commit
82681bee15
@ -1,26 +1,85 @@
|
||||
from swarms import Agent, OpenAIChat
|
||||
"""
|
||||
* WORKING
|
||||
|
||||
# Initialize the agent
|
||||
agent = Agent(
|
||||
agent_name="Accounting Agent",
|
||||
system_prompt="Generate a financial report for the company's quarterly earnings.",
|
||||
What this script does:
|
||||
Multi-Agent run to test AgentOps (https://www.agentops.ai/)
|
||||
|
||||
Requirements:
|
||||
1. Create an account on https://www.agentops.ai/ and run pip install agentops
|
||||
2. Add the folowing API key(s) in your .env file:
|
||||
- OPENAI_API_KEY
|
||||
- AGENTOPS_API_KEY
|
||||
3. Go to your agentops dashboard to observe your activity
|
||||
|
||||
"""
|
||||
|
||||
################ Adding project root to PYTHONPATH ################################
|
||||
# If you are running playground examples in the project files directly, use this:
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.insert(0, os.getcwd())
|
||||
|
||||
################ Adding project root to PYTHONPATH ################################
|
||||
|
||||
from swarms import Agent, OpenAIChat, AgentRearrange
|
||||
|
||||
Treasurer = Agent(
|
||||
agent_name="Treasurer",
|
||||
system_prompt="Give your opinion on the cash management.",
|
||||
agent_description=(
|
||||
"Generate a financial report for the company's quarterly earnings."
|
||||
"responsible for managing an organization's financial assets and liquidity. They oversee cash management, "
|
||||
"investment strategies, and financial risk. Key duties include monitoring cash flow, managing bank relationships, "
|
||||
"ensuring sufficient funds for operations, and optimizing returns on short-term investments. Treasurers also often "
|
||||
"handle debt management and may be involved in capital raising activities."
|
||||
),
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
stopping_token="<DONE>",
|
||||
interactive=False,
|
||||
state_save_file_type="json",
|
||||
saved_state_path="accounting_agent.json",
|
||||
agent_ops_on=True,
|
||||
)
|
||||
|
||||
# Run the Agent on a task
|
||||
agent.run(
|
||||
"Generate a financial report for the company's quarterly earnings!"
|
||||
|
||||
CFO = Agent(
|
||||
agent_name="CFO",
|
||||
system_prompt="Give your opinion on the financial performance of the company.",
|
||||
agent_description=(
|
||||
"the top financial executive in an organization, overseeing all financial operations and strategy. Their role is broader than a treasurer's and includes:\n"
|
||||
"Financial planning and analysis\n"
|
||||
"Accounting and financial reporting\n"
|
||||
"Budgeting and forecasting\n"
|
||||
"Strategic financial decision-making\n"
|
||||
"Compliance and risk management\n"
|
||||
"Investor relations (in public companies)\n"
|
||||
"Overseeing the finance and accounting departments"
|
||||
),
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
agent_ops_on=True,
|
||||
)
|
||||
|
||||
swarm = AgentRearrange(
|
||||
agents=[Treasurer, CFO],
|
||||
flow="Treasurer -> CFO",
|
||||
)
|
||||
|
||||
results = swarm.run("Date,Revenue,Expenses,Profit,Cash_Flow,Inventory,Customer_Acquisition_Cost,Customer_Retention_Rate,Marketing_Spend,R&D_Spend,Debt,Assets\n"
|
||||
"2023-01-01,1000000,800000,200000,150000,500000,100,0.85,50000,100000,2000000,5000000\n"
|
||||
"2023-02-01,1050000,820000,230000,180000,520000,95,0.87,55000,110000,1950000,5100000\n"
|
||||
"2023-03-01,1100000,850000,250000,200000,530000,90,0.88,60000,120000,1900000,5200000\n"
|
||||
"2023-04-01,1200000,900000,300000,250000,550000,85,0.90,70000,130000,1850000,5400000\n"
|
||||
"2023-05-01,1300000,950000,350000,300000,580000,80,0.92,80000,140000,1800000,5600000\n"
|
||||
"2023-06-01,1400000,1000000,400000,350000,600000,75,0.93,90000,150000,1750000,5800000\n"
|
||||
"2023-07-01,1450000,1050000,400000,320000,620000,78,0.91,95000,160000,1700000,5900000\n"
|
||||
"2023-08-01,1500000,1100000,400000,300000,650000,80,0.90,100000,170000,1650000,6000000\n"
|
||||
"2023-09-01,1550000,1150000,400000,280000,680000,82,0.89,105000,180000,1600000,6100000\n"
|
||||
"2023-10-01,1600000,1200000,400000,260000,700000,85,0.88,110000,190000,1550000,6200000\n"
|
||||
"2023-11-01,1650000,1250000,400000,240000,720000,88,0.87,115000,200000,1500000,6300000\n"
|
||||
"2023-12-01,1700000,1300000,400000,220000,750000,90,0.86,120000,210000,1450000,6400000\n"
|
||||
"2024-01-01,1500000,1200000,300000,180000,780000,95,0.84,100000,180000,1500000,6300000\n"
|
||||
"2024-02-01,1550000,1220000,330000,200000,760000,92,0.85,105000,185000,1480000,6350000\n"
|
||||
"2024-03-01,1600000,1240000,360000,220000,740000,89,0.86,110000,190000,1460000,6400000\n"
|
||||
"2024-04-01,1650000,1260000,390000,240000,720000,86,0.87,115000,195000,1440000,6450000\n"
|
||||
"2024-05-01,1700000,1280000,420000,260000,700000,83,0.88,120000,200000,1420000,6500000\n"
|
||||
"2024-06-01,1750000,1300000,450000,280000,680000,80,0.89,125000,205000,1400000,6550000"
|
||||
)
|
@ -0,0 +1,58 @@
|
||||
"""
|
||||
* WORKING
|
||||
|
||||
What this script does:
|
||||
Simple agent run to test AgentOps to record tool actions (https://www.agentops.ai/)
|
||||
|
||||
Requirements:
|
||||
1. Create an account on https://www.agentops.ai/ and run pip install agentops
|
||||
2. Add the folowing API key(s) in your .env file:
|
||||
- OPENAI_API_KEY
|
||||
- AGENTOPS_API_KEY
|
||||
3. Go to your agentops dashboard to observe your activity
|
||||
|
||||
"""
|
||||
|
||||
################ Adding project root to PYTHONPATH ################################
|
||||
# If you are running playground examples in the project files directly, use this:
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.insert(0, os.getcwd())
|
||||
|
||||
################ Adding project root to PYTHONPATH ################################
|
||||
|
||||
|
||||
from swarms import Agent, OpenAIChat
|
||||
from agentops import record_function
|
||||
|
||||
# Add agentops decorator on your tools
|
||||
@record_function("length_checker")
|
||||
def length_checker(string: str) -> int:
|
||||
"""
|
||||
For a given string it returns the length of the string.
|
||||
|
||||
Args:
|
||||
string (str): string to check the length of
|
||||
|
||||
Returns:
|
||||
int: length of the string
|
||||
"""
|
||||
return len(string)
|
||||
|
||||
agent1 = Agent(
|
||||
agent_name="lengther",
|
||||
system_prompt="return the length of the string",
|
||||
agent_description=(
|
||||
"For a given string it calls the function length_checker to return the length of the string."
|
||||
),
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
agent_ops_on=True,
|
||||
tools=[length_checker],
|
||||
execute_tool=True,
|
||||
)
|
||||
|
||||
|
||||
agent1.run("hello")
|
Loading…
Reference in new issue