From 8d48dcaf2ae4a49b8e7490085681b707080a37c3 Mon Sep 17 00:00:00 2001 From: CI-DEV <154627941+IlumCI@users.noreply.github.com> Date: Sat, 26 Jul 2025 23:48:43 +0300 Subject: [PATCH] Delete docs/swarms/structs/board_of_directors directory --- .../board_of_directors_decision_making.md | 885 ------------- .../board_of_directors_example.md | 466 ------- .../board_of_directors_roles.md | 1151 ----------------- .../board_of_directors_swarm.md | 704 ---------- .../board_of_directors_workflow.md | 908 ------------- .../structs/board_of_directors/index.md | 291 ----- 6 files changed, 4405 deletions(-) delete mode 100644 docs/swarms/structs/board_of_directors/board_of_directors_decision_making.md delete mode 100644 docs/swarms/structs/board_of_directors/board_of_directors_example.md delete mode 100644 docs/swarms/structs/board_of_directors/board_of_directors_roles.md delete mode 100644 docs/swarms/structs/board_of_directors/board_of_directors_swarm.md delete mode 100644 docs/swarms/structs/board_of_directors/board_of_directors_workflow.md delete mode 100644 docs/swarms/structs/board_of_directors/index.md diff --git a/docs/swarms/structs/board_of_directors/board_of_directors_decision_making.md b/docs/swarms/structs/board_of_directors/board_of_directors_decision_making.md deleted file mode 100644 index 22a3cb35..00000000 --- a/docs/swarms/structs/board_of_directors/board_of_directors_decision_making.md +++ /dev/null @@ -1,885 +0,0 @@ -# Board of Directors Decision Making - -The Board of Directors decision-making process is a sophisticated, multi-layered system that ensures comprehensive analysis, balanced consideration, and effective consensus building. This process combines democratic principles with hierarchical authority to achieve optimal outcomes. - -## Decision-Making Framework - -### Overview of the Decision Process - -```mermaid -graph TD - A[Task Analysis] --> B[Expertise Assignment] - B --> C[Individual Analysis] - C --> D[Group Discussion] - D --> E[Proposal Development] - E --> F[Voting Process] - F --> G[Consensus Building] - G --> H{Consensus Achieved?} - H -->|Yes| I[Decision Finalization] - H -->|No| J[Conflict Resolution] - J --> K[Proposal Refinement] - K --> F - I --> L[Execution Planning] - L --> M[Implementation Oversight] - - style A fill:#e3f2fd - style I fill:#c8e6c9 - style H fill:#fff3e0 -``` - -**Diagram Explanation:** -This comprehensive decision-making framework shows the complete process from initial task analysis to final implementation oversight. The process begins with task analysis and expertise assignment, followed by individual analysis where each board member contributes their specialized knowledge. Group discussion facilitates information sharing and debate, leading to proposal development. The voting process and consensus building ensure democratic decision-making, with conflict resolution mechanisms for when consensus cannot be reached. Once consensus is achieved, decisions are finalized and execution planning begins, followed by implementation oversight. - -**Technical Implementation:** -```python -# Example: Decision-making framework implementation -class DecisionMakingFramework: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.decision_history = [] - self.consensus_threshold = config.get("consensus_threshold", 0.7) - self.max_voting_rounds = config.get("max_voting_rounds", 3) - - async def execute_decision_process(self, task): - """Execute the complete decision-making process""" - decision_result = { - "task": task, - "phases": [], - "final_decision": None, - "consensus_achieved": False, - "execution_plan": None - } - - # Phase 1: Task Analysis and Expertise Assignment - analysis_phase = await self.analyze_task_and_assign_expertise(task) - decision_result["phases"].append(analysis_phase) - - # Phase 2: Individual Analysis - individual_analysis = await self.conduct_individual_analysis(task, analysis_phase["expertise_assignments"]) - decision_result["phases"].append(individual_analysis) - - # Phase 3: Group Discussion - group_discussion = await self.facilitate_group_discussion(individual_analysis) - decision_result["phases"].append(group_discussion) - - # Phase 4: Proposal Development - proposal_development = await self.develop_proposals(group_discussion) - decision_result["phases"].append(proposal_development) - - # Phase 5: Voting and Consensus Building - consensus_result = await self.build_consensus(proposal_development["proposals"]) - decision_result["phases"].append(consensus_result) - - # Phase 6: Decision Finalization - if consensus_result["consensus_achieved"]: - finalization = await self.finalize_decision(consensus_result) - decision_result["phases"].append(finalization) - decision_result["final_decision"] = finalization["decision"] - decision_result["consensus_achieved"] = True - else: - # Handle conflict resolution - conflict_resolution = await self.resolve_conflicts(consensus_result) - decision_result["phases"].append(conflict_resolution) - decision_result["final_decision"] = conflict_resolution["decision"] - decision_result["consensus_achieved"] = False - - # Phase 7: Execution Planning - execution_planning = await self.plan_execution(decision_result["final_decision"]) - decision_result["phases"].append(execution_planning) - decision_result["execution_plan"] = execution_planning["plan"] - - # Store decision in history - self.decision_history.append(decision_result) - - return decision_result - - async def analyze_task_and_assign_expertise(self, task): - """Analyze task and assign expertise areas to board members""" - # Analyze task complexity and requirements - task_analysis = await self.analyze_task_complexity(task) - - # Identify required expertise areas - required_expertise = await self.identify_required_expertise(task_analysis) - - # Assign expertise areas to board members - expertise_assignments = await self.assign_expertise_to_members(required_expertise) - - return { - "phase": "task_analysis_and_expertise_assignment", - "task_analysis": task_analysis, - "required_expertise": required_expertise, - "expertise_assignments": expertise_assignments, - "timestamp": datetime.now().isoformat() - } - - async def conduct_individual_analysis(self, task, expertise_assignments): - """Conduct individual analysis by each board member""" - individual_analyses = {} - - for member_role, expertise_areas in expertise_assignments.items(): - member = self.board_members[member_role] - - # Conduct analysis based on assigned expertise - analysis = await member.analyze_task_areas(task, expertise_areas) - - individual_analyses[member_role] = { - "expertise_areas": expertise_areas, - "analysis": analysis, - "recommendations": analysis.get("recommendations", []), - "concerns": analysis.get("concerns", []), - "proposals": analysis.get("proposals", []) - } - - return { - "phase": "individual_analysis", - "analyses": individual_analyses, - "timestamp": datetime.now().isoformat() - } -``` - -## Voting Mechanisms - -### Weighted Voting System - -```mermaid -graph TD - A[Proposal Submission] --> B[Vote Collection] - B --> C[Weight Application] - C --> D[Score Calculation] - D --> E[Threshold Check] - E -->|Above Threshold| F[Consensus Achieved] - E -->|Below Threshold| G[Additional Rounds] - G --> H[Proposal Refinement] - H --> B - - subgraph "Voting Components" - I[Individual Votes] - J[Role Weights] - K[Consensus Threshold] - L[Conflict Resolution] - end - - B --> I - C --> J - E --> K - G --> L -``` - -**Diagram Explanation:** -This diagram illustrates the weighted voting system used by the Board of Directors. The process begins with proposal submission, followed by vote collection from all board members. Each vote is weighted according to the member's role and authority level. Scores are calculated using the weighted voting formula, and results are checked against the consensus threshold. If the threshold is met, consensus is achieved. If not, additional voting rounds with proposal refinement are conducted until consensus is reached or maximum rounds are exceeded. - -**Technical Implementation:** -```python -# Example: Weighted voting system implementation -class WeightedVotingSystem: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.voting_weights = { - "CHAIRMAN": 1.5, - "VICE_CHAIRMAN": 1.2, - "EXECUTIVE_DIRECTOR": 1.5, - "SECRETARY": 1.0, - "TREASURER": 1.0, - "MEMBER": 1.0 - } - self.consensus_threshold = config.get("consensus_threshold", 0.7) - self.max_voting_rounds = config.get("max_voting_rounds", 3) - - async def conduct_weighted_voting(self, proposals): - """Conduct weighted voting on proposals""" - voting_result = { - "rounds": [], - "final_decision": None, - "consensus_achieved": False, - "voting_summary": {} - } - - current_proposals = proposals - round_number = 1 - - while round_number <= self.max_voting_rounds: - # Collect votes from all board members - votes = await self.collect_votes(current_proposals) - - # Apply voting weights - weighted_votes = self.apply_voting_weights(votes) - - # Calculate scores - scores = self.calculate_weighted_scores(weighted_votes, current_proposals) - - # Check consensus threshold - consensus_check = self.check_consensus_threshold(scores) - - round_result = { - "round": round_number, - "votes": votes, - "weighted_votes": weighted_votes, - "scores": scores, - "consensus_achieved": consensus_check["achieved"], - "winning_proposal": consensus_check["winning_proposal"] - } - - voting_result["rounds"].append(round_result) - - if consensus_check["achieved"]: - voting_result["final_decision"] = consensus_check["winning_proposal"] - voting_result["consensus_achieved"] = True - break - - # Refine proposals for next round - current_proposals = await self.refine_proposals(current_proposals, round_result) - round_number += 1 - - # Generate voting summary - voting_result["voting_summary"] = self.generate_voting_summary(voting_result["rounds"]) - - return voting_result - - async def collect_votes(self, proposals): - """Collect votes from all board members""" - votes = {} - - for member_role, member in self.board_members.items(): - # Each member votes on all proposals - member_votes = await member.vote_on_proposals(proposals) - - votes[member_role] = { - "proposal_scores": member_votes["scores"], - "rationale": member_votes["rationale"], - "confidence_level": member_votes.get("confidence_level", 1.0), - "timestamp": datetime.now().isoformat() - } - - return votes - - def apply_voting_weights(self, votes): - """Apply voting weights to member votes""" - weighted_votes = {} - - for member_role, vote_data in votes.items(): - weight = self.voting_weights.get(member_role, 1.0) - - weighted_scores = {} - for proposal_id, score in vote_data["proposal_scores"].items(): - weighted_scores[proposal_id] = score * weight - - weighted_votes[member_role] = { - "original_scores": vote_data["proposal_scores"], - "weighted_scores": weighted_scores, - "weight": weight, - "rationale": vote_data["rationale"], - "confidence_level": vote_data["confidence_level"] - } - - return weighted_votes - - def calculate_weighted_scores(self, weighted_votes, proposals): - """Calculate final weighted scores for each proposal""" - proposal_scores = {} - - for proposal in proposals: - proposal_id = proposal["id"] - total_weighted_score = 0 - total_weight = 0 - vote_count = 0 - - for member_role, vote_data in weighted_votes.items(): - if proposal_id in vote_data["weighted_scores"]: - weighted_score = vote_data["weighted_scores"][proposal_id] - weight = vote_data["weight"] - - total_weighted_score += weighted_score - total_weight += weight - vote_count += 1 - - # Calculate average weighted score - if total_weight > 0: - final_score = total_weighted_score / total_weight - else: - final_score = 0 - - proposal_scores[proposal_id] = { - "final_score": final_score, - "total_weight": total_weight, - "vote_count": vote_count, - "consensus_percentage": final_score - } - - return proposal_scores - - def check_consensus_threshold(self, scores): - """Check if any proposal meets the consensus threshold""" - best_proposal = None - best_score = 0 - - for proposal_id, score_data in scores.items(): - if score_data["final_score"] > best_score: - best_score = score_data["final_score"] - best_proposal = proposal_id - - consensus_achieved = best_score >= self.consensus_threshold - - return { - "achieved": consensus_achieved, - "winning_proposal": best_proposal if consensus_achieved else None, - "best_score": best_score, - "threshold": self.consensus_threshold - } -``` - -## Consensus Building Process - -### Multi-Round Consensus Building - -```mermaid -flowchart TD - A[Initial Proposals] --> B[Round 1 Voting] - B --> C[Score Calculation] - C --> D{Consensus?} - D -->|Yes| E[Consensus Achieved] - D -->|No| F[Proposal Refinement] - F --> G[Round 2 Voting] - G --> H[Score Calculation] - H --> I{Consensus?} - I -->|Yes| J[Consensus Achieved] - I -->|No| K[Final Round] - K --> L[Round 3 Voting] - L --> M[Score Calculation] - M --> N{Consensus?} - N -->|Yes| O[Consensus Achieved] - N -->|No| P[Authority Decision] - - subgraph "Consensus Building Elements" - Q[Discussion Facilitation] - R[Conflict Resolution] - S[Proposal Synthesis] - T[Mediation Process] - end - - F --> Q - F --> R - F --> S - K --> T -``` - -**Diagram Explanation:** -This flowchart shows the multi-round consensus building process used by the Board of Directors. The process begins with initial proposals and proceeds through multiple voting rounds. After each round, scores are calculated and consensus is checked. If consensus is not achieved, proposals are refined through discussion facilitation, conflict resolution, proposal synthesis, and mediation processes. The process continues for up to three rounds, after which authority decision-making is used if consensus still cannot be reached. - -**Technical Implementation:** -```python -# Example: Consensus building system -class ConsensusBuildingSystem: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.max_rounds = config.get("max_consensus_rounds", 3) - self.consensus_threshold = config.get("consensus_threshold", 0.7) - self.discussion_facilitator = board_members.get("CHAIRMAN") - - async def build_consensus(self, initial_proposals): - """Build consensus through multiple rounds""" - consensus_result = { - "rounds": [], - "consensus_achieved": False, - "final_proposal": None, - "authority_decision": None - } - - current_proposals = initial_proposals - round_number = 1 - - while round_number <= self.max_rounds: - # Conduct voting round - voting_result = await self.conduct_voting_round(current_proposals, round_number) - - # Check consensus - if voting_result["consensus_achieved"]: - consensus_result["rounds"].append(voting_result) - consensus_result["consensus_achieved"] = True - consensus_result["final_proposal"] = voting_result["winning_proposal"] - break - - # If no consensus and not final round, refine proposals - if round_number < self.max_rounds: - refinement_result = await self.refine_proposals(current_proposals, voting_result) - consensus_result["rounds"].append(voting_result) - current_proposals = refinement_result["refined_proposals"] - else: - # Final round - use authority decision - authority_decision = await self.make_authority_decision(voting_result) - consensus_result["rounds"].append(voting_result) - consensus_result["authority_decision"] = authority_decision - consensus_result["final_proposal"] = authority_decision["selected_proposal"] - - round_number += 1 - - return consensus_result - - async def conduct_voting_round(self, proposals, round_number): - """Conduct a single voting round""" - round_result = { - "round": round_number, - "proposals": proposals, - "votes": {}, - "scores": {}, - "consensus_achieved": False, - "winning_proposal": None - } - - # Collect votes from all board members - for member_role, member in self.board_members.items(): - vote = await member.vote_on_proposals(proposals, round_number) - round_result["votes"][member_role] = vote - - # Calculate weighted scores - weighted_scores = self.calculate_weighted_scores(round_result["votes"], proposals) - round_result["scores"] = weighted_scores - - # Check consensus - consensus_check = self.check_consensus(weighted_scores) - round_result["consensus_achieved"] = consensus_check["achieved"] - round_result["winning_proposal"] = consensus_check["winning_proposal"] - - return round_result - - async def refine_proposals(self, current_proposals, voting_result): - """Refine proposals based on voting results and discussion""" - refinement_result = { - "refined_proposals": [], - "discussion_summary": "", - "conflicts_resolved": [] - } - - # Analyze voting patterns - voting_analysis = self.analyze_voting_patterns(voting_result) - - # Identify areas of disagreement - disagreements = self.identify_disagreements(voting_result) - - # Facilitate discussion to resolve conflicts - discussion_result = await self.facilitate_discussion(disagreements, current_proposals) - refinement_result["discussion_summary"] = discussion_result["summary"] - refinement_result["conflicts_resolved"] = discussion_result["resolved_conflicts"] - - # Synthesize refined proposals - refined_proposals = await self.synthesize_proposals(current_proposals, discussion_result) - refinement_result["refined_proposals"] = refined_proposals - - return refinement_result - - async def facilitate_discussion(self, disagreements, proposals): - """Facilitate discussion to resolve disagreements""" - discussion_result = { - "summary": "", - "resolved_conflicts": [], - "new_insights": [] - } - - # Chairman facilitates discussion - if self.discussion_facilitator: - facilitation_result = await self.discussion_facilitator.facilitate_discussion( - disagreements, proposals - ) - - discussion_result["summary"] = facilitation_result["summary"] - discussion_result["resolved_conflicts"] = facilitation_result["resolved_conflicts"] - discussion_result["new_insights"] = facilitation_result["new_insights"] - - return