From 7e097886604709bfd2a12498391cfd58f0f0d7c6 Mon Sep 17 00:00:00 2001 From: Kye Date: Sun, 16 Jul 2023 14:16:03 -0400 Subject: [PATCH] clean up initialize --- swarms/agents/boss/BossNode.py | 57 ++++++++++++++++++++++++++-------- 1 file changed, 44 insertions(+), 13 deletions(-) diff --git a/swarms/agents/boss/BossNode.py b/swarms/agents/boss/BossNode.py index 92c877fc..5b85b05e 100644 --- a/swarms/agents/boss/BossNode.py +++ b/swarms/agents/boss/BossNode.py @@ -1,7 +1,8 @@ -from swarms.tools.agent_tools import * from pydantic import ValidationError import logging +from swarms.tools.agent_tools import * + logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # ---------- Boss Node ---------- @@ -45,6 +46,21 @@ class BossNode: except Exception as e: logging.error(f"Failed to initialize vector store: {e}") return None + + def initialize_llm(self, llm_class, temperature=0.5): + """ + Init LLM + + Params: + llm_class(class): The Language model class. Default is OpenAI. + temperature (float): The Temperature for the language model. Default is 0.5 + """ + try: + # Initialize language model + return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) + except Exception as e: + logging.error(f"Failed to initialize language model: {e}") + def create_task(self, objective): @@ -71,21 +87,36 @@ class BossNode: -def boss_node(objective, api_key=None, llm=None, vectorstore=None, agent_executor=None, max_iterations=10): -#wrapper function to initialize and use Bossnode with given parameters - #api keys can be passed as an argument or set as an env - api_key = api_key or os.getenv("API_KEY") +# from swarms import BossNode, OpenAI, LLMChain, Tool, ZeroShotAgent, AgentExecutor, PromptTemplate + +def boss_node(objective, api_key=None, vectorstore=None, worker_node=None, llm_class=OpenAI, max_iterations=5, verbose=False): + """ + Wrapper function to initialize and use BossNode with given parameters. + API key can be passed as argument or set as an environment variable. + """ + api_key = api_key or os.getenv('API_KEY') if not api_key: - raise ValueError("API key must be providef either as argument as an env named 'api_key'") - - if not llm: - raise ValueError("Language model must be provided") - if not vectorstore: - raise ValueError("Vectorstore must be provided") - if not agent_executor: - raise ValueError('Agent Executor must be provided') + raise ValueError("API key must be provided either as argument or as an environment variable named 'API_KEY'.") + + llm = BossNode.initialize_llm(llm_class) # This function should be defined elsewhere + + todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating a worker to help you accomplish your task. Rate every task on the importance of it's probability to complete the main objective on a scale from 0 to 1, an integer. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn a worker agent after creating a plan and pass the objective and plan to the worker agent.") + todo_chain = LLMChain(llm=llm, prompt=todo_prompt) + + tools = [ + Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for your objective. Note create a todo list then assign a ranking from 0.0 to 1.0 to each task, then sort the tasks based on the tasks most likely to achieve the objective. The Output: a todo list for that objective with rankings for each step from 0.1 Please be very clear what the objective is!"), + worker_node + ] + suffix = """Question: {task}\n{agent_scratchpad}""" + prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """ + prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],) + llm_chain = LLMChain(llm=llm, prompt=prompt) + agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools]) + + agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose) + boss = BossNode(llm, vectorstore, agent_executor, max_iterations) task = boss.create_task(objective) boss.execute_task(task)