -135,19 +132,23 @@ def check_package_version(
if lt_version is not None and imported_version >= parse(lt_version):
raise ValueError(
f"Expected {package} version to be < {lt_version}. Received "
f"{imported_version}.")
f"{imported_version}."
)
if lte_version is not None and imported_version > parse(lte_version):
raise ValueError(
f"Expected {package} version to be <= {lte_version}. Received "
f"{imported_version}.")
f"{imported_version}."
)
if gt_version is not None and imported_version <= parse(gt_version):
raise ValueError(
f"Expected {package} version to be > {gt_version}. Received "
f"{imported_version}.")
f"{imported_version}."
)
if gte_version is not None and imported_version < parse(gte_version):
raise ValueError(
f"Expected {package} version to be >= {gte_version}. Received "
f"{imported_version}.")
f"{imported_version}."
)
def get_pydantic_field_names(pydantic_cls: Any) -> Set[str]:
@ -179,17 +180,19 @@ def build_extra_kwargs(
if field_name in extra_kwargs:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(f"""WARNING! {field_name} is not default parameter.
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended.""")
Please confirm that {field_name} is what you intended."""
)
extra_kwargs[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(
extra_kwargs.keys())
invalid_model_kwargs = all_required_field_names.intersection(extra_kwargs.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
"Instead they were passed in as part of `model_kwargs` parameter.")
"Instead they were passed in as part of `model_kwargs` parameter."
)
return extra_kwargs
@ -238,16 +241,17 @@ class _AnthropicCommon(BaseLanguageModel):
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(extra, values,
all_required_field_names)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key",
"ANTHROPIC_API_KEY"))
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
@ -277,7 +281,8 @@ class _AnthropicCommon(BaseLanguageModel):
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`.")
"Please it install it with `pip install anthropic`."
)
return values
@property
@ -300,8 +305,7 @@ class _AnthropicCommon(BaseLanguageModel):
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self,
stop: Optional[List[str]] = None) -> List[str]:
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
@ -368,8 +372,7 @@ class Anthropic(LLM, _AnthropicCommon):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT,
prompt)
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
@ -402,10 +405,9 @@ class Anthropic(LLM, _AnthropicCommon):
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt=prompt,
stop=stop,
run_manager=run_manager,
**kwargs):
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
@ -431,10 +433,9 @@ class Anthropic(LLM, _AnthropicCommon):
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(prompt=prompt,
stop=stop,
run_manager=run_manager,
**kwargs):
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
@ -475,10 +476,8 @@ class Anthropic(LLM, _AnthropicCommon):
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params):
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
@ -510,10 +509,10 @@ class Anthropic(LLM, _AnthropicCommon):
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk

@ -97,8 +97,9 @@ class BioClip:
self.preprocess_val,
) = open_clip.create_model_and_transforms(model_path)
self.tokenizer = open_clip.get_tokenizer(model_path)
self.device = (torch.device("cuda")
if torch.cuda.is_available() else torch.device("cpu"))
self.device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
self.model.to(self.device)
self.model.eval()
@ -109,17 +110,18 @@ class BioClip:
template: str = "this is a photo of ",
context_length: int = 256,
):
image = torch.stack([self.preprocess_val(Image.open(img_path))
]).to(self.device)
texts = self.tokenizer([template + l for l in labels],
context_length=context_length).to(self.device)
image = torch.stack([self.preprocess_val(Image.open(img_path))]).to(self.device)
texts = self.tokenizer(
[template + l for l in labels], context_length=context_length
).to(self.device)
with torch.no_grad():
image_features, text_features, logit_scale = self.model(
image, texts)
logits = ((logit_scale *
image_features @ text_features.t()).detach().softmax(
dim=-1))
image_features, text_features, logit_scale = self.model(image, texts)
logits = (
(logit_scale * image_features @ text_features.t())
.detach()
.softmax(dim=-1)
)
sorted_indices = torch.argsort(logits, dim=-1, descending=True)
logits = logits.cpu().numpy()
sorted_indices = sorted_indices.cpu().numpy()
@ -137,8 +139,11 @@ class BioClip:
fig, ax = plt.subplots(figsize=(5, 5))
ax.imshow(img)
ax.axis("off")
title = (metadata["filename"] + "\n" + "\n".join(
[f"{k}: {v*100:.1f}" for k, v in metadata["top_probs"].items()]))
title = (
metadata["filename"]
+ "\n"
+ "\n".join([f"{k}: {v*100:.1f}" for k, v in metadata["top_probs"].items()])
)
ax.set_title(title, fontsize=14)
plt.tight_layout()
plt.show()

@ -102,9 +102,9 @@ class BioGPT:
list[dict]: A list of generated texts.
"""
set_seed(42)
generator = pipeline("text-generation",
model=self.model,
tokenizer=self.tokenizer)
generator = pipeline(
"text-generation", model=self.model, tokenizer=self.tokenizer
)
out = generator(
text,
max_length=self.max_length,
@ -149,11 +149,13 @@ class BioGPT:
inputs = self.tokenizer(sentence, return_tensors="pt")
set_seed(42)
with torch.no_grad():
beam_output = self.model.generate(**inputs,
min_length=self.min_length,
max_length=self.max_length,
num_beams=num_beams,
early_stopping=early_stopping)
beam_output = self.model.generate(
**inputs,
min_length=self.min_length,
max_length=self.max_length,
num_beams=num_beams,
early_stopping=early_stopping
)
return self.tokenizer.decode(beam_output[0], skip_special_tokens=True)
# Feature 1: Set a new tokenizer and model

@ -124,10 +124,13 @@ class Dalle3:
# Handling exceptions and printing the errors details
print(
colored(
(f"Error running Dalle3: {error} try optimizing your api key and"
" or try again"),
(
f"Error running Dalle3: {error} try optimizing your api key and"
" or try again"
),
"red",
))
)
)
raise error
def create_variations(self, img: str):
@ -154,19 +157,22 @@ class Dalle3:
"""
try:
response = self.client.images.create_variation(img=open(img, "rb"),
n=self.n,
size=self.size)
response = self.client.images.create_variation(
img=open(img, "rb"), n=self.n, size=self.size
)
img = response.data[0].url
return img
except (Exception, openai.OpenAIError) as error:
print(
colored(
(f"Error running Dalle3: {error} try optimizing your api key and"
" or try again"),
(
f"Error running Dalle3: {error} try optimizing your api key and"
" or try again"
),
"red",
))
)
)
print(colored(f"Error running Dalle3: {error.http_status}", "red"))
print(colored(f"Error running Dalle3: {error.error}", "red"))
raise error

@ -18,7 +18,6 @@ def async_retry(max_retries=3, exceptions=(Exception,), delay=1):
"""
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
retries = max_retries
@ -29,9 +28,7 @@ def async_retry(max_retries=3, exceptions=(Exception,), delay=1):
retries -= 1
if retries <= 0:
raise
print(
f"Retry after exception: {e}, Attempts remaining: {retries}"
)
print(f"Retry after exception: {e}, Attempts remaining: {retries}")
await asyncio.sleep(delay)
return wrapper
@ -65,8 +62,7 @@ class DistilWhisperModel:
def __init__(self, model_id="distil-whisper/distil-large-v2"):
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch.float16 if torch.cuda.is_available(
) else torch.float32
self.torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.model_id = model_id
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
@ -123,14 +119,14 @@ class DistilWhisperModel:
try:
with torch.no_grad():
# Load the whole audio file, but process and transcribe it in chunks
audio_input = self.processor.audio_file_to_array(
audio_file_path)
audio_input = self.processor.audio_file_to_array(audio_file_path)
sample_rate = audio_input.sampling_rate
total_duration = len(audio_input.array) / sample_rate
chunks = [
audio_input.array[i:i + sample_rate * chunk_duration]
for i in range(0, len(audio_input.array), sample_rate *
chunk_duration)
audio_input.array[i : i + sample_rate * chunk_duration]
for i in range(
0, len(audio_input.array), sample_rate * chunk_duration
)
]
print(colored("Starting real-time transcription...", "green"))
@ -143,22 +139,22 @@ class DistilWhisperModel:
return_tensors="pt",
padding=True,
)
processed_inputs = processed_inputs.input_values.to(
self.device)
processed_inputs = processed_inputs.input_values.to(self.device)
# Generate transcription for the chunk
logits = self.model.generate(processed_inputs)
transcription = self.processor.batch_decode(
logits, skip_special_tokens=True)[0]
logits, skip_special_tokens=True
)[0]
# Print the chunk's transcription
print(
colored(f"Chunk {i+1}/{len(chunks)}: ", "yellow") +
transcription)
colored(f"Chunk {i+1}/{len(chunks)}: ", "yellow")
+ transcription
)
# Wait for the chunk's duration to simulate real-time processing
time.sleep(chunk_duration)
except Exception as e:
print(colored(f"An error occurred during transcription: {e}",
"red"))
print(colored(f"An error occurred during transcription: {e}", "red"))

@ -11,8 +11,7 @@ from pydantic import BaseModel, StrictFloat, StrictInt, validator
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the classes for image classification
with open(os.path.join(os.path.dirname(__file__),
"fast_vit_classes.json")) as f:
with open(os.path.join(os.path.dirname(__file__), "fast_vit_classes.json")) as f:
FASTVIT_IMAGENET_1K_CLASSES = json.load(f)
@ -22,8 +21,7 @@ class ClassificationResult(BaseModel):
@validator("class_id", "confidence", pre=True, each_item=True)
def check_list_contents(cls, v):
assert isinstance(v, int) or isinstance(
v, float), "must be integer or float"
assert isinstance(v, int) or isinstance(v, float), "must be integer or float"
return v
@ -49,16 +47,16 @@ class FastViT:
"""
def __init__(self):
self.model = timm.create_model("hf_hub:timm/fastvit_s12.apple_in1k",
pretrained=True).to(DEVICE)
self.model = timm.create_model(
"hf_hub:timm/fastvit_s12.apple_in1k", pretrained=True
).to(DEVICE)
data_config = timm.data.resolve_model_data_config(self.model)
self.transforms = timm.data.create_transform(**data_config,
is_training=False)
self.transforms = timm.data.create_transform(**data_config, is_training=False)
self.model.eval()
def __call__(self,
img: str,
confidence_threshold: float = 0.5) -> ClassificationResult:
def __call__(
self, img: str, confidence_threshold: float = 0.5
) -> ClassificationResult:
"""classifies the input image and returns the top k classes and their probabilities"""
img = Image.open(img).convert("RGB")
img_tensor = self.transforms(img).unsqueeze(0).to(DEVICE)
@ -67,8 +65,9 @@ class FastViT:
probabilities = torch.nn.functional.softmax(output, dim=1)
# Get top k classes and their probabilities
top_probs, top_classes = torch.topk(probabilities,
k=FASTVIT_IMAGENET_1K_CLASSES)
top_probs, top_classes = torch.topk(
probabilities, k=FASTVIT_IMAGENET_1K_CLASSES
)
# Filter by confidence threshold
mask = top_probs > confidence_threshold

@ -45,9 +45,9 @@ class Fuyu:
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_path)
self.image_processor = FuyuImageProcessor()
self.processor = FuyuProcessor(image_processor=self.image_processor,
tokenizer=self.tokenizer,
**kwargs)
self.processor = FuyuProcessor(
image_processor=self.image_processor, tokenizer=self.tokenizer, **kwargs
)
self.model = FuyuForCausalLM.from_pretrained(
pretrained_path,
device_map=device_map,
@ -62,17 +62,15 @@ class Fuyu:
def __call__(self, text: str, img: str):
"""Call the model with text and img paths"""
image_pil = Image.open(img)
model_inputs = self.processor(text=text,
images=[image_pil],
device=self.device_map)
model_inputs = self.processor(
text=text, images=[image_pil], device=self.device_map
)
for k, v in model_inputs.items():
model_inputs[k] = v.to(self.device_map)
output = self.model.generate(**model_inputs,
max_new_tokens=self.max_new_tokens)
text = self.processor.batch_decode(output[:, -7:],
skip_special_tokens=True)
output = self.model.generate(**model_inputs, max_new_tokens=self.max_new_tokens)
text = self.processor.batch_decode(output[:, -7:], skip_special_tokens=True)
return print(str(text))
def get_img_from_web(self, img_url: str):

@ -69,7 +69,9 @@ class GPT4Vision:
quality: str = "low"
# Max tokens to use for the API request, the maximum might be 3,000 but we don't know
max_tokens: int = 200
client = OpenAI(api_key=openai_api_key,)
client = OpenAI(
api_key=openai_api_key,
)
dashboard: bool = True
call_limit: int = 1
period_seconds: int = 60
@ -88,8 +90,9 @@ class GPT4Vision:
return base64.b64encode(image_file.read()).decode("utf-8")
@sleep_and_retry
@limits(calls=call_limit,
period=period_seconds) # Rate limit of 10 calls per minute
@limits(
calls=call_limit, period=period_seconds
) # Rate limit of 10 calls per minute
def run(self, task: str, img: str):
"""
Run the GPT-4 Vision model
@ -105,22 +108,20 @@ class GPT4Vision:
try:
response = self.client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": task
},
{
"type": "image_url",
"image_url": {
"url": str(img),
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": task},
{
"type": "image_url",
"image_url": {
"url": str(img),
},
},
},
],
}],
],
}
],
max_tokens=self.max_tokens,
)
@ -160,22 +161,20 @@ class GPT4Vision:
try:
response = await self.client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": task
},
{
"type": "image_url",
"image_url": {
"url": img,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": task},
{
"type": "image_url",
"image_url": {
"url": img,
},
},
},
],
}],
],
}
],
max_tokens=self.max_tokens,
)
@ -190,14 +189,12 @@ class GPT4Vision:
"""Process a batch of tasks and images"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.run, task, img)
for task, img in tasks_images
executor.submit(self.run, task, img) for task, img in tasks_images
]
results = [future.result() for future in futures]
return results
async def run_batch_async(self,
tasks_images: List[Tuple[str, str]]) -> List[str]:
async def run_batch_async(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images asynchronously"""
loop = asyncio.get_event_loop()
futures = [
@ -207,7 +204,8 @@ class GPT4Vision:
return await asyncio.gather(*futures)
async def run_batch_async_with_retries(
self, tasks_images: List[Tuple[str, str]]) -> List[str]:
self, tasks_images: List[Tuple[str, str]]
) -> List[str]:
"""Process a batch of tasks and images asynchronously with retries"""
loop = asyncio.get_event_loop()
futures = [
@ -231,7 +229,8 @@ class GPT4Vision:
""",
"green",
))
)
)
return dashboard
def health_check(self):