discussion_result - - async def make_authority_decision(self, final_voting_result): - """Make authority decision when consensus cannot be reached""" - # Chairman makes final decision based on best available information - authority_decision = { - "decision_maker": "CHAIRMAN", - "decision_method": "authority_decision", - "selected_proposal": None, - "rationale": "", - "board_support_level": 0.0 - } - - # Analyze all proposals and select the best one - best_proposal = self.select_best_proposal(final_voting_result["scores"]) - authority_decision["selected_proposal"] = best_proposal["proposal_id"] - authority_decision["rationale"] = best_proposal["rationale"] - authority_decision["board_support_level"] = best_proposal["support_level"] - - return authority_decision -``` - -## Conflict Resolution Mechanisms - -### Structured Conflict Resolution - -```mermaid -graph TD - A[Conflict Identification] --> B[Conflict Analysis] - B --> C[Stakeholder Mapping] - C --> D[Root Cause Analysis] - D --> E[Resolution Strategy] - E --> F[Mediation Process] - F --> G[Compromise Facilitation] - G --> H[Agreement Building] - H --> I[Resolution Implementation] - - subgraph "Conflict Resolution Tools" - J[Mediation Techniques] - K[Compromise Strategies] - L[Consensus Building] - M[Authority Intervention] - end - - F --> J - G --> K - H --> L - I --> M -``` - -**Diagram Explanation:** -This diagram illustrates the structured conflict resolution process used by the Board of Directors. The process begins with conflict identification and proceeds through systematic analysis including stakeholder mapping and root cause analysis. A resolution strategy is developed, followed by mediation processes and compromise facilitation. The process culminates in agreement building and resolution implementation, using various tools including mediation techniques, compromise strategies, consensus building, and authority intervention when necessary. - -**Technical Implementation:** -```python -# Example: Conflict resolution system -class ConflictResolutionSystem: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.mediation_techniques = [ - "active_listening", - "interest_based_negotiation", - "brainstorming", - "consensus_building" - ] - self.resolution_strategies = [ - "compromise", - "collaboration", - "accommodation", - "authority_decision" - ] - - async def resolve_conflicts(self, conflicts, context): - """Resolve conflicts using structured approach""" - resolution_result = { - "conflicts": conflicts, - "resolution_process": [], - "final_resolution": None, - "implementation_plan": None - } - - for conflict in conflicts: - # Step 1: Analyze conflict - conflict_analysis = await self.analyze_conflict(conflict, context) - resolution_result["resolution_process"].append({ - "step": "conflict_analysis", - "conflict_id": conflict["id"], - "analysis": conflict_analysis - }) - - # Step 2: Map stakeholders - stakeholder_mapping = await self.map_stakeholders(conflict, context) - resolution_result["resolution_process"].append({ - "step": "stakeholder_mapping", - "conflict_id": conflict["id"], - "mapping": stakeholder_mapping - }) - - # Step 3: Analyze root causes - root_cause_analysis = await self.analyze_root_causes(conflict, context) - resolution_result["resolution_process"].append({ - "step": "root_cause_analysis", - "conflict_id": conflict["id"], - "analysis": root_cause_analysis - }) - - # Step 4: Develop resolution strategy - resolution_strategy = await self.develop_resolution_strategy( - conflict, conflict_analysis, stakeholder_mapping, root_cause_analysis - ) - resolution_result["resolution_process"].append({ - "step": "resolution_strategy", - "conflict_id": conflict["id"], - "strategy": resolution_strategy - }) - - # Step 5: Implement resolution - resolution_implementation = await self.implement_resolution( - conflict, resolution_strategy - ) - resolution_result["resolution_process"].append({ - "step": "resolution_implementation", - "conflict_id": conflict["id"], - "implementation": resolution_implementation - }) - - # Generate final resolution - resolution_result["final_resolution"] = await self.generate_final_resolution( - resolution_result["resolution_process"] - ) - - # Create implementation plan - resolution_result["implementation_plan"] = await self.create_implementation_plan( - resolution_result["final_resolution"] - ) - - return resolution_result - - async def analyze_conflict(self, conflict, context): - """Analyze the nature and scope of a conflict""" - analysis = { - "conflict_type": self.categorize_conflict(conflict), - "severity_level": self.assess_severity(conflict), - "scope": self.define_scope(conflict), - "impact_assessment": await self.assess_impact(conflict, context), - "urgency_level": self.assess_urgency(conflict) - } - - return analysis - - async def map_stakeholders(self, conflict, context): - """Map stakeholders involved in the conflict""" - stakeholders = { - "primary_stakeholders": [], - "secondary_stakeholders": [], - "influencers": [], - "decision_makers": [] - } - - # Identify stakeholders based on conflict type - if conflict["type"] == "resource_allocation": - stakeholders["primary_stakeholders"] = self.identify_resource_stakeholders(conflict) - elif conflict["type"] == "strategic_direction": - stakeholders["primary_stakeholders"] = self.identify_strategic_stakeholders(conflict) - elif conflict["type"] == "implementation_approach": - stakeholders["primary_stakeholders"] = self.identify_implementation_stakeholders(conflict) - - # Map stakeholder interests and positions - for stakeholder in stakeholders["primary_stakeholders"]: - stakeholder["interests"] = await self.identify_stakeholder_interests(stakeholder, conflict) - stakeholder["position"] = await self.identify_stakeholder_position(stakeholder, conflict) - stakeholder["influence_level"] = self.assess_influence_level(stakeholder) - - return stakeholders - - async def analyze_root_causes(self, conflict, context): - """Analyze root causes of the conflict""" - root_causes = { - "structural_causes": [], - "communication_causes": [], - "resource_causes": [], - "process_causes": [] - } - - # Analyze based on conflict type - if conflict["type"] == "resource_allocation": - root_causes["resource_causes"] = await self.analyze_resource_causes(conflict) - elif conflict["type"] == "strategic_direction": - root_causes["structural_causes"] = await self.analyze_structural_causes(conflict) - elif conflict["type"] == "implementation_approach": - root_causes["process_causes"] = await self.analyze_process_causes(conflict) - - # Identify communication issues - root_causes["communication_causes"] = await self.analyze_communication_causes(conflict) - - return root_causes - - async def develop_resolution_strategy(self, conflict, analysis, stakeholders, root_causes): - """Develop appropriate resolution strategy""" - strategy = { - "approach": self.select_resolution_approach(analysis, stakeholders), - "techniques": self.select_mediation_techniques(conflict, stakeholders), - "timeline": self.estimate_resolution_timeline(analysis), - "resources": self.identify_resolution_resources(analysis), - "success_criteria": self.define_success_criteria(conflict) - } - - return strategy - - async def implement_resolution(self, conflict, strategy): - """Implement the resolution strategy""" - implementation = { - "mediation_process": await self.conduct_mediation(conflict, strategy), - "compromise_facilitation": await self.facilitate_compromise(conflict, strategy), - "agreement_building": await self.build_agreement(conflict, strategy), - "implementation_oversight": await self.oversee_implementation(conflict, strategy) - } - - return implementation -``` - -## Decision Quality Assurance - -### Quality Assessment Framework - -```mermaid -graph TD - A[Decision Made] --> B[Quality Assessment] - B --> C[Completeness Check] - C --> D[Accuracy Verification] - D --> E[Feasibility Analysis] - E --> F[Risk Assessment] - F --> G[Stakeholder Impact] - G --> H[Quality Score] - H --> I{Quality Threshold?