diff --git a/README.md b/README.md index 38ad6098..cb382c4c 100644 --- a/README.md +++ b/README.md @@ -447,46 +447,29 @@ A Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our m - Reliable, this simple system will always provide responses you want. ```python -import os - -from dotenv import load_dotenv +from swarms import Agent, Anthropic -from swarms import Conversation, OpenAIChat -conv = Conversation( - time_enabled=True, +## Initialize the workflow +agent = Agent( + agent_name="Transcript Generator", + agent_description=( + "Generate a transcript for a youtube video on what swarms" + " are!" + ), + llm=Anthropic(), + max_loops=3, + autosave=True, + dashboard=False, + streaming_on=True, + verbose=True, + stopping_token="", + interactive=True, # Set to True ) -# Load the environment variables -load_dotenv() - -# Get the API key from the environment -api_key = os.environ.get("OPENAI_API_KEY") +# Run the workflow on a task +agent("Generate a transcript for a youtube video on what swarms are!") -# Initialize the language model -llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4") - - -# Run the language model in a loop -def interactive_conversation(llm): - conv = Conversation() - while True: - user_input = input("User: ") - conv.add("user", user_input) - if user_input.lower() == "quit": - break - task = conv.return_history_as_string() # Get the conversation history - out = llm(task) - conv.add("assistant", out) - print( - f"Assistant: {out}", - ) - conv.display_conversation() - conv.export_conversation("conversation.txt") - - -# Replace with your LLM instance -interactive_conversation(llm) ``` @@ -1029,6 +1012,90 @@ autoswarm.run("Analyze these financial data and give me a summary") ``` +## `AgentRearrange` +Inspired by Einops and einsum, this orchestration techniques enables you to map out the relationships between various agents. For example you specify linear and sequential relationships like `a -> a1 -> a2 -> a3` or concurrent relationships where the first agent will send a message to 3 agents all at once: `a -> a1, a2, a3`. You can customize your workflow to mix sequential and concurrent relationships + +```python +from swarms import Agent, Anthropic, AgentRearrange, + +## Initialize the workflow +agent = Agent( + agent_name="t", + agent_description=( + "Generate a transcript for a youtube video on what swarms" + " are!" + ), + system_prompt=( + "Generate a transcript for a youtube video on what swarms" + " are!" + ), + llm=Anthropic(), + max_loops=1, + autosave=True, + dashboard=False, + streaming_on=True, + verbose=True, + stopping_token="", +) + +agent2 = Agent( + agent_name="t1", + agent_description=( + "Generate a transcript for a youtube video on what swarms" + " are!" + ), + llm=Anthropic(), + max_loops=1, + system_prompt="Summarize the transcript", + autosave=True, + dashboard=False, + streaming_on=True, + verbose=True, + stopping_token="", +) + +agent3 = Agent( + agent_name="t2", + agent_description=( + "Generate a transcript for a youtube video on what swarms" + " are!" + ), + llm=Anthropic(), + max_loops=1, + system_prompt="Finalize the transcript", + autosave=True, + dashboard=False, + streaming_on=True, + verbose=True, + stopping_token="", +) + + +# Rearrange the agents +rearrange = AgentRearrange( + agents=[agent, agent2, agent3], + verbose=True, + # custom_prompt="Summarize the transcript", +) + +# Run the workflow on a task +results = rearrange( + # pattern="t -> t1, t2 -> t2", + pattern="t -> t1 -> t2", + default_task=( + "Generate a transcript for a YouTube video on what swarms" + " are!" + ), + t="Generate a transcript for a YouTube video on what swarms are!", + # t2="Summarize the transcript", + # t3="Finalize the transcript", +) +# print(results) + + +``` + + --- ## Documentation diff --git a/devin.py b/devin.py index d97bb399..fb3feb59 100644 --- a/devin.py +++ b/devin.py @@ -7,11 +7,13 @@ Plan -> act in a loop until observation is met - Text Editor - Browser """ -from swarms import Agent, OpenAIChat, tool +from swarms import Agent, Anthropic, tool import subprocess # Model -llm = OpenAIChat() +llm = Anthropic( + temperature=0.1, +) # Tools @@ -37,7 +39,7 @@ def terminal( @tool def browser(query: str): """ - Search the query in the browser. + Search the query in the browser with the `browser` tool. Args: query (str): The query to search in the browser. @@ -58,10 +60,10 @@ agent = Agent( system_prompt=( "Autonomous agent that can interact with humans and other" " agents. Be Helpful and Kind. Use the tools provided to" - " assist the user." + " assist the user. Return all code in markdown format." ), llm=llm, - max_loops=4, + max_loops="auto", autosave=True, dashboard=False, streaming_on=True, @@ -73,5 +75,5 @@ agent = Agent( ) # Run the agent -out = agent("What is the weather today in palo alto?") +out = agent("What is the weather today in palo alto use the browser tool to search for the weather?") print(out) diff --git a/pyproject.toml b/pyproject.toml index 1c630678..d1b8b199 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "4.7.3" +version = "4.7.4" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] diff --git a/swarms/agents/worker_agent.py b/swarms/agents/worker_agent.py index