@ -47,8 +47,9 @@ class HuggingfaceLLM:
**kwargs,
):
self.logger = logging.getLogger(__name__)
self.device = (device if device else
("cuda" if torch.cuda.is_available() else "cpu"))
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
@ -57,8 +58,9 @@ class HuggingfaceLLM:
self.model, self.tokenizer = None, None
if self.distributed:
assert (torch.cuda.device_count() >
1), "You need more than 1 gpu for distributed processing"
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
@ -73,17 +75,17 @@ class HuggingfaceLLM:
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id, *args, **kwargs)
self.model_id, *args, **kwargs
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config, *args, **kwargs)
self.model_id, quantization_config=bnb_config, *args, **kwargs
)
self.model # .to(self.device)
except Exception as e:
# self.logger.error(f"Failed to load the model or the tokenizer: {e}")
# raise
print(
colored(f"Failed to load the model and or the tokenizer: {e}",
"red"))
print(colored(f"Failed to load the model and or the tokenizer: {e}", "red"))
def print_error(self, error: str):
"""Print error"""
@ -95,18 +97,20 @@ class HuggingfaceLLM:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config else None)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config).to(self.device)
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
f"Failed to load the model or the tokenizer: {error}")
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, task: str):
@ -127,8 +131,7 @@ class HuggingfaceLLM:
self.print_dashboard(task)
try:
inputs = self.tokenizer.encode(task,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
# self.log.start()
@ -137,36 +140,39 @@ class HuggingfaceLLM:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(
colored(
(f"HuggingfaceLLM could not generate text because of error: {e},"
" try optimizing your arguments"),
(
f"HuggingfaceLLM could not generate text because of error: {e},"
" try optimizing your arguments"
),
"red",
))
)
)
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
@ -210,8 +216,7 @@ class HuggingfaceLLM:
self.print_dashboard(task)
try:
inputs = self.tokenizer.encode(task,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
# self.log.start()
@ -220,26 +225,26 @@ class HuggingfaceLLM:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
@ -300,7 +305,8 @@ class HuggingfaceLLM:
""",
"red",
))
)
)
print(dashboard)

@ -65,8 +65,9 @@ class Idefics:
torch_dtype=torch.bfloat16,
max_length=100,
):
self.device = (device if device else
("cuda" if torch.cuda.is_available() else "cpu"))
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model = IdeficsForVisionText2Text.from_pretrained(
checkpoint,
torch_dtype=torch_dtype,
@ -95,17 +96,21 @@ class Idefics:
list
A list of generated text strings.
"""
inputs = (self.processor(
prompts, add_end_of_utterance_token=False, return_tensors="pt").to(
self.device) if batched_mode else self.processor(
prompts[0], return_tensors="pt").to(self.device))
inputs = (
self.processor(
prompts, add_end_of_utterance_token=False, return_tensors="pt"
).to(self.device)
if batched_mode
else self.processor(prompts[0], return_tensors="pt").to(self.device)
)
exit_condition = self.processor.tokenizer(
"<end_of_utterance>", add_special_tokens=False).input_ids
"<end_of_utterance>", add_special_tokens=False
).input_ids
bad_words_ids = self.processor.tokenizer(
["<image>", "<fake_token_around_image"],
add_special_tokens=False).input_ids
["<image>", "<fake_token_around_image"], add_special_tokens=False
).input_ids
generated_ids = self.model.generate(
**inputs,
@ -113,8 +118,9 @@ class Idefics:
bad_words_ids=bad_words_ids,
max_length=self.max_length,
)
generated_text = self.processor.batch_decode(generated_ids,
skip_special_tokens=True)
generated_text = self.processor.batch_decode(
generated_ids, skip_special_tokens=True
)
return generated_text
def __call__(self, prompts, batched_mode=True):
@ -135,17 +141,21 @@ class Idefics:
list
A list of generated text strings.
"""
inputs = (self.processor(
prompts, add_end_of_utterance_token=False, return_tensors="pt").to(
self.device) if batched_mode else self.processor(
prompts[0], return_tensors="pt").to(self.device))
inputs = (
self.processor(
prompts, add_end_of_utterance_token=False, return_tensors="pt"
).to(self.device)
if batched_mode
else self.processor(prompts[0], return_tensors="pt").to(self.device)
)
exit_condition = self.processor.tokenizer(
"<end_of_utterance>", add_special_tokens=False).input_ids
"<end_of_utterance>", add_special_tokens=False
).input_ids
bad_words_ids = self.processor.tokenizer(
["<image>", "<fake_token_around_image"],
add_special_tokens=False).input_ids
["<image>", "<fake_token_around_image"], add_special_tokens=False
).input_ids
generated_ids = self.model.generate(
**inputs,
@ -153,8 +163,9 @@ class Idefics:
bad_words_ids=bad_words_ids,
max_length=self.max_length,
)
generated_text = self.processor.batch_decode(generated_ids,
skip_special_tokens=True)
generated_text = self.processor.batch_decode(
generated_ids, skip_special_tokens=True
)
return generated_text
def chat(self, user_input):
@ -191,7 +202,8 @@ class Idefics:
The name of the new pre-trained model checkpoint.
"""
self.model = IdeficsForVisionText2Text.from_pretrained(
checkpoint, torch_dtype=torch.bfloat16).to(self.device)
checkpoint, torch_dtype=torch.bfloat16
).to(self.device)
self.processor = AutoProcessor.from_pretrained(checkpoint)
def set_device(self, device):

@ -53,8 +53,9 @@ class JinaEmbeddings:
**kwargs,
):
self.logger = logging.getLogger(__name__)
self.device = (device if device else
("cuda" if torch.cuda.is_available() else "cpu"))
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
@ -65,8 +66,9 @@ class JinaEmbeddings:
self.cos_sim = cos_sim
if self.distributed:
assert (torch.cuda.device_count() >
1), "You need more than 1 gpu for distributed processing"
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
@ -81,9 +83,8 @@ class JinaEmbeddings:
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True)
self.model_id, quantization_config=bnb_config, trust_remote_code=True
)
self.model # .to(self.device)
except Exception as e:
@ -96,8 +97,11 @@ class JinaEmbeddings:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config else None)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
@ -108,8 +112,7 @@ class JinaEmbeddings:
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
f"Failed to load the model or the tokenizer: {error}")
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, task: str):

@ -14,8 +14,11 @@ class Detections(BaseModel):
@root_validator
def check_length(cls, values):
assert (len(values.get("xyxy")) == len(values.get("class_id")) == len(
values.get("confidence"))), "All fields must have the same length."
assert (
len(values.get("xyxy"))
== len(values.get("class_id"))
== len(values.get("confidence"))
), "All fields must have the same length."
return values
@validator("xyxy", "class_id", "confidence", pre=True, each_item=True)
@ -36,9 +39,11 @@ class Kosmos2(BaseModel):
@classmethod
def initialize(cls):
model = AutoModelForVision2Seq.from_pretrained(
"ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
"ydshieh/kosmos-2-patch14-224", trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
"ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
"ydshieh/kosmos-2-patch14-224", trust_remote_code=True
)
return cls(model=model, processor=processor)
def __call__(self, img: str) -> Detections:
@ -46,12 +51,11 @@ class Kosmos2(BaseModel):
prompt = "<grounding>An image of"
inputs = self.processor(text=prompt, images=image, return_tensors="pt")
outputs = self.model.generate(**inputs,
use_cache=True,
max_new_tokens=64)
outputs = self.model.generate(**inputs, use_cache=True, max_new_tokens=64)
generated_text = self.processor.batch_decode(
outputs, skip_special_tokens=True)[0]
generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[
0
]
# The actual processing of generated_text to entities would go here
# For the purpose of this example, assume a mock function 'extract_entities' exists:
@ -62,8 +66,8 @@ class Kosmos2(BaseModel):
return detections
def extract_entities(
self,
text: str) -> List[Tuple[str, Tuple[float, float, float, float]]]:
self, text: str
) -> List[Tuple[str, Tuple[float, float, float, float]]]:
# Placeholder function for entity extraction
# This should be replaced with the actual method of extracting entities
return []
@ -76,19 +80,19 @@ class Kosmos2(BaseModel):
if not entities:
return Detections.empty()
class_ids = [0] * len(
entities) # Replace with actual class ID extraction logic
xyxys = [(
e[1][0] * image.width,
e[1][1] * image.height,
e[1][2] * image.width,
e[1][3] * image.height,
) for e in entities]
class_ids = [0] * len(entities) # Replace with actual class ID extraction logic
xyxys = [
(
e[1][0] * image.width,
e[1][1] * image.height,
e[1][2] * image.width,
e[1][3] * image.height,
)
for e in entities
]
confidences = [1.0] * len(entities) # Placeholder confidence
return Detections(xyxy=xyxys,
class_id=class_ids,
confidence=confidences)
return Detections(xyxy=xyxys, class_id=class_ids, confidence=confidences)
# Usage:

@ -46,9 +46,11 @@ class Kosmos:
model_name="ydshieh/kosmos-2-patch14-224",
):
self.model = AutoModelForVision2Seq.from_pretrained(
model_name, trust_remote_code=True)
self.processor = AutoProcessor.from_pretrained(model_name,
trust_remote_code=True)
model_name, trust_remote_code=True
)
self.processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True
)
def get_image(self, url):
"""Image"""
@ -71,7 +73,8 @@ class Kosmos:
skip_special_tokens=True,
)[0]
processed_text, entities = self.processor.post_process_generation(
generated_texts)
generated_texts
)
def __call__(self, prompt, image):
"""Run call"""
@ -90,7 +93,8 @@ class Kosmos:
skip_special_tokens=True,
)[0]
processed_text, entities = self.processor.post_process_generation(
generated_texts)
generated_texts
)
# tasks
def multimodal_grounding(self, phrase, image_url):
@ -141,10 +145,12 @@ class Kosmos:
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor(
[0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor(
[0.26862954, 0.26130258, 0.27577711])[:, None, None]
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[
:, None, None
]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[
:, None, None
]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
@ -163,9 +169,9 @@ class Kosmos:
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F",
cv2.FONT_HERSHEY_COMPLEX,
text_size, text_line)
(c_width, text_height), _ = cv2.getTextSize(
"F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line
)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
@ -181,8 +187,9 @@ class Kosmos:
# draw bbox
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1),
(orig_x2, orig_y2), color, box_line)
new_image = cv2.rectangle(
new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line
)
l_o, r_o = (
box_line // 2 + box_line % 2,
@ -193,15 +200,19 @@ class Kosmos:
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = (orig_y1 + r_o + text_height + text_offset_original +
2 * text_spaces)
y1 = (
orig_y1
+ r_o
+ text_height
+ text_offset_original
+ 2 * text_spaces
)
x1 = orig_x1 + r_o
# add text background
(text_width,
text_height), _ = cv2.getTextSize(f" {entity_name}",
cv2.FONT_HERSHEY_COMPLEX,
text_size, text_line)
(text_width, text_height), _ = cv2.getTextSize(
f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line
)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = (
x1,
y1 - (text_height + text_offset_original + 2 * text_spaces),
@ -211,19 +222,23 @@ class Kosmos:
for prev_bbox in previous_bboxes:
while is_overlapping(
(text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2),
prev_bbox):
text_bg_y1 += (text_height + text_offset_original +
2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original +
2 * text_spaces)
(text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox
):
text_bg_y1 += (
text_height + text_offset_original + 2 * text_spaces
)
text_bg_y2 += (
text_height + text_offset_original + 2 * text_spaces
)
y1 += text_height + text_offset_original + 2 * text_spaces
if text_bg_y2 >= image_h:
text_bg_y1 = max(
0,
image_h - (text_height + text_offset_original +
2 * text_spaces),
image_h
- (
text_height + text_offset_original + 2 * text_spaces
),
)
text_bg_y2 = image_h
y1 = image_h
@ -240,9 +255,9 @@ class Kosmos:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (
alpha * new_image[i, j] +
(1 - alpha) * np.array(bg_color)).astype(
np.uint8)
alpha * new_image[i, j]
+ (1 - alpha) * np.array(bg_color)
).astype(np.uint8)
cv2.putText(
new_image,
@ -255,8 +270,7 @@ class Kosmos:
cv2.LINE_AA,
)
# previous_locations.append((x1, y1))
previous_bboxes.append(
(text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:

@ -48,8 +48,9 @@ class MultiModalLlava:
revision=revision,
).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
use_fast=True)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path, use_fast=True
)
self.pipe = pipeline(
"text-generation",
model=self.model,

@ -49,8 +49,7 @@ class Mistral:
# Check if the specified device is available
if not torch.cuda.is_available() and device == "cuda":
raise ValueError(
"CUDA is not available. Please choose a different device.")
raise ValueError("CUDA is not available. Please choose a different device.")
# Load the model and tokenizer
self.model = None
@ -71,8 +70,7 @@ class Mistral:
"""Run the model on a given task."""
try:
model_inputs = self.tokenizer([task],
return_tensors="pt").to(self.device)
model_inputs = self.tokenizer([task], return_tensors="pt").to(self.device)
generated_ids = self.model.generate(
**model_inputs,
max_length=self.max_length,
@ -89,8 +87,7 @@ class Mistral:
"""Run the model on a given task."""
try:
model_inputs = self.tokenizer([task],
return_tensors="pt").to(self.device)
model_inputs = self.tokenizer([task], return_tensors="pt").to(self.device)
generated_ids = self.model.generate(
**model_inputs,
max_length=self.max_length,

@ -26,10 +26,7 @@ class MPT7B:
"""
def __init__(self,
model_name: str,
tokenizer_name: str,
max_tokens: int = 100):
def __init__(self, model_name: str, tokenizer_name: str, max_tokens: int = 100):
# Loading model and tokenizer details
self.model_name = model_name
self.tokenizer_name = tokenizer_name
@ -40,9 +37,11 @@ class MPT7B:
self.logger = logging.getLogger(__name__)
config = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True).config
model_name, trust_remote_code=True
).config
self.model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, trust_remote_code=True)
model_name, config=config, trust_remote_code=True
)
# Initializing a text-generation pipeline
self.pipe = pipeline(
@ -115,10 +114,9 @@ class MPT7B:
"""
with torch.autocast("cuda", dtype=torch.bfloat16):
return self.pipe(prompt,
max_new_tokens=self.max_tokens,
do_sample=True,
use_cache=True)[0]["generated_text"]
return self.pipe(
prompt, max_new_tokens=self.max_tokens, do_sample=True, use_cache=True
)[0]["generated_text"]
async def generate_async(self, prompt: str) -> str:
"""Generate Async"""

@ -41,10 +41,8 @@ class Nougat:
self.min_length = min_length
self.max_new_tokens = max_new_tokens
self.processor = NougatProcessor.from_pretrained(
self.model_name_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(
self.model_name_or_path)
self.processor = NougatProcessor.from_pretrained(self.model_name_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(self.model_name_or_path)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
@ -65,10 +63,8 @@ class Nougat:
max_new_tokens=self.max_new_tokens,
)
sequence = self.processor.batch_decode(outputs,
skip_special_tokens=True)[0]
sequence = self.processor.post_process_generation(sequence,
fix_markdown=False)
sequence = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
sequence = self.processor.post_process_generation(sequence, fix_markdown=False)
out = print(sequence)
return out
@ -76,7 +72,8 @@ class Nougat:
def clean_nougat_output(raw_output):
# Define the pattern to extract the relevant data
daily_balance_pattern = (
r"\*\*(\d{2}/\d{2}/\d{4})\*\*\n\n\*\*([\d,]+\.\d{2})\*\*")
r"\*\*(\d{2}/\d{2}/\d{4})\*\*\n\n\*\*([\d,]+\.\d{2})\*\*"
)
# Find all matches of the pattern
matches = re.findall(daily_balance_pattern, raw_output)

@ -55,9 +55,9 @@ class OpenAIAssistant:
return thread
def add_message_to_thread(self, thread_id: str, message: str):
message = self.client.beta.threads.add_message(thread_id=thread_id,
role=self.user,
content=message)
message = self.client.beta.threads.add_message(
thread_id=thread_id, role=self.user, content=message
)
return message
def run(self, task: str):
@ -67,7 +67,8 @@ class OpenAIAssistant:
instructions=self.instructions,
)
out = self.client.beta.threads.runs.retrieve(thread_id=run.thread_id,
run_id=run.id)
out = self.client.beta.threads.runs.retrieve(
thread_id=run.thread_id, run_id=run.id
)
return out