} - I -->|Yes| J[Decision Approved] - I -->|No| K[Decision Refinement] - K --> L[Additional Analysis] - L --> B - - subgraph "Quality Metrics" - M[Completeness Score] - N[Accuracy Score] - O[Feasibility Score] - P[Risk Score] - Q[Impact Score] - end - - C --> M - D --> N - E --> O - F --> P - G --> Q -``` - -**Diagram Explanation:** -This diagram shows the quality assessment framework used to ensure high-quality decisions. After a decision is made, it undergoes comprehensive quality assessment including completeness checks, accuracy verification, feasibility analysis, risk assessment, and stakeholder impact evaluation. A quality score is calculated based on these metrics, and the decision is either approved if it meets the quality threshold or sent back for refinement and additional analysis. - -**Technical Implementation:** -```python -# Example: Decision quality assurance system -class DecisionQualityAssurance: - def __init__(self, config): - self.config = config - self.quality_threshold = config.get("quality_threshold", 0.8) - self.quality_metrics = { - "completeness": {"weight": 0.2, "threshold": 0.8}, - "accuracy": {"weight": 0.25, "threshold": 0.85}, - "feasibility": {"weight": 0.2, "threshold": 0.8}, - "risk": {"weight": 0.15, "threshold": 0.7}, - "impact": {"weight": 0.2, "threshold": 0.8} - } - - async def assess_decision_quality(self, decision, context): - """Assess the quality of a decision""" - quality_assessment = { - "decision": decision, - "metrics": {}, - "overall_score": 0.0, - "threshold_met": False, - "recommendations": [] - } - - # Assess completeness - completeness_score = await self.assess_completeness(decision, context) - quality_assessment["metrics"]["completeness"] = completeness_score - - # Assess accuracy - accuracy_score = await self.assess_accuracy(decision, context) - quality_assessment["metrics"]["accuracy"] = accuracy_score - - # Assess feasibility - feasibility_score = await self.assess_feasibility(decision, context) - quality_assessment["metrics"]["feasibility"] = feasibility_score - - # Assess risk - risk_score = await self.assess_risk(decision, context) - quality_assessment["metrics"]["risk"] = risk_score - - # Assess stakeholder impact - impact_score = await self.assess_stakeholder_impact(decision, context) - quality_assessment["metrics"]["impact"] = impact_score - - # Calculate overall score - overall_score = self.calculate_overall_score(quality_assessment["metrics"]) - quality_assessment["overall_score"] = overall_score - - # Check if threshold is met - quality_assessment["threshold_met"] = overall_score >= self.quality_threshold - - # Generate recommendations - quality_assessment["recommendations"] = await self.generate_quality_recommendations( - quality_assessment["metrics"], overall_score - ) - - return quality_assessment - - async def assess_completeness(self, decision, context): - """Assess the completeness of the decision""" - completeness_factors = { - "all_aspects_covered": self.check_aspect_coverage(decision, context), - "stakeholder_consideration": self.check_stakeholder_consideration(decision, context), - "implementation_details": self.check_implementation_details(decision), - "resource_allocation": self.check_resource_allocation(decision), - "timeline_definition": self.check_timeline_definition(decision) - } - - # Calculate completeness score - completeness_score = sum(completeness_factors.values()) / len(completeness_factors) - - return { - "score": completeness_score, - "factors": completeness_factors, - "threshold_met": completeness_score >= self.quality_metrics["completeness"]["threshold"] - } - - async def assess_accuracy(self, decision, context): - """Assess the accuracy of the decision""" - accuracy_factors = { - "data_quality": self.assess_data_quality(decision, context), - "analysis_quality": self.assess_analysis_quality(decision, context), - "assumption_validity": self.assess_assumption_validity(decision, context), - "conclusion_soundness": self.assess_conclusion_soundness(decision, context) - } - - # Calculate accuracy score - accuracy_score = sum(accuracy_factors.values()) / len(accuracy_factors) - - return { - "score": accuracy_score, - "factors": accuracy_factors, - "threshold_met": accuracy_score >= self.quality_metrics["accuracy"]["threshold"] - } - - def calculate_overall_score(self, metrics): - """Calculate overall quality score""" - weighted_score = 0.0 - total_weight = 0.0 - - for metric_name, metric_data in metrics.items(): - weight = self.quality_metrics[metric_name]["weight"] - score = metric_data["score"] - - weighted_score += score * weight - total_weight += weight - - return weighted_score / total_weight if total_weight > 0 else 0.0 -``` - -## Best Practices for Decision Making - -### 1. Structured Approach -- Follow the defined decision-making framework -- Ensure all phases are completed thoroughly -- Document decisions and rationale - -### 2. Inclusive Participation -- Encourage all board members to contribute -- Value diverse perspectives and expertise -- Ensure fair representation in voting - -### 3. Quality Assurance -- Implement quality checkpoints throughout the process -- Assess decision quality before implementation -- Continuously monitor and improve decision-making processes - -### 4. Conflict Management -- Address conflicts promptly and constructively -- Use appropriate resolution strategies -- Maintain focus on organizational objectives - -### 5. Continuous Improvement -- Learn from previous decisions -- Refine decision-making processes based on outcomes -- Adapt to changing circumstances and requirements \ No newline at end of file diff --git a/docs/swarms/structs/board_of_directors/board_of_directors_example.md b/docs/swarms/structs/board_of_directors/board_of_directors_example.md deleted file mode 100644 index 34c5edc3..00000000 --- a/docs/swarms/structs/board_of_directors/board_of_directors_example.md +++ /dev/null @@ -1,466 +0,0 @@ -# Board of Directors Example - -This example demonstrates how to use the Board of Directors swarm feature for democratic decision-making and collective intelligence in multi-agent systems. - -## Overview - -The Board of Directors Swarm provides a sophisticated alternative to single-director architectures by implementing collective decision-making through voting, consensus, and role-based leadership. This example shows how to create and configure a board for strategic decision-making scenarios. - -## Basic Setup - -### 1. Import Required Modules - -```python -from swarms import Agent -from swarms.structs.board_of_directors_swarm import ( - BoardOfDirectorsSwarm, - BoardMember, - BoardMemberRole -) -from swarms.config.board_config import ( - enable_board_feature, - set_decision_threshold, - get_default_board_template -) -``` - -### 2. Enable Board Feature - -```python -# Enable the Board of Directors feature globally -enable_board_feature() - -# Set global decision threshold -set_decision_threshold(0.7) # 70% majority required -``` - -### 3. Create Board Members - -```python -# Create Chairman -chairman = Agent( - agent_name="Chairman", - agent_description="Chairman of the Board responsible for leading meetings and making final decisions", - model_name="gpt-4o-mini", - system_prompt="""You are the Chairman of the Board. Your responsibilities include: -1. Leading board meetings and discussions -2. Facilitating consensus among board members -3. Making final decisions when consensus cannot be reached -4. Ensuring all board members have an opportunity to contribute -5. Maintaining focus on the organization's goals and objectives - -You should be diplomatic, fair, and decisive in your leadership.""" -) - -# Create Vice Chairman -vice_chairman = Agent( - agent_name="Vice-Chairman", - agent_description="Vice Chairman who supports the Chairman and coordinates operations", - model_name="gpt-4o-mini", - system_prompt="""You are the Vice Chairman of the Board. Your responsibilities include: -1. Supporting the Chairman in leading board meetings -2. Coordinating operational activities and implementation -3. Ensuring effective communication between board members -4. Managing day-to-day board operations -5. Stepping in when the Chairman is unavailable - -You should be collaborative, organized, and supportive of the Chairman's leadership.""" -) - -# Create Secretary -secretary = Agent( - agent_name="Secretary", - agent_description="Secretary responsible for documentation and record keeping", - model_name="gpt-4o-mini", - system_prompt="""You are the Secretary of the Board. Your responsibilities include: -1. Documenting all board meetings and decisions -2. Maintaining accurate records and meeting minutes -3. Ensuring proper communication and notifications -4. Managing board documentation and archives -5. Supporting compliance and governance requirements - -You should be detail-oriented, organized, and thorough in your documentation.""" -) - -# Create Treasurer -treasurer = Agent( - agent_name="Treasurer", - agent_description="Treasurer responsible for financial oversight and resource management", - model_name="gpt-4o-mini", - system_prompt="""You are the Treasurer of the Board. Your responsibilities include: -1. Overseeing financial planning and budgeting -2. Monitoring resource allocation and utilization -3. Ensuring financial compliance and accountability -4. Providing financial insights for decision-making -5. Managing financial risk and controls - -You should be financially astute, analytical, and focused on value creation.""" -) - -# Create Executive Director -executive_director = Agent( - agent_name="Executive-Director", - agent_description="Executive Director responsible for strategic planning and operational oversight", - model_name="gpt-4o-mini", - system_prompt="""You are the