f9ba2094..4331096b 100644 --- a/swarms/agents/worker_agent.py +++ b/swarms/agents/worker_agent.py @@ -138,16 +138,13 @@ class Worker(Agent): ai_role=self.role, tools=self.tools, llm=self.llm, - memory=self.vectorstore.as_retriever( - search_kwargs=self.search_kwargs - ), + # memory = None, human_in_the_loop=self.human_in_the_loop, ) except Exception as error: raise RuntimeError(f"Error setting up agent: {error}") - # @log_decorator @error_decorator @timing_decorator def run(self, task: str = None, *args, **kwargs): @@ -166,7 +163,6 @@ class Worker(Agent): except Exception as error: raise RuntimeError(f"Error while running agent: {error}") - # @log_decorator @error_decorator @timing_decorator def __call__(self, task: str = None, *args, **kwargs): diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index 98019e61..49361dd6 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -24,7 +24,8 @@ from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.data_to_text import data_to_text from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.pdf_to_text import pdf_to_text - +from swarms.tools.exec_tool import execute_tool_by_name +from swarms.tools.function_util import process_tool_docs # Utils # Custom stopping condition @@ -320,8 +321,17 @@ class Agent: memory=self.short_memory.return_history_as_string(), ) - # Append the tools prompt to the sop - self.sop = f"{self.sop}\n{tools_prompt}" + # Append the tools prompt to the short_term_memory + self.short_memory.add( + role=self.agent_name, content=tools_prompt + ) + + # And, add the tool documentation to the memory + for tool in self.tools: + tool_docs = process_tool_docs(tool) + self.short_memory.add( + role=self.agent_name, content=tool_docs + ) # If the long term memory is provided then set the long term memory prompt @@ -607,6 +617,19 @@ class Agent: role=self.agent_name, content=response ) + if self.tools: + # Extract code from markdown + response = extract_code_from_markdown( + response + ) + + # Execute the tool by name + execute_tool_by_name( + response, + self.tools, + stop_token=self.stopping_token, + ) + if self.code_interpreter: extracted_code = ( extract_code_from_markdown(response) @@ -676,8 +699,7 @@ class Agent: # Check stopping conditions if ( - self.stopping_token - and self.stopping_token in response + self.stopping_token in response ): break elif ( @@ -685,13 +707,13 @@ class Agent: and self._check_stopping_condition(response) ): break - elif self.stopping_func and self.stopping_func( + elif self.stopping_func is not None and self.stopping_func( response ): break if self.interactive: - user_input = input("You: ") + user_input = colored(input("You: "), "red") # User-defined exit command if ( diff --git a/swarms/tools/exec_tool.py b/swarms/tools/exec_tool.py index 3ca02dea..2190398a 100644 --- a/swarms/tools/exec_tool.py +++ b/swarms/tools/exec_tool.py @@ -1,4 +1,5 @@ import json +import concurrent.futures import re from abc import abstractmethod from typing import Dict, List, NamedTuple @@ -101,7 +102,46 @@ def execute_tool_by_name( if action.name in tools: tool = tools[action.name] try: - observation = tool.run(action.args) + # Check if multiple tools are used + tool_names = [name for name in tools if name in text] + if len(tool_names) > 1: + # Execute tools concurrently + with concurrent.futures.ThreadPoolExecutor() as executor: + futures = [] + for tool_name in tool_names: + futures.append( + executor.submit( + tools[tool_name].run, action.args + ) + ) + + # Wait for all futures to complete + concurrent.futures.wait(futures) + + # Get results from completed futures + results = [ + future.result() + for future in futures + if future.done() + ] + + # Process results + for result in results: + # Handle errors + if isinstance(result, Exception): + result = ( + f"Error: {str(result)}," + f" {type(result).__name__}, args:" + f" {action.args}" + ) + # Handle successful execution + else: + result = ( + f"Command {tool.name} returned:" + f" {result}" + ) + else: + observation = tool.run(action.args) except ValidationError as e: observation = ( f"Validation Error in args: {str(e)}, args:" @@ -121,5 +161,4 @@ def execute_tool_by_name( "Please refer to the 'COMMANDS' list for available " "commands and only respond in the specified JSON format." ) - return result diff --git a/swarms/tools/function_util.py b/swarms/tools/function_util.py new file mode 100644 index 00000000..ef98f80d --- /dev/null +++ b/swarms/tools/function_util.py @@ -0,0 +1,25 @@ +import inspect + +def process_tool_docs(item): + """ + Process the documentation for a given item. + + Args: + item: The item to process the documentation for. + + Returns: + metadata: The processed metadata containing the item's name, documentation, and source code. + """ + # If item is an instance of a class, get its class + if not inspect.isclass(item) and hasattr(item, '__class__'): + item = item.__class__ + + doc = inspect.getdoc(item) + source = inspect.getsource(item) + is_class = inspect.isclass(item) + item_type = "Class Name" if is_class else "Function Name" + metadata = f"{item_type}: {item.__name__}\n\n" + if doc: + metadata += f"Documentation:\n{doc}\n\n" + metadata += f"\n{source}" + return metadata \ No newline at end of file