@ -28,10 +28,9 @@ from tenacity import (
from swarms.models.embeddings_base import Embeddings
def get_from_dict_or_env(values: dict,
key: str,
env_key: str,
default: Any = None) -> Any:
def get_from_dict_or_env(
values: dict, key: str, env_key: str, default: Any = None
) -> Any:
import os
return values.get(key) or os.getenv(env_key) or default
@ -44,8 +43,7 @@ def get_pydantic_field_names(cls: Any) -> Set[str]:
logger = logging.getLogger(__name__)
def _create_retry_decorator(
embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import llm
min_seconds = 4
@ -56,11 +54,13 @@ def _create_retry_decorator(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(llm.error.Timeout) |
retry_if_exception_type(llm.error.APIError) |
retry_if_exception_type(llm.error.APIConnectionError) |
retry_if_exception_type(llm.error.RateLimitError) |
retry_if_exception_type(llm.error.ServiceUnavailableError)),
retry=(
retry_if_exception_type(llm.error.Timeout)
| retry_if_exception_type(llm.error.APIError)
| retry_if_exception_type(llm.error.APIConnectionError)
| retry_if_exception_type(llm.error.RateLimitError)
| retry_if_exception_type(llm.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
@ -76,16 +76,17 @@ def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(llm.error.Timeout) |
retry_if_exception_type(llm.error.APIError) |
retry_if_exception_type(llm.error.APIConnectionError) |
retry_if_exception_type(llm.error.RateLimitError) |
retry_if_exception_type(llm.error.ServiceUnavailableError)),
retry=(
retry_if_exception_type(llm.error.Timeout)
| retry_if_exception_type(llm.error.APIError)
| retry_if_exception_type(llm.error.APIConnectionError)
| retry_if_exception_type(llm.error.RateLimitError)
| retry_if_exception_type(llm.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
@ -117,8 +118,7 @@ def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: OpenAIEmbeddings,
**kwargs: Any) -> Any:
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
@ -225,11 +225,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended.""")
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(
extra.keys())
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
@ -242,9 +242,9 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(values,
"openai_api_key",
"OPENAI_API_KEY")
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
@ -284,8 +284,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
values["client"] = llm.Embedding
except ImportError:
raise ImportError("Could not import openai python package. "
"Please install it with `pip install openai`.")
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
@ -313,11 +315,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
return openai_args
def _get_len_safe_embeddings(
self,
texts: List[str],
*,
engine: str,
chunk_size: Optional[int] = None) -> List[List[float]]:
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
@ -325,7 +324,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`.")
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
@ -333,8 +333,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base encoding.")
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
@ -348,7 +347,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j:j + self.embedding_ctx_length])
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
@ -367,7 +366,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i:i + _chunk_size],
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
@ -385,11 +384,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
self,
input="",
**self._invocation_params,
)["data"][0]["embedding"]
)[
"data"
][0]["embedding"]
else:
average = np.average(_result,
axis=0,
weights=num_tokens_in_batch[i])
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
@ -397,11 +396,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self,
texts: List[str],
*,
engine: str,
chunk_size: Optional[int] = None) -> List[List[float]]:
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
@ -409,7 +405,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`.")
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
@ -417,8 +414,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base encoding.")
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
@ -432,7 +428,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j:j + self.embedding_ctx_length])
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
@ -440,7 +436,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i:i + _chunk_size],
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
@ -454,22 +450,22 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = (await async_embed_with_retry(
self,
input="",
**self._invocation_params,
))["data"][0]["embedding"]
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(_result,
axis=0,
weights=num_tokens_in_batch[i])
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(self,
texts: List[str],
chunk_size: Optional[int] = 0) -> List[List[float]]:
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
@ -485,9 +481,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
return self._get_len_safe_embeddings(texts, engine=self.deployment)
async def aembed_documents(
self,
texts: List[str],
chunk_size: Optional[int] = 0) -> List[List[float]]:
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
@ -500,8 +495,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return await self._aget_len_safe_embeddings(texts,
engine=self.deployment)
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.

@ -33,8 +33,9 @@ from langchain.utils.utils import build_extra_kwargs
logger = logging.getLogger(__name__)
def update_token_usage(keys: Set[str], response: Dict[str, Any],
token_usage: Dict[str, Any]) -> None:
def update_token_usage(
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
"""Update token usage."""
_keys_to_use = keys.intersection(response["usage"])
for _key in _keys_to_use:
@ -45,42 +46,44 @@ def update_token_usage(keys: Set[str], response: Dict[str, Any],
def _stream_response_to_generation_chunk(
stream_response: Dict[str, Any],) -> GenerationChunk:
stream_response: Dict[str, Any],
) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
return GenerationChunk(
text=stream_response["choices"][0]["text"],
generation_info=dict(
finish_reason=stream_response["choices"][0].get(
"finish_reason", None),
finish_reason=stream_response["choices"][0].get("finish_reason", None),
logprobs=stream_response["choices"][0].get("logprobs", None),
),
)
def _update_response(response: Dict[str, Any],
stream_response: Dict[str, Any]) -> None:
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
"""Update response from the stream response."""
response["choices"][0]["text"] += stream_response["choices"][0]["text"]
response["choices"][0]["finish_reason"] = stream_response["choices"][0].get(
"finish_reason", None)
response["choices"][0]["logprobs"] = stream_response["choices"][0][
"logprobs"]
"finish_reason", None
)
response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"]
def _streaming_response_template() -> Dict[str, Any]:
return {
"choices": [{
"text": "",
"finish_reason": None,
"logprobs": None,
}]
"choices": [
{
"text": "",
"finish_reason": None,
"logprobs": None,
}
]
}
def _create_retry_decorator(
llm: Union[BaseOpenAI, OpenAIChat],
run_manager: Optional[Union[AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun]] = None,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
import openai
@ -91,9 +94,9 @@ def _create_retry_decorator(
openai.error.RateLimitError,
openai.error.ServiceUnavailableError,
]
return create_base_retry_decorator(error_types=errors,
max_retries=llm.max_retries,
run_manager=run_manager)
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)
def completion_with_retry(
@ -203,8 +206,7 @@ class BaseOpenAI(BaseLLM):
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
def __new__(cls,
**data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore
def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore
"""Initialize the OpenAI object."""
data.get("model_name", "")
return super().__new__(cls)
@ -219,16 +221,17 @@ class BaseOpenAI(BaseLLM):
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(extra, values,
all_required_field_names)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(values,
"openai_api_key",
"OPENAI_API_KEY")
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
@ -252,8 +255,10 @@ class BaseOpenAI(BaseLLM):
values["client"] = openai.Completion
except ImportError:
raise ImportError("Could not import openai python package. "
"Please install it with `pip install openai`.")
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
@ -290,10 +295,9 @@ class BaseOpenAI(BaseLLM):
) -> Iterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutates params
for stream_resp in completion_with_retry(self,
prompt=prompt,
run_manager=run_manager,
**params):
for stream_resp in completion_with_retry(
self, prompt=prompt, run_manager=run_manager, **params
):
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
@ -302,7 +306,8 @@ class BaseOpenAI(BaseLLM):
chunk=chunk,
verbose=self.verbose,
logprobs=chunk.generation_info["logprobs"]
if chunk.generation_info else None,
if chunk.generation_info
else None,
)
async def _astream(
@ -315,7 +320,8 @@ class BaseOpenAI(BaseLLM):
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutate params
async for stream_resp in await acompletion_with_retry(
self, prompt=prompt, run_manager=run_manager, **params):
self, prompt=prompt, run_manager=run_manager, **params
):
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
@ -324,7 +330,8 @@ class BaseOpenAI(BaseLLM):
chunk=chunk,
verbose=self.verbose,
logprobs=chunk.generation_info["logprobs"]
if chunk.generation_info else None,
if chunk.generation_info
else None,
)
def _generate(
@ -360,32 +367,30 @@ class BaseOpenAI(BaseLLM):
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError(
"Cannot stream results with multiple prompts.")
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
for chunk in self._stream(_prompts[0], stop, run_manager,
**kwargs):
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append({
"text":
generation.text,
"finish_reason":
generation.generation_info.get("finish_reason")
if generation.generation_info else None,
"logprobs":
generation.generation_info.get("logprobs")
if generation.generation_info else None,
})
choices.append(
{
"text": generation.text,
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
response = completion_with_retry(self,
prompt=_prompts,
run_manager=run_manager,
**params)
response = completion_with_retry(
self, prompt=_prompts, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
@ -409,32 +414,32 @@ class BaseOpenAI(BaseLLM):
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError(
"Cannot stream results with multiple prompts.")
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(_prompts[0], stop, run_manager,
**kwargs):
async for chunk in self._astream(
_prompts[0], stop, run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append({
"text":
generation.text,
"finish_reason":
generation.generation_info.get("finish_reason")
if generation.generation_info else None,
"logprobs":
generation.generation_info.get("logprobs")
if generation.generation_info else None,
})
choices.append(
{
"text": generation.text,
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
response = await acompletion_with_retry(self,
prompt=_prompts,
run_manager=run_manager,
**params)
response = await acompletion_with_retry(
self, prompt=_prompts, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
@ -448,35 +453,39 @@ class BaseOpenAI(BaseLLM):
"""Get the sub prompts for llm call."""
if stop is not None:
if "stop" in params:
raise ValueError(
"`stop` found in both the input and default params.")
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params["max_tokens"] == -1:
if len(prompts) != 1:
raise ValueError(
"max_tokens set to -1 not supported for multiple inputs.")
"max_tokens set to -1 not supported for multiple inputs."
)
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
sub_prompts = [
prompts[i:i + self.batch_size]
prompts[i : i + self.batch_size]
for i in range(0, len(prompts), self.batch_size)
]
return sub_prompts
def create_llm_result(self, choices: Any, prompts: List[str],
token_usage: Dict[str, int]) -> LLMResult:
def create_llm_result(
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for i, _ in enumerate(prompts):
sub_choices = choices[i * self.n:(i + 1) * self.n]
generations.append([
Generation(
text=choice["text"],
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
) for choice in sub_choices
])
sub_choices = choices[i * self.n : (i + 1) * self.n]
generations.append(
[
Generation(
text=choice["text"],
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
for choice in sub_choices
]
)
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return LLMResult(generations=generations, llm_output=llm_output)
@ -518,14 +527,14 @@ class BaseOpenAI(BaseLLM):
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`.")
"Please install it with `pip install tiktoken`."
)
model_name = self.tiktoken_model_name or self.model_name
try:
enc = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base encoding.")
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
enc = tiktoken.get_encoding(model)
@ -587,7 +596,8 @@ class BaseOpenAI(BaseLLM):
if context_size is None:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(model_token_mapping.keys()))
"Known models are: " + ", ".join(model_token_mapping.keys())
)
return context_size
@ -665,15 +675,14 @@ class AzureOpenAI(BaseOpenAI):
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", "azure")
values, "openai_api_type", "OPENAI_API_TYPE", "azure"
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**{
"deployment_name": self.deployment_name
},
**{"deployment_name": self.deployment_name},
**super()._identifying_params,
}
@ -738,9 +747,7 @@ class OpenAIChat(BaseLLM):
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {
field.alias for field in cls.__fields__.values()
}
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
@ -754,8 +761,9 @@ class OpenAIChat(BaseLLM):
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(values, "openai_api_key",
"OPENAI_API_KEY")
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_api_base = get_from_dict_or_env(
values,
"openai_api_base",
@ -768,10 +776,9 @@ class OpenAIChat(BaseLLM):
"OPENAI_PROXY",
default="",
)
openai_organization = get_from_dict_or_env(values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="")
openai_organization = get_from_dict_or_env(
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
)
try:
import openai
@ -786,15 +793,18 @@ class OpenAIChat(BaseLLM):
"https": openai_proxy,
} # type: ignore[assignment] # noqa: E501
except ImportError:
raise ImportError("Could not import openai python package. "
"Please install it with `pip install openai`.")
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`.")
"with `pip install --upgrade openai`."
)
return values
@property
@ -802,27 +812,18 @@ class OpenAIChat(BaseLLM):
"""Get the default parameters for calling OpenAI API."""
return self.model_kwargs
def _get_chat_params(self,
prompts: List[str],
stop: Optional[List[str]] = None) -> Tuple:
def _get_chat_params(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> Tuple:
if len(prompts) > 1:
raise ValueError(
f"OpenAIChat currently only supports single prompt, got {prompts}"
)
messages = self.prefix_messages + [{
"role": "user",
"content": prompts[0]
}]
params: Dict[str, Any] = {
**{
"model": self.model_name
},
**self._default_params
}
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
if stop is not None:
if "stop" in params:
raise ValueError(
"`stop` found in both the input and default params.")
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params.get("max_tokens") == -1:
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
@ -838,10 +839,9 @@ class OpenAIChat(BaseLLM):
) -> Iterator[GenerationChunk]:
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
for stream_resp in completion_with_retry(self,
messages=messages,
run_manager=run_manager,
**params):
for stream_resp in completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
@ -858,7 +858,8 @@ class OpenAIChat(BaseLLM):
messages, params = self._get_chat_params([prompt], stop)
params = {**params, **kwargs, "stream": True}
async for stream_resp in await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params):
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
@ -884,19 +885,17 @@ class OpenAIChat(BaseLLM):
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = completion_with_retry(self,
messages=messages,
run_manager=run_manager,
**params)
full_response = completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[[
Generation(
text=full_response["choices"][0]["message"]["content"])
]],
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
@ -909,8 +908,7 @@ class OpenAIChat(BaseLLM):
) -> LLMResult:
if self.streaming:
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(prompts[0], stop, run_manager,
**kwargs):
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
@ -920,19 +918,17 @@ class OpenAIChat(BaseLLM):
messages, params = self._get_chat_params(prompts, stop)
params = {**params, **kwargs}
full_response = await acompletion_with_retry(self,
messages=messages,
run_manager=run_manager,
**params)
full_response = await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[[
Generation(
text=full_response["choices"][0]["message"]["content"])
]],
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
@ -957,7 +953,8 @@ class OpenAIChat(BaseLLM):
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`.")
"Please install it with `pip install tiktoken`."
)
enc = tiktoken.encoding_for_model(self.model_name)
return enc.encode(

@ -71,15 +71,16 @@ class OpenAITokenizer(BaseTokenizer):
@property
def max_tokens(self) -> int:
tokens = next(v for k, v in self.MODEL_PREFIXES_TO_MAX_TOKENS.items()
if self.model.startswith(k))
tokens = next(
v
for k, v in self.MODEL_PREFIXES_TO_MAX_TOKENS.items()
if self.model.startswith(k)
)
offset = 0 if self.model in self.EMBEDDING_MODELS else self.TOKEN_OFFSET
return (tokens if tokens else self.DEFAULT_MAX_TOKENS) - offset
def count_tokens(self,
text: str | list,
model: Optional[str] = None) -> int:
def count_tokens(self, text: str | list, model: Optional[str] = None) -> int:
"""
Handles the special case of ChatML. Implementation adopted from the official OpenAI notebook:
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
@ -95,12 +96,12 @@ class OpenAITokenizer(BaseTokenizer):
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
@ -112,18 +113,21 @@ class OpenAITokenizer(BaseTokenizer):
elif "gpt-3.5-turbo" in model or "gpt-35-turbo" in model:
logging.info(
"gpt-3.5-turbo may update over time. Returning num tokens assuming"
" gpt-3.5-turbo-0613.")
" gpt-3.5-turbo-0613."
)
return self.count_tokens(text, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
logging.info(
"gpt-4 may update over time. Returning num tokens assuming"
" gpt-4-0613.")
" gpt-4-0613."
)
return self.count_tokens(text, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""token_count() is not implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for
information on how messages are converted to tokens.""")
information on how messages are converted to tokens."""
)
num_tokens = 0
@ -140,5 +144,5 @@ class OpenAITokenizer(BaseTokenizer):
return num_tokens
else:
return len(
self.encoding.encode(text,
allowed_special=set(self.stop_sequences)))
self.encoding.encode(text, allowed_special=set(self.stop_sequences))
)