Executive Director of the Board. Your responsibilities include: -1. Developing and implementing strategic plans -2. Overseeing operational performance and efficiency -3. Leading innovation and continuous improvement -4. Managing stakeholder relationships -5. Ensuring organizational effectiveness - -You should be strategic, results-oriented, and focused on organizational success.""" -) -``` - -### 4. Create BoardMember Objects - -```python -# Create BoardMember objects with roles, voting weights, and expertise areas -board_members = [ - BoardMember( - agent=chairman, - role=BoardMemberRole.CHAIRMAN, - voting_weight=1.5, - expertise_areas=["leadership", "strategy", "governance", "decision_making"] - ), - BoardMember( - agent=vice_chairman, - role=BoardMemberRole.VICE_CHAIRMAN, - voting_weight=1.2, - expertise_areas=["operations", "coordination", "communication", "implementation"] - ), - BoardMember( - agent=secretary, - role=BoardMemberRole.SECRETARY, - voting_weight=1.0, - expertise_areas=["documentation", "compliance", "record_keeping", "communication"] - ), - BoardMember( - agent=treasurer, - role=BoardMemberRole.TREASURER, - voting_weight=1.0, - expertise_areas=["finance", "budgeting", "risk_management", "resource_allocation"] - ), - BoardMember( - agent=executive_director, - role=BoardMemberRole.EXECUTIVE_DIRECTOR, - voting_weight=1.5, - expertise_areas=["strategy", "operations", "innovation", "performance_management"] - ) -] -``` - -### 5. Create Specialized Worker Agents - -```python -# Create specialized worker agents for different types of analysis -research_agent = Agent( - agent_name="Research-Specialist", - agent_description="Expert in market research, data analysis, and trend identification", - model_name="gpt-4o", - system_prompt="""You are a Research Specialist. Your responsibilities include: -1. Conducting comprehensive market research and analysis -2. Identifying trends, opportunities, and risks -3. Gathering and analyzing relevant data -4. Providing evidence-based insights and recommendations -5. Supporting strategic decision-making with research findings - -You should be thorough, analytical, and objective in your research.""" -) - -financial_agent = Agent( - agent_name="Financial-Analyst", - agent_description="Specialist in financial analysis, valuation, and investment assessment", - model_name="gpt-4o", - system_prompt="""You are a Financial Analyst. Your responsibilities include: -1. Conducting financial analysis and valuation -2. Assessing investment opportunities and risks -3. Analyzing financial performance and metrics -4. Providing financial insights and recommendations -5. Supporting financial decision-making - -You should be financially astute, analytical, and focused on value creation.""" -) - -technical_agent = Agent( - agent_name="Technical-Specialist", - agent_description="Expert in technical analysis, feasibility assessment, and implementation planning", - model_name="gpt-4o", - system_prompt="""You are a Technical Specialist. Your responsibilities include: -1. Conducting technical feasibility analysis -2. Assessing implementation requirements and challenges -3. Providing technical insights and recommendations -4. Supporting technical decision-making -5. Planning and coordinating technical implementations - -You should be technically proficient, practical, and solution-oriented.""" -) - -strategy_agent = Agent( - agent_name="Strategy-Specialist", - agent_description="Expert in strategic planning, competitive analysis, and business development", - model_name="gpt-4o", - system_prompt="""You are a Strategy Specialist. Your responsibilities include: -1. Developing strategic plans and initiatives -2. Conducting competitive analysis and market positioning -3. Identifying strategic opportunities and threats -4. Providing strategic insights and recommendations -5. Supporting strategic decision-making - -You should be strategic, forward-thinking, and focused on long-term success.""" -) -``` - -### 6. Initialize the Board of Directors Swarm - -```python -# Initialize the Board of Directors swarm with comprehensive configuration -board_swarm = BoardOfDirectorsSwarm( - name="Executive_Board_Swarm", - description="Executive board with specialized roles for strategic decision-making and collective intelligence", - board_members=board_members, - agents=[research_agent, financial_agent, technical_agent, strategy_agent], - max_loops=3, # Allow multiple iterations for complex analysis - verbose=True, # Enable detailed logging - decision_threshold=0.7, # 70% consensus required - enable_voting=True, # Enable voting mechanisms - enable_consensus=True, # Enable consensus building - max_workers=4, # Maximum parallel workers - output_type="dict" # Return results as dictionary -) -``` - -## Advanced Configuration - -### Custom Board Templates - -You can use pre-configured board templates for common use cases: - -```python -# Get a financial analysis board template -financial_board_template = get_default_board_template("financial_analysis") - -# Get a strategic planning board template -strategic_board_template = get_default_board_template("strategic_planning") - -# Get a technology assessment board template -tech_board_template = get_default_board_template("technology_assessment") -``` - -### Dynamic Role Assignment - -Automatically assign roles based on task requirements: - -```python -# Board members are automatically assigned roles based on expertise -board_swarm = BoardOfDirectorsSwarm( - board_members=board_members, - agents=agents, - auto_assign_roles=True, - role_mapping={ - "financial_analysis": ["Treasurer", "Financial_Member"], - "strategic_planning": ["Chairman", "Executive_Director"], - "technical_assessment": ["Technical_Member", "Executive_Director"], - "research_analysis": ["Research_Member", "Secretary"] - } -) -``` - -### Consensus Optimization - -Configure advanced consensus-building mechanisms: - -```python -# Enable advanced consensus features -board_swarm = BoardOfDirectorsSwarm( - board_members=board_members, - agents=agents, - enable_consensus=True, - consensus_timeout=300, # 5 minutes timeout - min_participation_rate=0.8, # 80% minimum participation - auto_fallback_to_chairman=True, # Chairman can make final decisions - consensus_rounds=3 # Maximum consensus building rounds -) -``` - -## Example Use Cases - -### 1. Strategic Investment Analysis - -```python -# Execute a complex strategic investment analysis -investment_task = """ -Analyze the strategic investment opportunity for a $50M Series B funding round in a -fintech startup. Consider market conditions, competitive landscape, financial projections, -technical feasibility, and strategic fit. Provide comprehensive recommendations including: -1. Investment recommendation (proceed/hold/decline) -2. Valuation analysis and suggested terms -3. Risk assessment and mitigation strategies -4. Strategic value and synergies -5. Implementation timeline and milestones -""" - -result = board_swarm.run(task=investment_task) -print("Investment Analysis Results:") -print(json.dumps(result, indent=2)) -``` - -### 2. Technology Strategy Development - -```python -# Develop a comprehensive technology strategy -tech_strategy_task = """ -Develop a comprehensive technology strategy for a mid-size manufacturing company -looking to digitize operations and implement Industry 4.0 technologies. Consider: -1. Current technology assessment and gaps -2. Technology roadmap and implementation plan -3. Investment requirements and ROI analysis -4. Risk assessment and mitigation strategies -5. Change management and training requirements -6. Competitive positioning and market advantages -""" - -result = board_swarm.run(task=tech_strategy_task) -print("Technology Strategy Results:") -print(json.dumps(result, indent=2)) -``` - -### 3. Market Entry Strategy - -```python -# Develop a market entry strategy for a new product -market_entry_task = """ -Develop a comprehensive market entry strategy for a new AI-powered productivity -software targeting the enterprise market. Consider: -1. Market analysis and opportunity assessment -2. Competitive landscape and positioning -3. Go-to-market strategy and channels -4. Pricing strategy and revenue model -5. Resource requirements and investment needs -6. Risk assessment and mitigation strategies -7. Success metrics and KPIs -""" - -result = board_swarm.run(task=market_entry_task) -print("Market Entry Strategy Results:") -print(json.dumps(result, indent=2)) -``` - -## Monitoring and Analysis - -### Board Performance Metrics - -```python -# Get board performance metrics -board_summary = board_swarm.get_board_summary() -print("Board Summary:") -print(f"Board Name: {board_summary['board_name']}") -print(f"Total Board Members: {board_summary['total_members']}") -print(f"Total Worker Agents: {board_summary['total_agents']}") -print(f"Decision Threshold: {board_summary['decision_threshold']}") -print(f"Max