parent
20e263cb40
commit
8b3b2fde1e
@ -0,0 +1,36 @@
|
||||
# Import necessary libraries
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from swarms import ToolAgent
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"databricks/dolly-v2-12b"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
|
||||
|
||||
# Define a JSON schema for person's information
|
||||
json_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "number"},
|
||||
"is_student": {"type": "boolean"},
|
||||
"courses": {"type": "array", "items": {"type": "string"}},
|
||||
},
|
||||
}
|
||||
|
||||
# Define the task to generate a person's information
|
||||
task = (
|
||||
"Generate a person's information based on the following schema:"
|
||||
)
|
||||
|
||||
# Create an instance of the ToolAgent class
|
||||
agent = ToolAgent(
|
||||
model=model, tokenizer=tokenizer, json_schema=json_schema
|
||||
)
|
||||
|
||||
# Run the agent to generate the person's information
|
||||
generated_data = agent.run(task)
|
||||
|
||||
# Print the generated data
|
||||
print(generated_data)
|
Loading…
Reference in new issue