parent
c7648510ff
commit
89dffeb46c
@ -1,24 +1,35 @@
|
||||
from swarms.models import OpenAIChat
|
||||
from swarms import Worker
|
||||
from swarms.prompts import PRODUCT_AGENT_PROMPT
|
||||
from swarms.structs import Flow
|
||||
|
||||
api_key = ""
|
||||
|
||||
# Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
|
||||
llm = OpenAIChat(
|
||||
# model_name="gpt-4"
|
||||
openai_api_key=api_key,
|
||||
temperature=0.5,
|
||||
#max_tokens=100,
|
||||
)
|
||||
|
||||
node = Worker(
|
||||
## Initialize the workflow
|
||||
flow = Flow(
|
||||
llm=llm,
|
||||
ai_name="Optimus Prime",
|
||||
openai_api_key=api_key,
|
||||
ai_role=PRODUCT_AGENT_PROMPT,
|
||||
external_tools=None,
|
||||
human_in_the_loop=False,
|
||||
temperature=0.5,
|
||||
max_loops=1,
|
||||
dashboard=True,
|
||||
# stopping_condition=None, # You can define a stopping condition as needed.
|
||||
# loop_interval=1,
|
||||
# retry_attempts=3,
|
||||
# retry_interval=1,
|
||||
# interactive=False, # Set to 'True' for interactive mode.
|
||||
# dynamic_temperature=False, # Set to 'True' for dynamic temperature handling.
|
||||
)
|
||||
|
||||
task = "Locate 5 trending topics on healthy living, locate a website like NYTimes, and then generate an image of people doing those topics."
|
||||
response = node.run(task)
|
||||
print(response)
|
||||
# out = flow.load_state("flow_state.json")
|
||||
# temp = flow.dynamic_temperature()
|
||||
# filter = flow.add_response_filter("Trump")
|
||||
out = flow.run("Generate a 10,000 word blog on health and wellness.")
|
||||
# out = flow.validate_response(out)
|
||||
# out = flow.analyze_feedback(out)
|
||||
# out = flow.print_history_and_memory()
|
||||
# out = flow.save_state("flow_state.json")
|
||||
print(out)
|
||||
|
@ -1,34 +0,0 @@
|
||||
from swarms.models import OpenAIChat
|
||||
from swarms.structs import Flow
|
||||
|
||||
api_key = ""
|
||||
|
||||
# Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
|
||||
llm = OpenAIChat(
|
||||
openai_api_key=api_key,
|
||||
temperature=0.5,
|
||||
max_tokens=3000,
|
||||
)
|
||||
|
||||
## Initialize the workflow
|
||||
flow = Flow(
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
dashboard=True,
|
||||
# stopping_condition=None, # You can define a stopping condition as needed.
|
||||
# loop_interval=1,
|
||||
# retry_attempts=3,
|
||||
# retry_interval=1,
|
||||
# interactive=False, # Set to 'True' for interactive mode.
|
||||
# dynamic_temperature=False, # Set to 'True' for dynamic temperature handling.
|
||||
)
|
||||
|
||||
# out = flow.load_state("flow_state.json")
|
||||
# temp = flow.dynamic_temperature()
|
||||
# filter = flow.add_response_filter("Trump")
|
||||
out = flow.run("Generate a 10,000 word blog on health and wellness.")
|
||||
# out = flow.validate_response(out)
|
||||
# out = flow.analyze_feedback(out)
|
||||
# out = flow.print_history_and_memory()
|
||||
# out = flow.save_state("flow_state.json")
|
||||
print(out)
|
Loading…
Reference in new issue