Loops: {board_summary['max_loops']}") - -# Display board member details -print("\nBoard Members:") -for member in board_summary['members']: - print(f"- {member['name']} (Role: {member['role']}, Weight: {member['voting_weight']})") - print(f" Expertise: {', '.join(member['expertise_areas'])}") - -# Display worker agent details -print("\nWorker Agents:") -for agent in board_summary['agents']: - print(f"- {agent['name']}: {agent['description']}") -``` - -### Decision Analysis - -```python -# Analyze decision-making patterns -if hasattr(result, 'get') and callable(result.get): - conversation_history = result.get('conversation_history', []) - - print(f"\nDecision Analysis:") - print(f"Total Messages: {len(conversation_history)}") - - # Count board member contributions - board_contributions = {} - for msg in conversation_history: - if 'Board' in msg.get('role', ''): - member_name = msg.get('agent_name', 'Unknown') - board_contributions[member_name] = board_contributions.get(member_name, 0) + 1 - - print(f"Board Member Contributions:") - for member, count in board_contributions.items(): - print(f"- {member}: {count} contributions") - - # Count agent executions - agent_executions = {} - for msg in conversation_history: - if any(agent.agent_name in msg.get('role', '') for agent in [research_agent, financial_agent, technical_agent, strategy_agent]): - agent_name = msg.get('agent_name', 'Unknown') - agent_executions[agent_name] = agent_executions.get(agent_name, 0) + 1 - - print(f"\nAgent Executions:") - for agent, count in agent_executions.items(): - print(f"- {agent}: {count} executions") -``` - -## Best Practices - -### 1. Role Definition -- Clearly define responsibilities for each board member -- Ensure expertise areas align with organizational needs -- Balance voting weights based on role importance - -### 2. Task Formulation -- Provide clear, specific task descriptions -- Include relevant context and constraints -- Specify expected outputs and deliverables - -### 3. Consensus Building -- Allow adequate time for discussion and consensus -- Encourage diverse perspectives and viewpoints -- Use structured decision-making processes - -### 4. Performance Monitoring -- Track decision quality and outcomes -- Monitor board member participation -- Analyze agent utilization and effectiveness - -### 5. Continuous Improvement -- Learn from each execution cycle -- Refine board composition and roles -- Optimize decision thresholds and processes - -## Troubleshooting - -### Common Issues - -1. **Consensus Failures**: Lower decision threshold or increase timeout -2. **Role Conflicts**: Ensure clear role definitions and responsibilities -3. **Agent Coordination**: Verify agent communication and task distribution -4. **Performance Issues**: Monitor resource usage and optimize configurations - -### Debug Commands - -```python -# Enable detailed logging -import logging -logging.basicConfig(level=logging.DEBUG) - -# Check board configuration -print(board_swarm.get_board_summary()) - -# Test individual components -for member in board_members: - print(f"Testing {member.agent.agent_name}...") - response = member.agent.run("Test message") - print(f"Response: {response[:100]}...") -``` - -## Conclusion - -This example demonstrates the comprehensive capabilities of the Board of Directors Swarm for democratic decision-making and collective intelligence. The feature provides a sophisticated alternative to single-director architectures, enabling more robust and well-considered decisions through voting, consensus, and role-based leadership. - -For more information, see the [Board of Directors Documentation](index.md) and [Configuration Guide](../config/board_config.md). \ No newline at end of file diff --git a/docs/swarms/structs/board_of_directors/board_of_directors_roles.md b/docs/swarms/structs/board_of_directors/board_of_directors_roles.md deleted file mode 100644 index 6f607c37..00000000 --- a/docs/swarms/structs/board_of_directors/board_of_directors_roles.md +++ /dev/null @@ -1,1151 +0,0 @@ -# Board of Directors Roles - -The Board of Directors system implements a hierarchical structure with clearly defined roles, responsibilities, and voting weights. Each role is designed to contribute specific expertise and authority to the decision-making process, ensuring comprehensive analysis and balanced decision-making. - -## Role Hierarchy - -```mermaid -graph TD - A[Chairman
Voting Weight: 1.5
Final Authority] --> B[Vice Chairman
Voting Weight: 1.2
Operational Support] - A --> C[Executive Director
Voting Weight: 1.5
Strategic Planning] - A --> D[Secretary
Voting Weight: 1.0
Documentation] - A --> E[Treasurer
Voting Weight: 1.0
Financial Oversight] - A --> F[Member
Voting Weight: 1.0
Expertise Contribution] - - B --> G[Operational Coordination] - C --> H[Strategic Initiatives] - D --> I[Record Keeping] - E --> J[Resource Management] - F --> K[Specialized Input] - - style A fill:#ffeb3b - style B fill:#2196f3 - style C fill:#4caf50 - style D fill:#ff9800 - style E fill:#9c27b0 - style F fill:#607d8b -``` - -**Diagram Explanation:** -This hierarchical diagram shows the organizational structure of the Board of Directors, with the Chairman at the top having final authority and the highest voting weight (1.5). The Chairman directly supervises all other board members, each with specific responsibilities and voting weights. The Vice Chairman and Executive Director have elevated voting weights (1.2 and 1.5 respectively) due to their senior positions, while the Secretary, Treasurer, and general Members have standard voting weights (1.0). Each role contributes specialized expertise to different aspects of the decision-making process. - -**Technical Implementation:** -```python -# Example: Role hierarchy implementation -class BoardRoleHierarchy: - def __init__(self): - self.roles = { - "CHAIRMAN": { - "voting_weight": 1.5, - "authority_level": "FINAL", - "supervises": ["VICE_CHAIRMAN", "EXECUTIVE_DIRECTOR", "SECRETARY", "TREASURER", "MEMBER"], - "responsibilities": ["leadership", "final_decision", "consensus_facilitation"], - "override_capability": True - }, - "VICE_CHAIRMAN": { - "voting_weight": 1.2, - "authority_level": "SENIOR", - "supervises": ["MEMBER"], - "responsibilities": ["operational_support", "coordination", "implementation"], - "backup_for": "CHAIRMAN" - }, - "EXECUTIVE_DIRECTOR": { - "voting_weight": 1.5, - "authority_level": "SENIOR", - "supervises": ["MEMBER"], - "responsibilities": ["strategic_planning", "execution_oversight", "performance_management"], - "strategic_authority": True - }, - "SECRETARY": { - "voting_weight": 1.0, - "authority_level": "STANDARD", - "supervises": [], - "responsibilities": ["documentation", "record_keeping", "communication"], - "administrative_authority": True - }, - "TREASURER": { - "voting_weight": 1.0, - "authority_level": "STANDARD", - "supervises": [], - "responsibilities": ["financial_oversight", "resource_management", "budget_control"], - "financial_authority": True - }, - "MEMBER": { - "voting_weight": 1.0, - "authority_level": "STANDARD", - "supervises": [], - "responsibilities": ["expertise_contribution", "analysis", "voting"], - "specialized_expertise": True - } - } - - def get_role_info(self, role_name): - """Get detailed information about a specific role""" - return self.roles.get(role_name, {}) - - def get_voting_weight(self, role_name): - """Get voting weight for a specific role""" - role_info = self.get_role_info(role_name) - return role_info.get("voting_weight", 1.0) - - def get_authority_level(self, role_name): - """Get authority level for a specific role""" - role_info = self.get_role_info(role_name) - return role_info.get("authority_level", "STANDARD") - - def can_override_decision(self, role_name): - """Check if a role can override board decisions""" - role_info = self.get_role_info(role_name) - return role_info.get("override_capability", False) - - def get_supervision_chain(self, role_name): - """Get the supervision chain for a specific role""" - supervision_chain = [] - current_role = role_name - - while current_role: - role_info = self.get_role_info(current_role) - if role_info: - supervision_chain.append(current_role) - # Find who supervises this role - current_role = None - for supervisor, info in self.roles.items(): - if current_role in info.get("supervises", []): - current_role = supervisor - break - else: - break - - return supervision_chain -``` - -## Chairman Role - -### Primary Responsibilities - -```mermaid -graph TD - A[Chairman] --> B[Meeting Leadership] - A --> C[Final Decision Authority] - A --> D[Consensus Facilitation] - A --> E[Strategic Direction] - A --> F[Stakeholder Communication] - - B --> G[Agenda Setting] - B --> H[Discussion Management] - B --> I[Time Management] - - C --> J[Approval Authority] - C --> K[Override Capability] - C --> L[Final Sign-off] - - D --> M[Conflict Resolution] - D --> N[Mediation] - D --> O[Compromise