@ -26,7 +26,8 @@ def _create_retry_decorator() -> Callable[[Any], Any]:
except ImportError:
raise ImportError(
"Could not import google-api-core python package. "
"Please install it with `pip install google-api-core`.")
"Please install it with `pip install google-api-core`."
)
multiplier = 2
min_seconds = 1
@ -36,15 +37,12 @@ def _create_retry_decorator() -> Callable[[Any], Any]:
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier,
min=min_seconds,
max=max_seconds),
retry=(retry_if_exception_type(
google.api_core.exceptions.ResourceExhausted) |
retry_if_exception_type(
google.api_core.exceptions.ServiceUnavailable) |
retry_if_exception_type(
google.api_core.exceptions.GoogleAPIError)),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
@ -66,8 +64,7 @@ def _strip_erroneous_leading_spaces(text: str) -> str:
The PaLM API will sometimes erroneously return a single leading space in all
lines > 1. This function strips that space.
"""
has_leading_space = all(
not line or line[0] == " " for line in text.split("\n")[1:])
has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:])
if has_leading_space:
return text.replace("\n ", "\n")
else:
@ -100,8 +97,9 @@ class GooglePalm(BaseLLM, BaseModel):
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(values, "google_api_key",
"GOOGLE_API_KEY")
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
@ -109,12 +107,12 @@ class GooglePalm(BaseLLM, BaseModel):
except ImportError:
raise ImportError(
"Could not import google-generativeai python package. "
"Please install it with `pip install google-generativeai`.")
"Please install it with `pip install google-generativeai`."
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values[
"temperature"] <= 1:
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
@ -123,8 +121,7 @@ class GooglePalm(BaseLLM, BaseModel):
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
if values["max_output_tokens"] is not None and values[
"max_output_tokens"] <= 0:
if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0:
raise ValueError("max_output_tokens must be greater than zero")
return values

@ -33,10 +33,9 @@ class PegasusEmbedding:
"""
def __init__(self,
modality: str,
multi_process: bool = False,
n_processes: int = 4):
def __init__(
self, modality: str, multi_process: bool = False, n_processes: int = 4
):
self.modality = modality
self.multi_process = multi_process
self.n_processes = n_processes
@ -44,7 +43,8 @@ class PegasusEmbedding:
self.pegasus = Pegasus(modality, multi_process, n_processes)
except Exception as e:
logging.error(
f"Failed to initialize Pegasus with modality: {modality}: {e}")
f"Failed to initialize Pegasus with modality: {modality}: {e}"
)
raise
def embed(self, data: Union[str, list[str]]):

@ -21,4 +21,6 @@ def get_ada_embeddings(text: str, model: str = "text-embedding-ada-002"):
return openai.Embedding.create(
input=[text],
model=model,
)["data"][0]["embedding"]
)["data"][
0
]["embedding"]

@ -90,17 +90,17 @@ class SpeechT5:
self.processor = SpeechT5Processor.from_pretrained(self.model_name)
self.model = SpeechT5ForTextToSpeech.from_pretrained(self.model_name)
self.vocoder = SpeechT5HifiGan.from_pretrained(self.vocoder_name)
self.embeddings_dataset = load_dataset(self.dataset_name,
split="validation")
self.embeddings_dataset = load_dataset(self.dataset_name, split="validation")
def __call__(self, text: str, speaker_id: float = 7306):
"""Call the model on some text and return the speech."""
speaker_embedding = torch.tensor(
self.embeddings_dataset[speaker_id]["xvector"]).unsqueeze(0)
self.embeddings_dataset[speaker_id]["xvector"]
).unsqueeze(0)
inputs = self.processor(text=text, return_tensors="pt")
speech = self.model.generate_speech(inputs["input_ids"],
speaker_embedding,
vocoder=self.vocoder)
speech = self.model.generate_speech(
inputs["input_ids"], speaker_embedding, vocoder=self.vocoder
)
return speech
def save_speech(self, speech, filename="speech.wav"):
@ -121,8 +121,7 @@ class SpeechT5:
def set_embeddings_dataset(self, dataset_name):
"""Set the embeddings dataset to a new dataset."""
self.dataset_name = dataset_name
self.embeddings_dataset = load_dataset(self.dataset_name,
split="validation")
self.embeddings_dataset = load_dataset(self.dataset_name, split="validation")
# Feature 1: Get sampling rate
def get_sampling_rate(self):

@ -50,8 +50,9 @@ class TimmModel:
in_chans=model_info.in_chans,
)
def __call__(self, model_info: TimmModelInfo,
input_tensor: torch.Tensor) -> torch.Size:
def __call__(
self, model_info: TimmModelInfo, input_tensor: torch.Tensor
) -> torch.Size:
"""
Create and run a model specified by `model_info` on `input_tensor`.

@ -10,8 +10,9 @@ import requests
class TrOCR:
def __init__(self,):
def __init__(
self,
):
pass
def __call__(self):

@ -23,9 +23,11 @@ class Vilt:
def __init__(self):
self.processor = ViltProcessor.from_pretrained(
"dandelin/vilt-b32-finetuned-vqa")
"dandelin/vilt-b32-finetuned-vqa"
)
self.model = ViltForQuestionAnswering.from_pretrained(
"dandelin/vilt-b32-finetuned-vqa")
"dandelin/vilt-b32-finetuned-vqa"
)
def __call__(self, text: str, image_url: str):
"""

@ -33,8 +33,7 @@ class WizardLLMStoryTeller:
def __init__(
self,
model_id:
str = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGUF",
model_id: str = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGUF",
device: str = None,
max_length: int = 500,
quantize: bool = False,
@ -45,8 +44,9 @@ class WizardLLMStoryTeller:
decoding=False,
):
self.logger = logging.getLogger(__name__)
self.device = (device if device else
("cuda" if torch.cuda.is_available() else "cpu"))
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
@ -56,8 +56,9 @@ class WizardLLMStoryTeller:
# self.log = Logging()
if self.distributed:
assert (torch.cuda.device_count() >
1), "You need more than 1 gpu for distributed processing"
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
@ -73,7 +74,8 @@ class WizardLLMStoryTeller:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config)
self.model_id, quantization_config=bnb_config
)
self.model # .to(self.device)
except Exception as e:
@ -86,18 +88,20 @@ class WizardLLMStoryTeller:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config else None)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config).to(self.device)
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
f"Failed to load the model or the tokenizer: {error}")
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, prompt_text: str):
@ -116,8 +120,9 @@ class WizardLLMStoryTeller:
max_length = self.max_length
try:
inputs = self.tokenizer.encode(prompt_text,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
@ -126,26 +131,26 @@ class WizardLLMStoryTeller:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
@ -169,8 +174,9 @@ class WizardLLMStoryTeller:
max_length = self.max_
try:
inputs = self.tokenizer.encode(prompt_text,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
@ -179,26 +185,26 @@ class WizardLLMStoryTeller:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs

@ -44,8 +44,9 @@ class YarnMistral128:
decoding=False,
):
self.logger = logging.getLogger(__name__)
self.device = (device if device else
("cuda" if torch.cuda.is_available() else "cpu"))
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
@ -55,8 +56,9 @@ class YarnMistral128:
# self.log = Logging()
if self.distributed:
assert (torch.cuda.device_count() >
1), "You need more than 1 gpu for distributed processing"
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
@ -91,18 +93,20 @@ class YarnMistral128:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config else None)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config).to(self.device)
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
f"Failed to load the model or the tokenizer: {error}")
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, prompt_text: str):
@ -121,8 +125,9 @@ class YarnMistral128:
max_length = self.max_length
try:
inputs = self.tokenizer.encode(prompt_text,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
@ -131,26 +136,26 @@ class YarnMistral128:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
@ -197,8 +202,9 @@ class YarnMistral128:
max_length = self.max_
try:
inputs = self.tokenizer.encode(prompt_text,
return_tensors="pt").to(self.device)
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
@ -207,26 +213,26 @@ class YarnMistral128:
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(inputs,
max_length=len(inputs) +
1,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode([output_tokens],
skip_special_tokens=True),
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(inputs,
max_length=max_length,
do_sample=True)
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs

@ -28,8 +28,7 @@ class Zephyr:
model_name: str = "HuggingFaceH4/zephyr-7b-alpha",
tokenize: bool = False,
add_generation_prompt: bool = True,
system_prompt:
str = "You are a friendly chatbot who always responds in the style of a pirate",
system_prompt: str = "You are a friendly chatbot who always responds in the style of a pirate",
max_new_tokens: int = 300,
temperature: float = 0.5,
top_k: float = 50,

@ -24,8 +24,9 @@ class AgentOutputParser(BaseAgentOutputParser):
@staticmethod
def _preprocess_json_input(input_str: str) -> str:
corrected_str = re.sub(r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})',
r"\\\\", input_str)
corrected_str = re.sub(
r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})', r"\\\\", input_str
)
return corrected_str
def _parse_json(self, text: str) -> dict:

@ -13,23 +13,13 @@ class PromptGenerator:
self.performance_evaluation: List[str] = []
self.response_format = {
"thoughts": {
"text":
"thought",
"reasoning":
"reasoning",
"plan":
"- short bulleted\n- list that conveys\n- long-term plan",
"criticism":
"constructive self-criticism",
"speak":
"thoughts summary to say to user",
},
"command": {
"name": "command name",
"args": {
"arg name": "value"
}
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user",
},
"command": {"name": "command name", "args": {"arg name": "value"}},
}
def add_constraint(self, constraint: str) -> None:
@ -82,6 +72,7 @@ class PromptGenerator:
f"Performance Evaluation:\n{''.join(self.performance_evaluation)}\n\n"
"You should only respond in JSON format as described below "
f"\nResponse Format: \n{formatted_response_format} "
"\nEnsure the response can be parsed by Python json.loads")
"\nEnsure the response can be parsed by Python json.loads"
)
return prompt_string

@ -7,21 +7,25 @@ def generate_agent_role_prompt(agent):
"Finance Agent": (
"You are a seasoned finance analyst AI assistant. Your primary goal is to"
" compose comprehensive, astute, impartial, and methodically arranged"
" financial reports based on provided data and trends."),
" financial reports based on provided data and trends."
),
"Travel Agent": (
"You are a world-travelled AI tour guide assistant. Your main purpose is to"
" draft engaging, insightful, unbiased, and well-structured travel reports"
" on given locations, including history, attractions, and cultural"
" insights."),
" insights."
),
"Academic Research Agent": (
"You are an AI academic research assistant. Your primary responsibility is"
" to create thorough, academically rigorous, unbiased, and systematically"
" organized reports on a given research topic, following the standards of"
" scholarly work."),
" scholarly work."
),
"Default Agent": (
"You are an AI critical thinker research assistant. Your sole purpose is to"
" write well written, critically acclaimed, objective and structured"
" reports on given text."),
" reports on given text."
),
}
return prompts.get(agent, "No such agent")
@ -40,7 +44,8 @@ def generate_report_prompt(question, research_summary):
" focus on the answer to the question, should be well structured, informative,"
" in depth, with facts and numbers if available, a minimum of 1,200 words and"
" with markdown syntax and apa format. Write all source urls at the end of the"
" report in apa format")
" report in apa format"
)
def generate_search_queries_prompt(question):
@ -52,7 +57,8 @@ def generate_search_queries_prompt(question):
return (
"Write 4 google search queries to search online that form an objective opinion"
f' from the following: "{question}"You must respond with a list of strings in'
' the following format: ["query 1", "query 2", "query 3", "query 4"]')
' the following format: ["query 1", "query 2", "query 3", "query 4"]'
)
def generate_resource_report_prompt(question, research_summary):
@ -74,7 +80,8 @@ def generate_resource_report_prompt(question, research_summary):
" significance of each source. Ensure that the report is well-structured,"
" informative, in-depth, and follows Markdown syntax. Include relevant facts,"
" figures, and numbers whenever available. The report should have a minimum"
" length of 1,200 words.")
" length of 1,200 words."
)
def generate_outline_report_prompt(question, research_summary):
@ -91,7 +98,8 @@ def generate_outline_report_prompt(question, research_summary):
" research report, including the main sections, subsections, and key points to"
" be covered. The research report should be detailed, informative, in-depth,"
" and a minimum of 1,200 words. Use appropriate Markdown syntax to format the"
" outline and ensure readability.")
" outline and ensure readability."
)
def generate_concepts_prompt(question, research_summary):
@ -106,7 +114,8 @@ def generate_concepts_prompt(question, research_summary):
" main concepts to learn for a research report on the following question or"
f' topic: "{question}". The outline should provide a well-structured'
" frameworkYou must respond with a list of strings in the following format:"
' ["concepts 1", "concepts 2", "concepts 3", "concepts 4, concepts 5"]')
' ["concepts 1", "concepts 2", "concepts 3", "concepts 4, concepts 5"]'
)
def generate_lesson_prompt(concept):
@ -122,7 +131,8 @@ def generate_lesson_prompt(concept):
f"generate a comprehensive lesson about {concept} in Markdown syntax. This"
f" should include the definitionof {concept}, its historical background and"
" development, its applications or uses in differentfields, and notable events"
f" or facts related to {concept}.")
f" or facts related to {concept}."
)
return prompt

@ -11,9 +11,9 @@ if TYPE_CHECKING:
from langchain.prompts.chat import ChatPromptTemplate
def get_buffer_string(messages: Sequence[BaseMessage],
human_prefix: str = "Human",
ai_prefix: str = "AI") -> str:
def get_buffer_string(
messages: Sequence[BaseMessage], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
"""Convert sequence of Messages to strings and concatenate them into one string.
Args:
@ -88,9 +88,9 @@ class BaseMessage(Serializable):
class BaseMessageChunk(BaseMessage):
def _merge_kwargs_dict(self, left: Dict[str, Any],
right: Dict[str, Any]) -> Dict[str, Any]:
def _merge_kwargs_dict(
self, left: Dict[str, Any], right: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge additional_kwargs from another BaseMessageChunk into this one."""
merged = left.copy()
for k, v in right.items():
@ -99,7 +99,8 @@ class BaseMessageChunk(BaseMessage):
elif not isinstance(merged[k], type(v)):
raise ValueError(
f'additional_kwargs["{k}"] already exists in this message,'
" but with a different type.")
" but with a different type."
)
elif isinstance(merged[k], str):
merged[k] += v
elif isinstance(merged[k], dict):
@ -118,12 +119,15 @@ class BaseMessageChunk(BaseMessage):
return self.__class__(
content=self.content + other.content,
additional_kwargs=self._merge_kwargs_dict(
self.additional_kwargs, other.additional_kwargs),
self.additional_kwargs, other.additional_kwargs
),
)
else:
raise TypeError('unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"')
raise TypeError(
'unsupported operand type(s) for +: "'
f"{self.__class__.__name__}"
f'" and "{other.__class__.__name__}"'
)
class HumanMessage(BaseMessage):

@ -66,10 +66,9 @@ class SystemMessage(Message):
of input messages.
"""
def __init__(self,
content: str,
role: str = "System",
additional_kwargs: Dict = None):
def __init__(
self, content: str, role: str = "System", additional_kwargs: Dict = None
):
super().__init__(content, role, additional_kwargs)
def get_type(self) -> str:
@ -107,9 +106,9 @@ class ChatMessage(Message):
return "chat"
def get_buffer_string(messages: Sequence[Message],
human_prefix: str = "Human",
ai_prefix: str = "AI") -> str:
def get_buffer_string(
messages: Sequence[Message], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
string_messages = []
for m in messages:
message = f"{m.role}: {m.content}"

@ -38,6 +38,7 @@ def debate_monitor(game_description, word_limit, character_names):
return prompt
def generate_character_header(game_description, topic, character_name,
character_description):
def generate_character_header(
game_description, topic, character_name, character_description
):
pass

@ -1,6 +1,7 @@
ERROR_PROMPT = (
"An error has occurred for the following text: \n{promptedQuery} Please explain"
" this error.\n {e}")
" this error.\n {e}"
)
IMAGE_PROMPT = """
provide a figure named {filename}. The description is: {description}.