Facilitation] - - E --> P[Vision Setting] - E --> Q[Goal Definition] - E --> R[Priority Establishment] - - F --> S[External Relations] - F --> T[Stakeholder Updates] - F --> U[Public Communication] -``` - -**Diagram Explanation:** -This diagram illustrates the comprehensive responsibilities of the Chairman role, showing how the Chairman serves as the central authority figure with five main areas of responsibility. Meeting Leadership involves agenda setting, discussion management, and time management. Final Decision Authority includes approval authority, override capability, and final sign-off responsibilities. Consensus Facilitation covers conflict resolution, mediation, and compromise facilitation. Strategic Direction encompasses vision setting, goal definition, and priority establishment. Stakeholder Communication includes external relations, stakeholder updates, and public communication. - -**Technical Implementation:** -```python -# Example: Chairman role implementation -class Chairman: - def __init__(self, name, config): - self.name = name - self.config = config - self.authority_level = "FINAL" - self.voting_weight = 1.5 - self.override_capability = True - self.meeting_history = [] - self.decision_history = [] - - async def lead_meeting(self, task, board_members): - """Lead a board meeting for task discussion and decision-making""" - meeting_result = { - "meeting_id": self.generate_meeting_id(), - "task": task, - "participants": list(board_members.keys()), - "phases": [], - "decisions": [], - "consensus_achieved": False - } - - # Phase 1: Meeting Opening - opening_phase = await self.open_meeting(task, board_members) - meeting_result["phases"].append(opening_phase) - - # Phase 2: Agenda Review and Task Presentation - presentation_phase = await self.present_task(task, board_members) - meeting_result["phases"].append(presentation_phase) - - # Phase 3: Discussion Facilitation - discussion_phase = await self.facilitate_discussion(task, board_members) - meeting_result["phases"].append(discussion_phase) - - # Phase 4: Consensus Building - consensus_phase = await self.build_consensus(discussion_phase["proposals"], board_members) - meeting_result["phases"].append(consensus_phase) - - # Phase 5: Decision Making - decision_phase = await self.make_final_decision(consensus_phase, board_members) - meeting_result["phases"].append(decision_phase) - - meeting_result["decisions"] = decision_phase["decisions"] - meeting_result["consensus_achieved"] = consensus_phase["consensus_achieved"] - - # Record meeting in history - self.meeting_history.append(meeting_result) - - return meeting_result - - async def open_meeting(self, task, board_members): - """Open the board meeting and set the agenda""" - agenda = await self.create_agenda(task) - - opening_statement = f""" - Meeting called to order by Chairman {self.name}. - - Task: {task['description']} - Priority: {task.get('priority', 'Normal')} - Timeline: {task.get('timeline', 'Not specified')} - - Agenda: - {self.format_agenda(agenda)} - - Board members present: {', '.join(board_members.keys())} - """ - - return { - "phase": "meeting_opening", - "opening_statement": opening_statement, - "agenda": agenda, - "participants": list(board_members.keys()), - "timestamp": datetime.now().isoformat() - } - - async def create_agenda(self, task): - """Create a structured agenda for the meeting""" - agenda = { - "items": [ - { - "item": "Task Presentation", - "duration": "10 minutes", - "responsible": "Chairman", - "description": "Present task details and requirements" - }, - { - "item": "Expertise Assignment", - "duration": "5 minutes", - "responsible": "Chairman", - "description": "Assign analysis areas to board members" - }, - { - "item": "Individual Analysis", - "duration": "15 minutes", - "responsible": "All Members", - "description": "Board members analyze assigned areas" - }, - { - "item": "Group Discussion", - "duration": "20 minutes", - "responsible": "All Members", - "description": "Open discussion and debate" - }, - { - "item": "Proposal Development", - "duration": "15 minutes", - "responsible": "All Members", - "description": "Develop and refine proposals" - }, - { - "item": "Voting and Consensus", - "duration": "10 minutes", - "responsible": "All Members", - "description": "Vote on proposals and reach consensus" - }, - { - "item": "Decision Finalization", - "duration": "5 minutes", - "responsible": "Chairman", - "description": "Finalize decisions and assign execution" - } - ], - "total_duration": "80 minutes", - "break_time": "10 minutes" - } - - return agenda - - async def facilitate_discussion(self, task, board_members): - """Facilitate discussion among board members""" - discussion_result = { - "phase": "discussion_facilitation", - "discussion_points": [], - "conflicts": [], - "resolutions": [], - "proposals": [] - } - - # Guide discussion through structured phases - for member_role, member in board_members.items(): - # Get member's analysis - analysis = await member.analyze_task(task) - discussion_result["discussion_points"].append({ - "member": member_role, - "analysis": analysis, - "timestamp": datetime.now().isoformat() - }) - - # Identify conflicts - conflicts = await self.identify_conflicts(analysis, discussion_result["discussion_points"]) - discussion_result["conflicts"].extend(conflicts) - - # Facilitate conflict resolution - for conflict in conflicts: - resolution = await self.resolve_conflict(conflict, board_members) - discussion_result["resolutions"].append(resolution) - - # Develop proposals based on discussion - proposals = await self.develop_proposals(discussion_result["discussion_points"]) - discussion_result["proposals"] = proposals - - return discussion_result - - async def build_consensus(self, proposals, board_members): - """Build consensus among board members on proposals""" - consensus_result = { - "phase": "consensus_building", - "voting_rounds": [], - "consensus_achieved": False, - "final_proposal": None - } - - current_proposals = proposals - round_number = 1 - - while round_number <= self.config.get("max_consensus_rounds", 3): - # Conduct voting round - voting_result = await self.conduct_voting_round(current_proposals, board_members, round_number) - consensus_result["voting_rounds"].append(voting_result) - - # Check if consensus achieved - if voting_result["consensus_achieved"]: - consensus_result["consensus_achieved"] = True - consensus_result["final_proposal"] = voting_result["winning_proposal"] - break - - # Refine proposals for next round - current_proposals = await self.refine_proposals(current_proposals, voting_result) - round_number += 1 - - return consensus_result - - async def make_final_decision(self, consensus_result, board_members): - """Make final decision based on consensus or exercise authority""" - if consensus_result["consensus_achieved"]: - # Consensus reached, approve the decision - decision = { - "type": "consensus_decision", - "proposal": consensus_result["final_proposal"], - "approval_method": "consensus", - "board_support": "unanimous" - } - else: - # No consensus, exercise chairman authority - decision = await self.exercise_authority(consensus_result, board_members) - - decision_result = { - "phase": "final_decision", - "decision": decision, - "execution_plan": await self.create_execution_plan(decision), - "timestamp": datetime.now().isoformat() - } - - # Record decision in history - self.decision_history.append(decision_result) - - return decision_result - - async def exercise_authority(self, consensus_result, board_members): - """Exercise chairman authority when consensus cannot be reached""" - # Analyze all proposals and voting results - proposal_analysis = await self.analyze_proposals(consensus_result["voting_rounds"]) - - # Make decision based on best interests and available information - final_decision = await self.select_best_proposal(proposal_analysis) - - return { - "type": "authority_decision", - "proposal": final_decision, - "approval_method": "chairman_authority", - "rationale": final_decision["rationale"], - "board_support": final_decision["support_level"] - } -``` - -### Chairman's Decision Flow - -```mermaid -flowchart TD - A[Task Received] --> B[Assess Complexity] - B --> C[Determine Board Composition] - C --> D[Set Meeting Agenda] - D --> E[Lead Discussion] - E --> F[Facilitate Consensus] - F --> G{Consensus Reached?