@ -3,25 +3,30 @@ PY_REFLEXION_COMPLETION_INSTRUCTION = (
"You are a Python writing assistant. You will be given your past function"
" implementation, a series of unit tests, and a hint to change the implementation"
" appropriately. Write your full implementation (restate the function"
" signature).\n\n-----")
" signature).\n\n-----"
)
PY_SELF_REFLECTION_COMPLETION_INSTRUCTION = (
"You are a Python writing assistant. You will be given a function implementation"
" and a series of unit tests. Your goal is to write a few sentences to explain why"
" your implementation is wrong as indicated by the tests. You will need this as a"
" hint when you try again later. Only provide the few sentence description in your"
" answer, not the implementation.\n\n-----")
" answer, not the implementation.\n\n-----"
)
USE_PYTHON_CODEBLOCK_INSTRUCTION = (
"Use a Python code block to write your response. For"
" example:\n```python\nprint('Hello world!')\n```")
" example:\n```python\nprint('Hello world!')\n```"
)
PY_SIMPLE_CHAT_INSTRUCTION = (
"You are an AI that only responds with python code, NOT ENGLISH. You will be given"
" a function signature and its docstring by the user. Write your full"
" implementation (restate the function signature).")
" implementation (restate the function signature)."
)
PY_SIMPLE_CHAT_INSTRUCTION_V2 = (
"You are an AI that only responds with only python code. You will be given a"
" function signature and its docstring by the user. Write your full implementation"
" (restate the function signature).")
" (restate the function signature)."
)
PY_REFLEXION_CHAT_INSTRUCTION = (
"You are an AI Python assistant. You will be given your past function"
" implementation, a series of unit tests, and a hint to change the implementation"
@ -31,7 +36,8 @@ PY_REFLEXION_CHAT_INSTRUCTION_V2 = (
"You are an AI Python assistant. You will be given your previous implementation of"
" a function, a series of unit tests results, and your self-reflection on your"
" previous implementation. Write your full implementation (restate the function"
" signature).")
" signature)."
)
PY_REFLEXION_FEW_SHOT_ADD = '''Example 1:
[previous impl]:
```python
@ -169,14 +175,16 @@ PY_SELF_REFLECTION_CHAT_INSTRUCTION = (
" implementation and a series of unit tests. Your goal is to write a few sentences"
" to explain why your implementation is wrong as indicated by the tests. You will"
" need this as a hint when you try again later. Only provide the few sentence"
" description in your answer, not the implementation.")
" description in your answer, not the implementation."
)
PY_SELF_REFLECTION_CHAT_INSTRUCTION_V2 = (
"You are a Python programming assistant. You will be given a function"
" implementation and a series of unit test results. Your goal is to write a few"
" sentences to explain why your implementation is wrong as indicated by the tests."
" You will need this as guidance when you try again later. Only provide the few"
" sentence description in your answer, not the implementation. You will be given a"
" few examples by the user.")
" few examples by the user."
)
PY_SELF_REFLECTION_FEW_SHOT = """Example 1:
[function impl]:
```python

@ -3,29 +3,36 @@ conversation_stages = {
"Introduction: Start the conversation by introducing yourself and your company."
" Be polite and respectful while keeping the tone of the conversation"
" professional. Your greeting should be welcoming. Always clarify in your"
" greeting the reason why you are contacting the prospect."),
" greeting the reason why you are contacting the prospect."
),
"2": (
"Qualification: Qualify the prospect by confirming if they are the right person"
" to talk to regarding your product/service. Ensure that they have the"
" authority to make purchasing decisions."),
" authority to make purchasing decisions."
),
"3": (
"Value proposition: Briefly explain how your product/service can benefit the"
" prospect. Focus on the unique selling points and value proposition of your"
" product/service that sets it apart from competitors."),
" product/service that sets it apart from competitors."
),
"4": (
"Needs analysis: Ask open-ended questions to uncover the prospect's needs and"
" pain points. Listen carefully to their responses and take notes."),
"5": ("Solution presentation: Based on the prospect's needs, present your"
" product/service as the solution that can address their pain points."
),
"6":
("Objection handling: Address any objections that the prospect may have"
" regarding your product/service. Be prepared to provide evidence or"
" testimonials to support your claims."),
" pain points. Listen carefully to their responses and take notes."
),
"5": (
"Solution presentation: Based on the prospect's needs, present your"
" product/service as the solution that can address their pain points."
),
"6": (
"Objection handling: Address any objections that the prospect may have"
" regarding your product/service. Be prepared to provide evidence or"
" testimonials to support your claims."
),
"7": (
"Close: Ask for the sale by proposing a next step. This could be a demo, a"
" trial or a meeting with decision-makers. Ensure to summarize what has been"
" discussed and reiterate the benefits."),
" discussed and reiterate the benefits."
),
}
SALES_AGENT_TOOLS_PROMPT = """

@ -49,27 +49,34 @@ conversation_stages = {
"Introduction: Start the conversation by introducing yourself and your company."
" Be polite and respectful while keeping the tone of the conversation"
" professional. Your greeting should be welcoming. Always clarify in your"
" greeting the reason why you are contacting the prospect."),
" greeting the reason why you are contacting the prospect."
),
"2": (
"Qualification: Qualify the prospect by confirming if they are the right person"
" to talk to regarding your product/service. Ensure that they have the"
" authority to make purchasing decisions."),
" authority to make purchasing decisions."
),
"3": (
"Value proposition: Briefly explain how your product/service can benefit the"
" prospect. Focus on the unique selling points and value proposition of your"
" product/service that sets it apart from competitors."),
" product/service that sets it apart from competitors."
),
"4": (
"Needs analysis: Ask open-ended questions to uncover the prospect's needs and"
" pain points. Listen carefully to their responses and take notes."),
"5": ("Solution presentation: Based on the prospect's needs, present your"
" product/service as the solution that can address their pain points."
),
"6":
("Objection handling: Address any objections that the prospect may have"
" regarding your product/service. Be prepared to provide evidence or"
" testimonials to support your claims."),
" pain points. Listen carefully to their responses and take notes."
),
"5": (
"Solution presentation: Based on the prospect's needs, present your"
" product/service as the solution that can address their pain points."
),
"6": (
"Objection handling: Address any objections that the prospect may have"
" regarding your product/service. Be prepared to provide evidence or"
" testimonials to support your claims."
),
"7": (
"Close: Ask for the sale by proposing a next step. This could be a demo, a"
" trial or a meeting with decision-makers. Ensure to summarize what has been"
" discussed and reiterate the benefits."),
" discussed and reiterate the benefits."
),
}

@ -18,11 +18,13 @@ class ChatbotError(Exception):
def __init__(self, *args: object) -> None:
if SUPPORT_ADD_NOTES:
super().add_note((
"Please check that the input is correct, or you can resolve this"
" issue by filing an issue"),)
super().add_note(
"Project URL: https://github.com/acheong08/ChatGPT")
(
"Please check that the input is correct, or you can resolve this"
" issue by filing an issue"
),
)
super().add_note("Project URL: https://github.com/acheong08/ChatGPT")
super().__init__(*args)

@ -63,8 +63,9 @@ class BaseDocumentTransformer(ABC):
""" # noqa: E501
@abstractmethod
def transform_documents(self, documents: Sequence[Document],
**kwargs: Any) -> Sequence[Document]:
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Transform a list of documents.
Args:
@ -74,8 +75,9 @@ class BaseDocumentTransformer(ABC):
A list of transformed Documents.
"""
async def atransform_documents(self, documents: Sequence[Document],
**kwargs: Any) -> Sequence[Document]:
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Asynchronously transform a list of documents.
Args:
@ -85,4 +87,5 @@ class BaseDocumentTransformer(ABC):
A list of transformed Documents.
"""
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.transform_documents, **kwargs), documents)
None, partial(self.transform_documents, **kwargs), documents
)

@ -100,7 +100,7 @@ class Flow:
self,
llm: Any,
# template: str,
max_loops = 5,
max_loops=5,
stopping_condition: Optional[Callable[[str], bool]] = None,
loop_interval: int = 1,
retry_attempts: int = 3,
@ -188,7 +188,8 @@ class Flow:
value = self.llm.__dict__.get(name, "Unknown")
params_str_list.append(
f" {name.capitalize().replace('_', ' ')}: {value}")
f" {name.capitalize().replace('_', ' ')}: {value}"
)
return "\n".join(params_str_list)
@ -196,7 +197,7 @@ class Flow:
"""
Take the history and truncate it to fit into the model context length
"""
truncated_history = self.memory[-1][-self.context_length:]
truncated_history = self.memory[-1][-self.context_length :]
self.memory[-1] = truncated_history
def add_task_to_memory(self, task: str):
@ -246,7 +247,8 @@ class Flow:
----------------------------------------
""",
"green",
))
)
)
# print(dashboard)
@ -256,17 +258,18 @@ class Flow:
print(colored("Initializing Autonomous Agent...", "yellow"))
# print(colored("Loading modules...", "yellow"))
# print(colored("Modules loaded successfully.", "green"))
print(colored("Autonomous Agent Activated.", "cyan",
attrs=["bold"]))
print(colored("All systems operational. Executing task...",
"green"))
print(colored("Autonomous Agent Activated.", "cyan", attrs=["bold"]))
print(colored("All systems operational. Executing task...", "green"))
except Exception as error:
print(
colored(
("Error activating autonomous agent. Try optimizing your"
" parameters..."),
(
"Error activating autonomous agent. Try optimizing your"
" parameters..."
),
"red",
))
)
)
print(error)
def run(self, task: str, **kwargs):
@ -296,7 +299,7 @@ class Flow:
loop_count = 0
# for i in range(self.max_loops):
while self.max_loops == 'auto' or loop_count < self.max_loops:
while self.max_loops == "auto" or loop_count < self.max_loops:
loop_count += 1
print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue"))
print("\n")
@ -315,8 +318,7 @@ class Flow:
while attempt < self.retry_attempts:
try:
response = self.llm(
task
**kwargs,
task**kwargs,
)
if self.interactive:
print(f"AI: {response}")
@ -344,7 +346,7 @@ class Flow:
if self.return_history:
return response, history
return response
return response
async def arun(self, task: str, **kwargs):
"""
@ -373,7 +375,7 @@ class Flow:
loop_count = 0
# for i in range(self.max_loops):
while self.max_loops == 'auto' or loop_count < self.max_loops:
while self.max_loops == "auto" or loop_count < self.max_loops:
loop_count += 1
print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue"))
print("\n")
@ -392,8 +394,7 @@ class Flow:
while attempt < self.retry_attempts:
try:
response = self.llm(
task
**kwargs,
task**kwargs,
)
if self.interactive:
print(f"AI: {response}")
@ -421,7 +422,7 @@ class Flow:
if self.return_history:
return response, history
return response
return response
def _run(self, **kwargs: Any) -> str:
"""Generate a result using the provided keyword args."""
@ -460,9 +461,7 @@ class Flow:
Args:
tasks (List[str]): A list of tasks to run.
"""
task_coroutines = [
self.run_async(task, **kwargs) for task in tasks
]
task_coroutines = [self.run_async(task, **kwargs) for task in tasks]
completed_tasks = await asyncio.gather(*task_coroutines)
return completed_tasks
@ -575,9 +574,7 @@ class Flow:
import boto3
s3 = boto3.client("s3")
s3.put_object(Bucket=bucket_name,
Key=object_name,
Body=json.dumps(self.memory))
s3.put_object(Bucket=bucket_name, Key=object_name, Body=json.dumps(self.memory))
print(f"Backed up memory to S3: {bucket_name}/{object_name}")
def analyze_feedback(self):
@ -681,7 +678,7 @@ class Flow:
def get_llm_params(self):
"""
Extracts and returns the parameters of the llm object for serialization.
It assumes that the llm object has an __init__ method
It assumes that the llm object has an __init__ method
with parameters that can be used to recreate it.
"""
if not hasattr(self.llm, "__init__"):
@ -697,8 +694,8 @@ class Flow:
if hasattr(self.llm, name):
value = getattr(self.llm, name)
if isinstance(
value,
(str, int, float, bool, list, dict, tuple, type(None))):
value, (str, int, float, bool, list, dict, tuple, type(None))
):
llm_params[name] = value
else:
llm_params[name] = str(
@ -758,10 +755,7 @@ class Flow:
print(f"Flow state loaded from {file_path}")
def retry_on_failure(self,
function,
retries: int = 3,
retry_delay: int = 1):
def retry_on_failure(self, function, retries: int = 3, retry_delay: int = 1):
"""Retry wrapper for LLM calls."""
attempt = 0
while attempt < retries:

@ -8,10 +8,9 @@ class Task:
Task is a unit of work that can be executed by an agent
"""
def __init__(self,
id: str,
parents: List["Task"] = None,
children: List["Task"] = None):
def __init__(
self, id: str, parents: List["Task"] = None, children: List["Task"] = None
):
self.id = id
self.parents = parents
self.children = children
@ -80,8 +79,7 @@ class NonLinearWorkflow:
for task in ordered_tasks:
if task.can_execute:
future = self.executor.submit(self.agents.run,
task.task_string)
future = self.executor.submit(self.agents.run, task.task_string)
futures_list[future] = task
for future in as_completed(futures_list):
@ -97,8 +95,7 @@ class NonLinearWorkflow:
def to_graph(self) -> Dict[str, set[str]]:
"""Convert the workflow to a graph"""
graph = {
task.id: set(child.id for child in task.children)
for task in self.tasks
task.id: set(child.id for child in task.children) for task in self.tasks
}
return graph

@ -61,12 +61,13 @@ class Task:
if isinstance(self.flow, Flow):
# Add a prompt to notify the Flow of the sequential workflow
if "prompt" in self.kwargs:
self.kwargs["prompt"] += (f"\n\nPrevious output: {self.result}"
if self.result else "")
self.kwargs["prompt"] += (
f"\n\nPrevious output: {self.result}" if self.result else ""
)
else:
self.kwargs["prompt"] = f"Main task: {self.description}" + (
f"\n\nPrevious output: {self.result}"
if self.result else "")
f"\n\nPrevious output: {self.result}" if self.result else ""
)
self.result = self.flow.run(*self.args, **self.kwargs)
else:
self.result = self.flow(*self.args, **self.kwargs)
@ -110,8 +111,7 @@ class SequentialWorkflow:
restore_state_filepath: Optional[str] = None
dashboard: bool = False
def add(self, task: str, flow: Union[Callable, Flow], *args,
**kwargs) -> None:
def add(self, task: str, flow: Union[Callable, Flow], *args, **kwargs) -> None:
"""
Add a task to the workflow.
@ -127,7 +127,8 @@ class SequentialWorkflow:
# Append the task to the tasks list
self.tasks.append(
Task(description=task, flow=flow, args=list(args), kwargs=kwargs))
Task(description=task, flow=flow, args=list(args), kwargs=kwargs)
)
def reset_workflow(self) -> None:
"""Resets the workflow by clearing the results of each task."""
@ -179,9 +180,8 @@ class SequentialWorkflow:
raise ValueError(f"Task {task_description} not found in workflow.")
def save_workflow_state(
self,
filepath: Optional[str] = "sequential_workflow_state.json",
**kwargs) -> None:
self, filepath: Optional[str] = "sequential_workflow_state.json", **kwargs
) -> None:
"""
Saves the workflow state to a json file.
@ -202,13 +202,16 @@ class SequentialWorkflow:
with open(filepath, "w") as f:
# Saving the state as a json for simplicuty
state = {
"tasks": [{
"description": task.description,
"args": task.args,
"kwargs": task.kwargs,
"result": task.result,
"history": task.history,
} for task in self.tasks],
"tasks": [
{
"description": task.description,
"args": task.args,
"kwargs": task.kwargs,
"result": task.result,
"history": task.history,
}
for task in self.tasks
],
"max_loops": self.max_loops,
}
json.dump(state, f, indent=4)
@ -220,7 +223,8 @@ class SequentialWorkflow:
Sequential Workflow Initializing...""",
"green",
attrs=["bold", "underline"],
))
)
)
def workflow_dashboard(self, **kwargs) -> None:
"""
@ -259,7 +263,8 @@ class SequentialWorkflow:
""",
"cyan",
attrs=["bold", "underline"],
))
)
)
def workflow_shutdown(self, **kwargs) -> None:
print(
@ -268,7 +273,8 @@ class SequentialWorkflow:
Sequential Workflow Shutdown...""",
"red",
attrs=["bold", "underline"],
))
)
)
def add_objective_to_workflow(self, task: str, **kwargs) -> None:
print(
@ -277,7 +283,8 @@ class SequentialWorkflow:
Adding Objective to Workflow...""",
"green",
attrs=["bold", "underline"],
))
)
)
task = Task(
description=task,
@ -342,12 +349,13 @@ class SequentialWorkflow:
if "task" not in task.kwargs:
raise ValueError(
"The 'task' argument is required for the Flow flow"
f" execution in '{task.description}'")
f" execution in '{task.description}'"
)
# Separate the 'task' argument from other kwargs
flow_task_arg = task.kwargs.pop("task")
task.result = task.flow.run(flow_task_arg,
*task.args,
**task.kwargs)
task.result = task.flow.run(
flow_task_arg, *task.args, **task.kwargs
)
else:
# If it's not a Flow instance, call the flow directly
task.result = task.flow(*task.args, **task.kwargs)
@ -365,17 +373,19 @@ class SequentialWorkflow:
# Autosave the workflow state
if self.autosave:
self.save_workflow_state(
"sequential_workflow_state.json")
self.save_workflow_state("sequential_workflow_state.json")
except Exception as e:
print(
colored(
(f"Error initializing the Sequential workflow: {e} try"
" optimizing your inputs like the flow class and task"
" description"),
(
f"Error initializing the Sequential workflow: {e} try"
" optimizing your inputs like the flow class and task"
" description"
),
"red",
attrs=["bold", "underline"],
))
)
)
async def arun(self) -> None:
"""
@ -395,11 +405,13 @@ class SequentialWorkflow:
if "task" not in task.kwargs:
raise ValueError(
"The 'task' argument is required for the Flow flow"
f" execution in '{task.description}'")
f" execution in '{task.description}'"
)
# Separate the 'task' argument from other kwargs
flow_task_arg = task.kwargs.pop("task")
task.result = await task.flow.arun(
flow_task_arg, *task.args, **task.kwargs)
flow_task_arg, *task.args, **task.kwargs
)
else:
# If it's not a Flow instance, call the flow directly
task.result = await task.flow(*task.args, **task.kwargs)
@ -417,5 +429,4 @@ class SequentialWorkflow:
# Autosave the workflow state
if self.autosave:
self.save_workflow_state(
"sequential_workflow_state.json")
self.save_workflow_state("sequential_workflow_state.json")

@ -13,7 +13,6 @@ from swarms.artifacts.error_artifact import ErrorArtifact
class BaseTask(ABC):
class State(Enum):
PENDING = 1
EXECUTING = 2
@ -34,15 +33,11 @@ class BaseTask(ABC):
@property
def parents(self) -> List[BaseTask]:
return [
self.structure.find_task(parent_id) for parent_id in self.parent_ids
]
return [self.structure.find_task(parent_id) for parent_id in self.parent_ids]
@property
def children(self) -> List[BaseTask]:
return [
self.structure.find_task(child_id) for child_id in self.child_ids
]
return [self.structure.find_task(child_id) for child_id in self.child_ids]
def __rshift__(self, child: BaseTask) -> BaseTask:
return self.add_child(child)
@ -123,7 +118,8 @@ class BaseTask(ABC):
def can_execute(self) -> bool:
return self.state == self.State.PENDING and all(
parent.is_finished() for parent in self.parents)
parent.is_finished() for parent in self.parents
)
def reset(self) -> BaseTask:
self.state = self.State.PENDING
@ -136,10 +132,10 @@ class BaseTask(ABC):
class Task(BaseModel):
input: Optional[StrictStr] = Field(None,
description="Input prompt for the task")
input: Optional[StrictStr] = Field(None, description="Input prompt for the task")
additional_input: Optional[Any] = Field(
None, description="Input parameters for the task. Any value is allowed")
None, description="Input parameters for the task. Any value is allowed"
)
task_id: StrictStr = Field(..., description="ID of the task")
class Config:

@ -65,13 +65,11 @@ class Workflow:
def context(self, task: Task) -> Dict[str, Any]:
"""Context in tasks"""
return {
"parent_output":
task.parents[0].output
if task.parents and task.parents[0].output else None,
"parent":
task.parents[0] if task.parents else None,
"child":
task.children[0] if task.children else None,
"parent_output": task.parents[0].output
if task.parents and task.parents[0].output
else None,
"parent": task.parents[0] if task.parents else None,
"child": task.children[0] if task.children else None,
}
def __run_from_task(self, task: Optional[Task]) -> None:

@ -87,8 +87,7 @@ class AutoScaler:
while True:
sleep(60) # check minute
pending_tasks = self.task_queue.qsize()
active_agents = sum(
[1 for agent in self.agents_pool if agent.is_busy()])
active_agents = sum([1 for agent in self.agents_pool if agent.is_busy()])
if pending_tasks / len(self.agents_pool) > self.busy_threshold:
self.scale_up()

@ -117,9 +117,7 @@ class AbstractSwarm(ABC):
pass
@abstractmethod
def broadcast(self,
message: str,
sender: Optional["AbstractWorker"] = None):
def broadcast(self, message: str, sender: Optional["AbstractWorker"] = None):
"""Broadcast a message to all workers"""
pass

@ -77,15 +77,19 @@ class BattleRoyalSwarm:
# Check for clashes and handle them
for i, worker1 in enumerate(self.workers):
for j, worker2 in enumerate(self.workers):
if (i != j and worker1.is_within_proximity(worker2) and
set(worker1.teams) != set(worker2.teams)):
if (
i != j
and worker1.is_within_proximity(worker2)
and set(worker1.teams) != set(worker2.teams)
):
winner, loser = self.clash(worker1, worker2, question)
print(f"Worker {winner.id} won over Worker {loser.id}")
def communicate(self, sender: Worker, reciever: Worker, message: str):
"""Communicate a message from one worker to another."""
if sender.is_within_proximity(reciever) or any(
team in sender.teams for team in reciever.teams):
team in sender.teams for team in reciever.teams
):
pass
def clash(self, worker1: Worker, worker2: Worker, question: str):

@ -49,8 +49,9 @@ class GodMode:
table.append([f"LLM {i+1}", response])
print(
colored(
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"),
"cyan"))
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"), "cyan"
)
)
def run_all(self, task):
"""Run the task on all LLMs"""
@ -73,15 +74,18 @@ class GodMode:
table.append([f"LLM {i+1}", response])
print(
colored(
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"),
"cyan"))
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"), "cyan"
)
)
# New Features
def save_responses_to_file(self, filename):
"""Save responses to file"""
with open(filename, "w") as file:
table = [[f"LLM {i+1}", response]
for i, response in enumerate(self.last_responses)]
table = [
[f"LLM {i+1}", response]
for i, response in enumerate(self.last_responses)
]
file.write(tabulate(table, headers=["LLM", "Response"]))
@classmethod
@ -101,9 +105,11 @@ class GodMode:
for i, task in enumerate(self.task_history):
print(f"{i + 1}. {task}")
print("\nLast Responses:")
table = [[f"LLM {i+1}", response]
for i, response in enumerate(self.last_responses)]
table = [
[f"LLM {i+1}", response] for i, response in enumerate(self.last_responses)
]
print(
colored(
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"),
"cyan"))
tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"), "cyan"
)
)

@ -33,8 +33,7 @@ class GroupChat:
def next_agent(self, agent: Flow) -> Flow:
"""Return the next agent in the list."""
return self.agents[(self.agent_names.index(agent.name) + 1) %
len(self.agents)]
return self.agents[(self.agent_names.index(agent.name) + 1) % len(self.agents)]
def select_speaker_msg(self):
"""Return the message for selecting the next speaker."""
@ -55,17 +54,24 @@ class GroupChat:
if n_agents < 3:
logger.warning(
f"GroupChat is underpopulated with {n_agents} agents. Direct"
" communication would be more efficient.")
" communication would be more efficient."
)
name = selector.generate_reply(
self.format_history(self.messages + [{
"role":
"system",
"content":
("Read the above conversation. Then select the next most"
f" suitable role from {self.agent_names} to play. Only"
" return the role."),
}]))
self.format_history(
self.messages
+ [
{
"role": "system",
"content": (
"Read the above conversation. Then select the next most"
f" suitable role from {self.agent_names} to play. Only"
" return the role."
),
}
]
)
)
try:
return self.agent_by_name(name["content"])
except ValueError:
@ -73,7 +79,8 @@ class GroupChat:
def _participant_roles(self):
return "\n".join(
[f"{agent.name}: {agent.system_message}" for agent in self.agents])
[f"{agent.name}: {agent.system_message}" for agent in self.agents]
)
def format_history(self, messages: List[Dict]) -> str:
formatted_messages = []
@ -84,21 +91,19 @@ class GroupChat:
class GroupChatManager:
def __init__(self, groupchat: GroupChat, selector: Flow):
self.groupchat = groupchat
self.selector = selector
def __call__(self, task: str):
self.groupchat.messages.append({
"role": self.selector.name,
"content": task
})
self.groupchat.messages.append({"role": self.selector.name, "content": task})
for i in range(self.groupchat.max_round):
speaker = self.groupchat.select_speaker(last_speaker=self.selector,
selector=self.selector)
speaker = self.groupchat.select_speaker(
last_speaker=self.selector, selector=self.selector
)
reply = speaker.generate_reply(
self.groupchat.format_history(self.groupchat.messages))
self.groupchat.format_history(self.groupchat.messages)
)
self.groupchat.messages.append(reply)
print(reply)
if i == self.groupchat.max_round - 1:

@ -5,16 +5,16 @@ from langchain.output_parsers import RegexParser
# utils
class BidOutputParser(RegexParser):
def get_format_instructions(self) -> str:
return (
"Your response should be an integrater delimited by angled brackets like"
" this: <int>")
" this: <int>"
)
bid_parser = BidOutputParser(regex=r"<(\d+)>",
output_keys=["bid"],
default_output_key="bid")
bid_parser = BidOutputParser(
regex=r"<(\d+)>", output_keys=["bid"], default_output_key="bid"
)
def select_next_speaker(step: int, agents, director) -> int:
@ -29,7 +29,6 @@ def select_next_speaker(step: int, agents, director) -> int:
# main
class MultiAgentCollaboration:
def __init__(
self,
agents,

@ -46,6 +46,7 @@ class MultiAgentDebate:
def format_results(self, results):
formatted_results = "\n".join(
[f"Agent responded: {result['response']}" for result in results])
[f"Agent responded: {result['response']}" for result in results]
)
return formatted_results

@ -111,8 +111,7 @@ class Orchestrator:
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(
name=collection_name)
self.collection = self.chroma_client.create_collection(name=collection_name)
self.current_tasks = {}
@ -138,8 +137,9 @@ class Orchestrator:
result = self.worker.run(task["content"])
# using the embed method to get the vector representation of the result
vector_representation = self.embed(result, self.api_key,
self.model_name)
vector_representation = self.embed(
result, self.api_key, self.model_name
)
self.collection.add(
embeddings=[vector_representation],
@ -154,7 +154,8 @@ class Orchestrator:
except Exception as error:
logging.error(
f"Failed to process task {id(task)} by agent {id(agent)}. Error:"
f" {error}")
f" {error}"
)
finally:
with self.condition:
self.agents.put(agent)
@ -162,7 +163,8 @@ class Orchestrator:
def embed(self, input, api_key, model_name):
openai = embedding_functions.OpenAIEmbeddingFunction(
api_key=api_key, model_name=model_name)
api_key=api_key, model_name=model_name
)
embedding = openai(input)
return embedding
@ -173,13 +175,13 @@ class Orchestrator:
try:
# Query the vector database for documents created by the agents
results = self.collection.query(query_texts=[str(agent_id)],
n_results=10)
results = self.collection.query(query_texts=[str(agent_id)], n_results=10)
return results
except Exception as e:
logging.error(
f"Failed to retrieve results from agent {agent_id}. Error {e}")
f"Failed to retrieve results from agent {agent_id}. Error {e}"
)
raise
# @abstractmethod
@ -210,8 +212,7 @@ class Orchestrator:
self.collection.add(documents=[result], ids=[str(id(result))])
except Exception as e:
logging.error(
f"Failed to append the agent output to database. Error: {e}")
logging.error(f"Failed to append the agent output to database. Error: {e}")
raise
def run(self, objective: str):
@ -224,8 +225,8 @@ class Orchestrator:
self.task_queue.append(objective)
results = [
self.assign_task(agent_id, task) for agent_id, task in zip(
range(len(self.agents)), self.task_queue)
self.assign_task(agent_id, task)
for agent_id, task in zip(range(len(self.agents)), self.task_queue)
]
for result in results:

@ -2,7 +2,6 @@ from queue import Queue, PriorityQueue
class SimpleSwarm:
def __init__(
self,
llm,

@ -8,7 +8,8 @@ import torch
from langchain.agents import tool
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.chains.qa_with_sources.loading import (
BaseCombineDocumentsChain,)
BaseCombineDocumentsChain,
)
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools import BaseTool
@ -36,10 +37,9 @@ def pushd(new_dir):
@tool
def process_csv(llm,
csv_file_path: str,
instructions: str,
output_path: Optional[str] = None) -> str:
def process_csv(
llm, csv_file_path: str, instructions: str, output_path: Optional[str] = None
) -> str:
"""Process a CSV by with pandas in a limited REPL.\
Only use this after writing data to disk as a csv file.\
Any figures must be saved to disk to be viewed by the human.\
@ -49,10 +49,7 @@ def process_csv(llm,
df = pd.read_csv(csv_file_path)
except Exception as e:
return f"Error: {e}"
agent = create_pandas_dataframe_agent(llm,
df,
max_iterations=30,
verbose=False)
agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=False)
if output_path is not None:
instructions += f" Save output to disk at {output_path}"
try:
@ -82,8 +79,7 @@ async def async_load_playwright(url: str) -> str:
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (
phrase.strip() for line in lines for phrase in line.split(" "))
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
results = "\n".join(chunk for chunk in chunks if chunk)
except Exception as e:
results = f"Error: {e}"
@ -117,7 +113,8 @@ class WebpageQATool(BaseTool):
"Browse a webpage and retrieve the information relevant to the question."
)
text_splitter: RecursiveCharacterTextSplitter = Field(
default_factory=_get_text_splitter)
default_factory=_get_text_splitter
)
qa_chain: BaseCombineDocumentsChain
def _run(self, url: str, question: str) -> str:
@ -128,12 +125,9 @@ class WebpageQATool(BaseTool):
results = []
# TODO: Handle this with a MapReduceChain
for i in range(0, len(web_docs), 4):
input_docs = web_docs[i:i + 4]
input_docs = web_docs[i : i + 4]
window_result = self.qa_chain(
{
"input_documents": input_docs,
"question": question
},
{"input_documents": input_docs, "question": question},
return_only_outputs=True,
)
results.append(f"Response from window {i} - {window_result}")
@ -141,10 +135,7 @@ class WebpageQATool(BaseTool):
Document(page_content="\n".join(results), metadata={"source": url})
]
return self.qa_chain(
{
"input_documents": results_docs,
"question": question
},
{"input_documents": results_docs, "question": question},
return_only_outputs=True,
)
@ -180,17 +171,18 @@ def VQAinference(self, inputs):
torch_dtype = torch.float16 if "cuda" in device else torch.float32
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=torch_dtype).to(device)
"Salesforce/blip-vqa-base", torch_dtype=torch_dtype
).to(device)
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert("RGB")
inputs = processor(raw_image, question,
return_tensors="pt").to(device, torch_dtype)
inputs = processor(raw_image, question, return_tensors="pt").to(device, torch_dtype)
out = model.generate(**inputs)
answer = processor.decode(out[0], skip_special_tokens=True)
logger.debug(
f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input"
f" Question: {question}, Output Answer: {answer}")
f" Question: {question}, Output Answer: {answer}"
)
return answer

@ -25,14 +25,13 @@ from swarms.utils.main import BaseHandler, get_new_image_name
class MaskFormer:
def __init__(self, device):
print("Initializing MaskFormer to %s" % device)
self.device = device
self.processor = CLIPSegProcessor.from_pretrained(
"CIDAS/clipseg-rd64-refined")
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained(
"CIDAS/clipseg-rd64-refined").to(device)
"CIDAS/clipseg-rd64-refined"
).to(device)
def inference(self, image_path, text):
threshold = 0.5
@ -40,10 +39,9 @@ class MaskFormer:
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(text=text,
images=image,
padding="max_length",
return_tensors="pt").to(self.device)
inputs = self.processor(
text=text, images=image, padding="max_length", return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
@ -54,7 +52,8 @@ class MaskFormer:
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(
slice(max(0, i - padding), i + padding + 1) for i in idx)
slice(max(0, i - padding), i + padding + 1) for i in idx
)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
@ -62,7 +61,6 @@ class MaskFormer:
class ImageEditing:
def __init__(self, device):
print("Initializing ImageEditing to %s" % device)
self.device = device
@ -77,24 +75,25 @@ class ImageEditing:
@tool(
name="Remove Something From The Photo",
description=
("useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. "),
description=(
"useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. "
),
)
def inference_remove(self, inputs):
image_path, to_be_removed_txt = inputs.split(",")
return self.inference_replace(
f"{image_path},{to_be_removed_txt},background")
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
@tool(
name="Replace Something From The Photo",
description=
("useful when you want to replace an object from the object description or"
" location with another object from its description. The input to this tool"
" should be a comma separated string of three, representing the image_path,"
" the object to be replaced, the object to be replaced with "),
description=(
"useful when you want to replace an object from the object description or"
" location with another object from its description. The input to this tool"
" should be a comma separated string of three, representing the image_path,"
" the object to be replaced, the object to be replaced with "
),
)
def inference_replace(self, inputs):
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
@ -106,21 +105,22 @@ class ImageEditing:
image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512)),
).images[0]
updated_image_path = get_new_image_name(image_path,
func_name="replace-something")
updated_image_path = get_new_image_name(
image_path, func_name="replace-something"
)
updated_image = updated_image.resize(original_size)
updated_image.save(updated_image_path)
logger.debug(
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace"
f" {to_be_replaced_txt} to {replace_with_txt}, Output Image:"
f" {updated_image_path}")
f" {updated_image_path}"
)
return updated_image_path
class InstructPix2Pix:
def __init__(self, device):
print("Initializing InstructPix2Pix to %s" % device)
self.device = device
@ -131,56 +131,60 @@ class InstructPix2Pix:
torch_dtype=self.torch_dtype,
).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.pipe.scheduler.config)
self.pipe.scheduler.config
)
@tool(
name="Instruct Image Using Text",
description=
("useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. "),
description=(
"useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. "
),
)
def inference(self, inputs):
"""Change style of image."""
logger.debug("===> Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ",".join(inputs.split(",")[1:])
original_image = Image.open(image_path)
image = self.pipe(text,
image=original_image,
num_inference_steps=40,
image_guidance_scale=1.2).images[0]
image = self.pipe(
text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2
).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
logger.debug(
f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text:"
f" {text}, Output Image: {updated_image_path}")
f" {text}, Output Image: {updated_image_path}"
)
return updated_image_path
class Text2Image:
def __init__(self, device):
print("Initializing Text2Image to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype)
"runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype
)
self.pipe.to(device)
self.a_prompt = "best quality, extremely detailed"
self.n_prompt = (
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, "
"fewer digits, cropped, worst quality, low quality")
"fewer digits, cropped, worst quality, low quality"
)
@tool(
name="Generate Image From User Input Text",
description=
("useful when you want to generate an image from a user input text and save"
" it to a file. like: generate an image of an object or something, or"
" generate an image that includes some objects. The input to this tool"
" should be a string, representing the text used to generate image. "),
description=(
"useful when you want to generate an image from a user input text and save"
" it to a file. like: generate an image of an object or something, or"
" generate an image that includes some objects. The input to this tool"
" should be a string, representing the text used to generate image. "
),
)
def inference(self, text):
image_filename = os.path.join("image", str(uuid.uuid4())[0:8] + ".png")
@ -190,59 +194,59 @@ class Text2Image:
logger.debug(
f"\nProcessed Text2Image, Input Text: {text}, Output Image:"
f" {image_filename}")
f" {image_filename}"
)
return image_filename
class VisualQuestionAnswering:
def __init__(self, device):
print("Initializing VisualQuestionAnswering to %s" % device)
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-vqa-base")
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base",
torch_dtype=self.torch_dtype).to(self.device)
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype
).to(self.device)
@tool(
name="Answer Question About The Image",
description=
("useful when you need an answer for a question based on an image. like:"
" what is the background color of the last image, how many cats in this"
" figure, what is in this figure. The input to this tool should be a comma"
" separated string of two, representing the image_path and the question"
description=(
"useful when you need an answer for a question based on an image. like:"
" what is the background color of the last image, how many cats in this"
" figure, what is in this figure. The input to this tool should be a comma"
" separated string of two, representing the image_path and the question"
),
)
def inference(self, inputs):
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert("RGB")
inputs = self.processor(raw_image, question,
return_tensors="pt").to(self.device,
self.torch_dtype)
inputs = self.processor(raw_image, question, return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
logger.debug(
f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input"
f" Question: {question}, Output Answer: {answer}")
f" Question: {question}, Output Answer: {answer}"
)
return answer
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base")
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base",
torch_dtype=self.torch_dtype).to(self.device)
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
@ -254,13 +258,14 @@ class ImageCaptioning(BaseHandler):
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename),
return_tensors="pt").to(self.device,
self.torch_dtype)
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text:"
f" {description}")
f" {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)

@ -9,7 +9,6 @@ from pytube import YouTube
class SpeechToText:
def __init__(
self,
video_url,
@ -62,15 +61,14 @@ class SpeechToText:
compute_type = "float16"
# 1. Transcribe with original Whisper (batched) 🗣️
model = whisperx.load_model("large-v2",
device,
compute_type=compute_type)
model = whisperx.load_model("large-v2", device, compute_type=compute_type)
audio = whisperx.load_audio(audio_file)
result = model.transcribe(audio, batch_size=batch_size)
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(
language_code=result["language"], device=device)
language_code=result["language"], device=device
)
result = whisperx.align(
result["segments"],
model_a,
@ -82,7 +80,8 @@ class SpeechToText:
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
use_auth_token=self.hf_api_key, device=device)
use_auth_token=self.hf_api_key, device=device
)
diarize_model(audio_file)
try:
@ -99,7 +98,8 @@ class SpeechToText:
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(
language_code=result["language"], device=self.device)
language_code=result["language"], device=self.device
)
result = whisperx.align(
result["segments"],
@ -112,7 +112,8 @@ class SpeechToText:
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
use_auth_token=self.hf_api_key, device=self.device)
use_auth_token=self.hf_api_key, device=self.device
)
diarize_model(audio_file)

@ -34,8 +34,9 @@ class SchemaAnnotationError(TypeError):
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
def _create_subset_model(name: str, model: BaseModel,
field_names: list) -> Type[BaseModel]:
def _create_subset_model(
name: str, model: BaseModel, field_names: list
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
fields = {}
for field_name in field_names:
@ -51,11 +52,7 @@ def _get_filtered_args(
"""Get the arguments from a function's signature."""
schema = inferred_model.schema()["properties"]
valid_keys = signature(func).parameters
return {
k: schema[k]
for k in valid_keys
if k not in ("run_manager", "callbacks")
}
return {k: schema[k] for k in valid_keys if k not in ("run_manager", "callbacks")}
class _SchemaConfig:
@ -85,8 +82,9 @@ def create_schema_from_function(
del inferred_model.__fields__["callbacks"]
# Pydantic adds placeholder virtual fields we need to strip
valid_properties = _get_filtered_args(inferred_model, func)
return _create_subset_model(f"{model_name}Schema", inferred_model,
list(valid_properties))
return _create_subset_model(
f"{model_name}Schema", inferred_model, list(valid_properties)
)
class ToolException(Exception):
@ -127,7 +125,8 @@ class ChildTool(BaseTool):
"Expected annotation of 'Type[BaseModel]'"
f" but got '{args_schema_type}'.\n"
"Expected class looks like:\n"
f"{typehint_mandate}")
f"{typehint_mandate}"
)
name: str
"""The unique name of the tool that clearly communicates its purpose."""
@ -148,8 +147,7 @@ class ChildTool(BaseTool):
callbacks: Callbacks = Field(default=None, exclude=True)
"""Callbacks to be called during tool execution."""
callback_manager: Optional[BaseCallbackManager] = Field(default=None,
exclude=True)
callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
"""Deprecated. Please use callbacks instead."""
tags: Optional[List[str]] = None
"""Optional list of tags associated with the tool. Defaults to None
@ -164,8 +162,9 @@ class ChildTool(BaseTool):
You can use these to eg identify a specific instance of a tool with its use case.
"""
handle_tool_error: Optional[Union[bool, str, Callable[[ToolException],
str]]] = False
handle_tool_error: Optional[
Union[bool, str, Callable[[ToolException], str]]
] = False
"""Handle the content of the ToolException thrown."""
class Config(Serializable.Config):
@ -245,9 +244,7 @@ class ChildTool(BaseTool):
else:
if input_args is not None:
result = input_args.parse_obj(tool_input)
return {
k: v for k, v in result.dict().items() if k in tool_input
}
return {k: v for k, v in result.dict().items() if k in tool_input}
return tool_input
@root_validator()
@ -289,8 +286,7 @@ class ChildTool(BaseTool):
*args,
)
def _to_args_and_kwargs(self,
tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
# For backwards compatibility, if run_input is a string,
# pass as a positional argument.
if isinstance(tool_input, str):
@ -329,10 +325,7 @@ class ChildTool(BaseTool):
# TODO: maybe also pass through run_manager is _run supports kwargs
new_arg_supported = signature(self._run).parameters.get("run_manager")
run_manager = callback_manager.on_tool_start(
{
"name": self.name,
"description": self.description
},
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
name=run_name,
@ -342,7 +335,9 @@ class ChildTool(BaseTool):
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
self._run(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported else self._run(*tool_args, **tool_kwargs))
if new_arg_supported
else self._run(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
run_manager.on_tool_error(e)
@ -359,20 +354,19 @@ class ChildTool(BaseTool):
else:
raise ValueError(
"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}")
run_manager.on_tool_end(str(observation),
color="red",
name=self.name,
**kwargs)
f"or callable. Received: {self.handle_tool_error}"
)
run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
run_manager.on_tool_error(e)
raise e
else:
run_manager.on_tool_end(str(observation),
color=color,
name=self.name,
**kwargs)
run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
async def arun(
@ -405,10 +399,7 @@ class ChildTool(BaseTool):
)
new_arg_supported = signature(self._arun).parameters.get("run_manager")
run_manager = await callback_manager.on_tool_start(
{
"name": self.name,
"description": self.description
},
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
name=run_name,
@ -417,10 +408,11 @@ class ChildTool(BaseTool):
try:
# We then call the tool on the tool input to get an observation
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (await self._arun(*tool_args,
run_manager=run_manager,
**tool_kwargs) if new_arg_supported
else await self._arun(*tool_args, **tool_kwargs))
observation = (
await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else await self._arun(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
await run_manager.on_tool_error(e)
@ -437,20 +429,19 @@ class ChildTool(BaseTool):
else:
raise ValueError(
"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}")
await run_manager.on_tool_end(str(observation),
color="red",
name=self.name,
**kwargs)
f"or callable. Received: {self.handle_tool_error}"
)
await run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
await run_manager.on_tool_error(e)
raise e
else:
await run_manager.on_tool_end(str(observation),
color=color,
name=self.name,
**kwargs)
await run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str:
@ -477,7 +468,8 @@ class Tool(BaseTool):
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs))
None, partial(self.invoke, input, config, **kwargs)
)
return await super().ainvoke(input, config, **kwargs)
@ -492,8 +484,7 @@ class Tool(BaseTool):
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(self,
tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
# For backwards compatibility. The tool must be run with a single input
@ -512,13 +503,16 @@ class Tool(BaseTool):
) -> Any:
"""Use the tool."""
if self.func:
new_argument_supported = signature(
self.func).parameters.get("callbacks")
return (self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
) if new_argument_supported else self.func(*args, **kwargs))
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
raise NotImplementedError("Tool does not support sync")
async def _arun(
@ -529,27 +523,31 @@ class Tool(BaseTool):
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(
self.coroutine).parameters.get("callbacks")
return (await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
) if new_argument_supported else await self.coroutine(
*args, **kwargs))
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
else:
return await asyncio.get_running_loop().run_in_executor(
None, partial(self._run, run_manager=run_manager, **kwargs),
*args)
None, partial(self._run, run_manager=run_manager, **kwargs), *args
)
# TODO: this is for backwards compatibility, remove in future
def __init__(self, name: str, func: Optional[Callable], description: str,
**kwargs: Any) -> None:
def __init__(
self, name: str, func: Optional[Callable], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(name=name,
func=func,
description=description,
**kwargs)
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
@classmethod
def from_function(
@ -559,8 +557,9 @@ class Tool(BaseTool):
description: str,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
coroutine: Optional[Callable[..., Awaitable[
Any]]] = None, # This is last for compatibility, but should be after func
coroutine: Optional[
Callable[..., Awaitable[Any]]
] = None, # This is last for compatibility, but should be after func
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function."""
@ -598,7 +597,8 @@ class StructuredTool(BaseTool):
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await asyncio.get_running_loop().run_in_executor(
None, partial(self.invoke, input, config, **kwargs))
None, partial(self.invoke, input, config, **kwargs)
)
return await super().ainvoke(input, config, **kwargs)
@ -617,13 +617,16 @@ class StructuredTool(BaseTool):
) -> Any:
"""Use the tool."""
if self.func:
new_argument_supported = signature(
self.func).parameters.get("callbacks")
return (self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
) if new_argument_supported else self.func(*args, **kwargs))
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
raise NotImplementedError("Tool does not support sync")
async def _arun(
@ -634,14 +637,18 @@ class StructuredTool(BaseTool):
) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(
self.coroutine).parameters.get("callbacks")
return (await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
) if new_argument_supported else await self.coroutine(
*args, **kwargs))
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
return await asyncio.get_running_loop().run_in_executor(
None,
partial(self._run, run_manager=run_manager, **kwargs),
@ -698,7 +705,8 @@ class StructuredTool(BaseTool):
description = description or source_function.__doc__
if description is None:
raise ValueError(
"Function must have a docstring if description not provided.")
"Function must have a docstring if description not provided."
)
# Description example:
# search_api(query: str) - Searches the API for the query.
@ -706,8 +714,7 @@ class StructuredTool(BaseTool):
description = f"{name}{sig} - {description.strip()}"
_args_schema = args_schema
if _args_schema is None and infer_schema:
_args_schema = create_schema_from_function(f"{name}Schema",
source_function)
_args_schema = create_schema_from_function(f"{name}Schema", source_function)
return cls(
name=name,
func=func,
@ -755,7 +762,6 @@ def tool(
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(dec_func: Union[Callable, Runnable]) -> BaseTool:
if isinstance(dec_func, Runnable):
runnable = dec_func
@ -763,13 +769,14 @@ def tool(
if runnable.input_schema.schema().get("type") != "object":
raise ValueError("Runnable must have an object schema.")
async def ainvoke_wrapper(callbacks: Optional[Callbacks] = None,
**kwargs: Any) -> Any:
return await runnable.ainvoke(kwargs,
{"callbacks": callbacks})
async def ainvoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return await runnable.ainvoke(kwargs, {"callbacks": callbacks})
def invoke_wrapper(callbacks: Optional[Callbacks] = None,
**kwargs: Any) -> Any:
def invoke_wrapper(
callbacks: Optional[Callbacks] = None, **kwargs: Any
) -> Any:
return runnable.invoke(kwargs, {"callbacks": callbacks})
coroutine = ainvoke_wrapper
@ -802,7 +809,8 @@ def tool(
if func.__doc__ is None:
raise ValueError(
"Function must have a docstring if "
"description not provided and infer_schema is False.")
"description not provided and infer_schema is False."
)
return Tool(
name=tool_name,
func=func,
@ -813,8 +821,7 @@ def tool(
return _make_tool
if len(args) == 2 and isinstance(args[0], str) and isinstance(
args[1], Runnable):
if len(args) == 2 and isinstance(args[0], str) and isinstance(args[1], Runnable):
return _make_with_name(args[0])(args[1])
elif len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name

@ -6,7 +6,6 @@ FuncToolBuilder = Callable[[], ToolBuilder]
class ToolsRegistry:
def __init__(self) -> None:
self.tools: Dict[str, FuncToolBuilder] = {}
@ -19,7 +18,8 @@ class ToolsRegistry:
if isinstance(ret, tool):
return ret
raise ValueError(
"Tool builder {} did not return a Tool instance".format(tool_name))
"Tool builder {} did not return a Tool instance".format(tool_name)
)
def list_tools(self) -> List[str]:
return list(self.tools.keys())
@ -29,7 +29,6 @@ tools_registry = ToolsRegistry()
def register(tool_name):
def decorator(tool: FuncToolBuilder):
tools_registry.register(tool_name, tool)
return tool

@ -118,19 +118,14 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
# Most of the time it doesn't matter, but we should figure out why it happens frequently with:
# applescript
yield {"output": traceback.format_exc()}
yield {
"output": f"Retrying... ({retry_count}/{max_retries})"
}
yield {"output": f"Retrying... ({retry_count}/{max_retries})"}
yield {"output": "Restarting process."}
self.start_process()
retry_count += 1
if retry_count > max_retries:
yield {
"output":
"Maximum retries reached. Could not execute code."
}
yield {"output": "Maximum retries reached. Could not execute code."}
return
while True:
@ -139,8 +134,7 @@ class SubprocessCodeInterpreter(BaseCodeInterpreter):
else:
time.sleep(0.1)
try:
output = self.output_queue.get(
timeout=0.3) # Waits for 0.3 seconds
output = self.output_queue.get(timeout=0.3) # Waits for 0.3 seconds
yield output
except queue.Empty:
if self.done.is_set():

@ -6,7 +6,6 @@ import warnings
def log_decorator(func):
def wrapper(*args, **kwargs):
logging.info(f"Entering {func.__name__}")
result = func(*args, **kwargs)
@ -17,7 +16,6 @@ def log_decorator(func):
def error_decorator(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
@ -29,22 +27,18 @@ def error_decorator(func):
def timing_decorator(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
logging.info(
f"{func.__name__} executed in {end_time - start_time} seconds")
logging.info(f"{func.__name__} executed in {end_time - start_time} seconds")
return result
return wrapper
def retry_decorator(max_retries=5):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
for _ in range(max_retries):
@ -83,20 +77,16 @@ def synchronized_decorator(func):
def deprecated_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
warnings.warn(f"{func.__name__} is deprecated",
category=DeprecationWarning)
warnings.warn(f"{func.__name__} is deprecated", category=DeprecationWarning)
return func(*args, **kwargs)
return wrapper
def validate_inputs_decorator(validator):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if not validator(*args, **kwargs):

@ -5,8 +5,6 @@ T = TypeVar("T")
def execute_futures_dict(fs_dict: dict[str, futures.Future[T]]) -> dict[str, T]:
futures.wait(fs_dict.values(),
timeout=None,
return_when=futures.ALL_COMPLETED)
futures.wait(fs_dict.values(), timeout=None, return_when=futures.ALL_COMPLETED)
return {key: future.result() for key, future in fs_dict.items()}

@ -4,7 +4,8 @@ import hashlib
def dataframe_to_hash(dataframe: pd.DataFrame) -> str:
return hashlib.sha256(
pd.util.hash_pandas_object(dataframe, index=True).values).hexdigest()
pd.util.hash_pandas_object(dataframe, index=True).values
).hexdigest()
def str_to_hash(text: str, hash_algorithm: str = "sha256") -> str:

@ -51,16 +51,16 @@ def get_new_image_name(org_img_name, func_name="update"):
if len(name_split) == 1:
most_org_file_name = name_split[0]
recent_prev_file_name = name_split[0]
new_file_name = "{}_{}_{}_{}.png".format(this_new_uuid, func_name,
recent_prev_file_name,
most_org_file_name)
new_file_name = "{}_{}_{}_{}.png".format(
this_new_uuid, func_name, recent_prev_file_name, most_org_file_name
)
else:
assert len(name_split) == 4
most_org_file_name = name_split[3]
recent_prev_file_name = name_split[0]
new_file_name = "{}_{}_{}_{}.png".format(this_new_uuid, func_name,
recent_prev_file_name,
most_org_file_name)
new_file_name = "{}_{}_{}_{}.png".format(
this_new_uuid, func_name, recent_prev_file_name, most_org_file_name
)
return os.path.join(head, new_file_name)
@ -73,16 +73,16 @@ def get_new_dataframe_name(org_img_name, func_name="update"):
if len(name_split) == 1:
most_org_file_name = name_split[0]
recent_prev_file_name = name_split[0]
new_file_name = "{}_{}_{}_{}.csv".format(this_new_uuid, func_name,
recent_prev_file_name,
most_org_file_name)
new_file_name = "{}_{}_{}_{}.csv".format(
this_new_uuid, func_name, recent_prev_file_name, most_org_file_name
)
else:
assert len(name_split) == 4
most_org_file_name = name_split[3]
recent_prev_file_name = name_split[0]
new_file_name = "{}_{}_{}_{}.csv".format(this_new_uuid, func_name,
recent_prev_file_name,
most_org_file_name)
new_file_name = "{}_{}_{}_{}.csv".format(
this_new_uuid, func_name, recent_prev_file_name, most_org_file_name
)
return os.path.join(head, new_file_name)
@ -92,7 +92,6 @@ def get_new_dataframe_name(org_img_name, func_name="update"):
class Code:
def __init__(self, value: int):
self.value = value
@ -101,7 +100,6 @@ class Code:
class Color(Code):
def bg(self) -> "Color":
self.value += 10
return self
@ -148,7 +146,6 @@ class Color(Code):
class Style(Code):
@staticmethod
def reset() -> "Style":
return Style(0)
@ -205,8 +202,7 @@ def dim_multiline(message: str) -> str:
lines = message.split("\n")
if len(lines) <= 1:
return lines[0]
return lines[0] + ANSI("\n... ".join([""] + lines[1:])).to(
Color.black().bright())
return lines[0] + ANSI("\n... ".join([""] + lines[1:])).to(Color.black().bright())
# +=============================> ANSI Ending
@ -217,7 +213,6 @@ STATIC_DIR = "static"
class AbstractUploader(ABC):
@abstractmethod
def upload(self, filepath: str) -> str:
pass
@ -233,9 +228,7 @@ class AbstractUploader(ABC):
class S3Uploader(AbstractUploader):
def __init__(self, accessKey: str, secretKey: str, region: str,
bucket: str):
def __init__(self, accessKey: str, secretKey: str, region: str, bucket: str):
self.accessKey = accessKey
self.secretKey = secretKey
self.region = region
@ -270,7 +263,6 @@ class S3Uploader(AbstractUploader):
class StaticUploader(AbstractUploader):
def __init__(self, server: str, path: Path, endpoint: str):
self.server = server
self.path = path
@ -338,19 +330,16 @@ class FileType(Enum):
class BaseHandler:
def handle(self, filename: str) -> str:
raise NotImplementedError
class FileHandler:
def __init__(self, handlers: Dict[FileType, BaseHandler], path: Path):
self.handlers = handlers
self.path = path
def register(self, filetype: FileType,
handler: BaseHandler) -> "FileHandler":
def register(self, filetype: FileType, handler: BaseHandler) -> "FileHandler":
self.handlers[filetype] = handler
return self
@ -358,8 +347,8 @@ class FileHandler:
filetype = FileType.from_url(url)
data = requests.get(url).content
local_filename = os.path.join(
"file",
str(uuid.uuid4())[0:8] + filetype.to_extension())
"file", str(uuid.uuid4())[0:8] + filetype.to_extension()
)
os.makedirs(os.path.dirname(local_filename), exist_ok=True)
with open(local_filename, "wb") as f:
size = f.write(data)
@ -368,15 +357,17 @@ class FileHandler:
def handle(self, url: str) -> str:
try:
if url.startswith(os.environ.get("SERVER",
"http://localhost:8000")):
if url.startswith(os.environ.get("SERVER", "http://localhost:8000")):
local_filepath = url[
len(os.environ.get("SERVER", "http://localhost:8000")) + 1:]
len(os.environ.get("SERVER", "http://localhost:8000")) + 1 :
]
local_filename = Path("file") / local_filepath.split("/")[-1]
src = self.path / local_filepath
dst = (self.path /
os.environ.get("PLAYGROUND_DIR", "./playground") /
local_filename)
dst = (
self.path
/ os.environ.get("PLAYGROUND_DIR", "./playground")
/ local_filename
)
os.makedirs(os.path.dirname(dst), exist_ok=True)
shutil.copy(src, dst)
else:
@ -386,7 +377,8 @@ class FileHandler:
if FileType.from_url(url) == FileType.IMAGE:
raise Exception(
f"No handler for {FileType.from_url(url)}. "
"Please set USE_GPU to True in env/settings.py")
"Please set USE_GPU to True in env/settings.py"
)
else:
raise Exception(f"No handler for {FileType.from_url(url)}")
return handler.handle(local_filename)
@ -400,17 +392,17 @@ class FileHandler:
class CsvToDataframe(BaseHandler):
def handle(self, filename: str):
df = pd.read_csv(filename)
description = (
f"Dataframe with {len(df)} rows and {len(df.columns)} columns. "
"Columns are: "
f"{', '.join(df.columns)}")
f"{', '.join(df.columns)}"
)
print(
f"\nProcessed CsvToDataframe, Input CSV: {filename}, Output Description:"
f" {description}")
f" {description}"
)
return DATAFRAME_PROMPT.format(filename=filename,
description=description)
return DATAFRAME_PROMPT.format(filename=filename, description=description)

@ -7,6 +7,5 @@ def extract_code_in_backticks_in_string(message: str) -> str:
"""
pattern = r"`` ``(.*?)`` " # Non-greedy match between six backticks
match = re.search(pattern, message,
re.DOTALL) # re.DOTALL to match newline chars
match = re.search(pattern, message, re.DOTALL) # re.DOTALL to match newline chars
return match.group(1).strip() if match else None

@ -49,12 +49,16 @@ def get_input(
"""
Multiline input function.
"""
return (session.prompt(
completer=completer,
multiline=True,
auto_suggest=AutoSuggestFromHistory(),
key_bindings=key_bindings,
) if session else prompt(multiline=True))
return (
session.prompt(
completer=completer,
multiline=True,
auto_suggest=AutoSuggestFromHistory(),
key_bindings=key_bindings,
)
if session
else prompt(multiline=True)
)
async def get_input_async(
@ -64,11 +68,15 @@ async def get_input_async(
"""
Multiline input function.
"""
return (await session.prompt_async(
completer=completer,
multiline=True,
auto_suggest=AutoSuggestFromHistory(),
) if session else prompt(multiline=True))
return (
await session.prompt_async(
completer=completer,
multiline=True,
auto_suggest=AutoSuggestFromHistory(),
)
if session
else prompt(multiline=True)
)
def get_filtered_keys_from_object(obj: object, *keys: str) -> any:
@ -86,7 +94,9 @@ def get_filtered_keys_from_object(obj: object, *keys: str) -> any:
return {key for key in class_keys if key not in keys[1:]}
# Check if all passed keys are valid
if invalid_keys := set(keys) - class_keys:
raise ValueError(f"Invalid keys: {invalid_keys}",)
raise ValueError(
f"Invalid keys: {invalid_keys}",
)
# Only return specified keys that are in class_keys
return {key for key in keys if key in class_keys}
@ -114,8 +124,8 @@ def random_int(min: int, max: int) -> int:
if __name__ == "__main__":
logging.basicConfig(
format=
"%(asctime)s - %(name)s - %(levelname)s - %(funcName)s - %(message)s",)
format="%(asctime)s - %(name)s - %(levelname)s - %(funcName)s - %(message)s",
)
log = logging.getLogger(__name__)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save