} - G -->|Yes| H[Approve Decision] - G -->|No| I[Exercise Authority] - I --> J[Make Final Decision] - H --> K[Oversee Execution] - J --> K - K --> L[Monitor Progress] - L --> M[Review Results] - M --> N[Final Approval] -``` - -**Diagram Explanation:** -This flowchart shows the Chairman's decision-making process from task reception to final approval. The process begins with task assessment and board composition determination, followed by agenda setting and discussion leadership. The Chairman then facilitates consensus building, and if consensus is reached, approves the decision. If consensus cannot be achieved, the Chairman exercises their authority to make a final decision. The Chairman then oversees execution, monitors progress, reviews results, and provides final approval. - -**Technical Implementation:** -```python -# Example: Chairman decision flow implementation -class ChairmanDecisionFlow: - def __init__(self, chairman): - self.chairman = chairman - self.decision_states = { - "TASK_RECEIVED": "Initial state when task is received", - "COMPLEXITY_ASSESSED": "Task complexity has been evaluated", - "BOARD_COMPOSED": "Board members have been selected", - "AGENDA_SET": "Meeting agenda has been created", - "DISCUSSION_LEAD": "Discussion has been facilitated", - "CONSENSUS_FACILITATED": "Consensus building has been attempted", - "DECISION_MADE": "Final decision has been made", - "EXECUTION_OVERSIGHT": "Execution is being monitored", - "PROGRESS_MONITORED": "Progress is being tracked", - "RESULTS_REVIEWED": "Results have been reviewed", - "FINAL_APPROVAL": "Final approval has been given" - } - - async def execute_decision_flow(self, task): - """Execute the complete chairman decision flow""" - flow_state = { - "current_state": "TASK_RECEIVED", - "task": task, - "transitions": [], - "decisions": [], - "timestamps": {} - } - - # Step 1: Assess Complexity - complexity_assessment = await self.assess_task_complexity(task) - flow_state["transitions"].append({ - "from": "TASK_RECEIVED", - "to": "COMPLEXITY_ASSESSED", - "assessment": complexity_assessment - }) - flow_state["current_state"] = "COMPLEXITY_ASSESSED" - flow_state["timestamps"]["complexity_assessed"] = datetime.now().isoformat() - - # Step 2: Determine Board Composition - board_composition = await self.determine_board_composition(complexity_assessment) - flow_state["transitions"].append({ - "from": "COMPLEXITY_ASSESSED", - "to": "BOARD_COMPOSED", - "composition": board_composition - }) - flow_state["current_state"] = "BOARD_COMPOSED" - flow_state["timestamps"]["board_composed"] = datetime.now().isoformat() - - # Step 3: Set Meeting Agenda - meeting_agenda = await self.set_meeting_agenda(task, board_composition) - flow_state["transitions"].append({ - "from": "BOARD_COMPOSED", - "to": "AGENDA_SET", - "agenda": meeting_agenda - }) - flow_state["current_state"] = "AGENDA_SET" - flow_state["timestamps"]["agenda_set"] = datetime.now().isoformat() - - # Step 4: Lead Discussion - discussion_result = await self.lead_discussion(task, board_composition, meeting_agenda) - flow_state["transitions"].append({ - "from": "AGENDA_SET", - "to": "DISCUSSION_LEAD", - "discussion": discussion_result - }) - flow_state["current_state"] = "DISCUSSION_LEAD" - flow_state["timestamps"]["discussion_led"] = datetime.now().isoformat() - - # Step 5: Facilitate Consensus - consensus_result = await self.facilitate_consensus(discussion_result) - flow_state["transitions"].append({ - "from": "DISCUSSION_LEAD", - "to": "CONSENSUS_FACILITATED", - "consensus": consensus_result - }) - flow_state["current_state"] = "CONSENSUS_FACILITATED" - flow_state["timestamps"]["consensus_facilitated"] = datetime.now().isoformat() - - # Step 6: Make Decision - if consensus_result["consensus_achieved"]: - decision = await self.approve_consensus_decision(consensus_result) - else: - decision = await self.exercise_authority(consensus_result) - - flow_state["decisions"].append(decision) - flow_state["transitions"].append({ - "from": "CONSENSUS_FACILITATED", - "to": "DECISION_MADE", - "decision": decision - }) - flow_state["current_state"] = "DECISION_MADE" - flow_state["timestamps"]["decision_made"] = datetime.now().isoformat() - - # Step 7: Oversee Execution - execution_oversight = await self.oversee_execution(decision) - flow_state["transitions"].append({ - "from": "DECISION_MADE", - "to": "EXECUTION_OVERSIGHT", - "oversight": execution_oversight - }) - flow_state["current_state"] = "EXECUTION_OVERSIGHT" - flow_state["timestamps"]["execution_oversight"] = datetime.now().isoformat() - - # Step 8: Monitor Progress - progress_monitoring = await self.monitor_progress(execution_oversight) - flow_state["transitions"].append({ - "from": "EXECUTION_OVERSIGHT", - "to": "PROGRESS_MONITORED", - "progress": progress_monitoring - }) - flow_state["current_state"] = "PROGRESS_MONITORED" - flow_state["timestamps"]["progress_monitored"] = datetime.now().isoformat() - - # Step 9: Review Results - results_review = await self.review_results(progress_monitoring) - flow_state["transitions"].append({ - "from": "PROGRESS_MONITORED", - "to": "RESULTS_REVIEWED", - "review": results_review - }) - flow_state["current_state"] = "RESULTS_REVIEWED" - flow_state["timestamps"]["results_reviewed"] = datetime.now().isoformat() - - # Step 10: Final Approval - final_approval = await self.give_final_approval(results_review) - flow_state["transitions"].append({ - "from": "RESULTS_REVIEWED", - "to": "FINAL_APPROVAL", - "approval": final_approval - }) - flow_state["current_state"] = "FINAL_APPROVAL" - flow_state["timestamps"]["final_approval"] = datetime.now().isoformat() - - return flow_state -``` - -### Key Competencies - -- **Leadership**: Ability to guide and inspire board members -- **Decision Making**: Strong analytical and judgment skills -- **Communication**: Excellent verbal and written communication -- **Conflict Resolution**: Skills in mediating disagreements -- **Strategic Thinking**: Long-term vision and planning ability -- **Stakeholder Management**: Relationship building and management - -## Vice Chairman Role - -### Supporting Responsibilities - -```mermaid -graph TD - A[Vice Chairman] --> B[Operational Support] - A --> C[Chairman Backup] - A --> D[Coordination] - A --> E[Implementation Oversight] - - B --> F[Meeting Support] - B --> G[Documentation Assistance] - B --> H[Logistics Management] - - C --> I[Acting Chairman] - C --> J[Decision Delegation] - C --> K[Authority Exercise] - - D --> L[Inter-Department Coordination] - D --> M[Resource Allocation] - D --> N[Timeline Management] - - E --> O[Execution Monitoring] - E --> P[Quality Control] - E --> Q[Performance Tracking] -``` - -**Diagram Explanation:** -This diagram shows the Vice Chairman's supporting role structure, highlighting four main areas of responsibility. Operational Support includes meeting support, documentation assistance, and logistics management. Chairman Backup involves acting as chairman when needed, decision delegation, and authority exercise. Coordination covers inter-department coordination, resource allocation, and timeline management. Implementation Oversight includes execution monitoring, quality control, and performance tracking. - -**Technical Implementation:** -```python -# Example: Vice Chairman role implementation -class ViceChairman: - def __init__(self, name, config): - self.name = name - self.config = config - self.authority_level = "SENIOR" - self.voting_weight = 1.2 - self.backup_for = "CHAIRMAN" - self.operational_areas = [] - self.coordination_history = [] - - async def provide_operational_support(self, chairman, task): - """Provide operational support to the chairman""" - support_areas = { - "meeting_support": await self.support_meeting_operations(chairman, task), - "documentation_assistance": await self.assist_with_documentation(task), - "logistics_management": await self.manage_logistics(task) - } - - return { - "support_provided": support_areas, - "timestamp": datetime.now().isoformat() - } - - async def act_as_chairman(self, chairman, reason): - """Act as chairman when the chairman is unavailable""" - acting_authority = { - "acting_chairman": self.name, - "original_chairman": chairman.name, - "reason": reason, - "authority_delegated": True, - "delegation_timestamp": datetime.now().isoformat() - } - - # Assume chairman responsibilities - acting_authority["capabilities"] = [ - "meeting_leadership", - "decision_making", - "consensus_facilitation", - "final_approval" - ] - - return acting_authority - - async def coordinate_operations(self, task, board_members): - """Coordinate operations across different areas""" - coordination_plan = { - "inter_department_coordination": await self.coordinate_departments(task), - "resource_allocation": await self.allocate_resources(task), - "timeline_management": await self.manage_timeline(task) - } - - self.coordination_history.append({ - "task": task, - "coordination_plan": coordination_plan, - "timestamp": datetime.now().isoformat() - }) - - return coordination_plan - - async def oversee_implementation(self, execution_plan): - """Oversee the implementation of board decisions""" - oversight_result = { - "execution_monitoring": await self.monitor_execution(execution_plan), - "quality_control": await self.control_quality(execution_plan), - "performance_tracking": await self.track_performance(execution_plan) - } - - return oversight_result -``` - -## Executive Director Role - -### Strategic Responsibilities - -```mermaid -graph TD - A[Executive Director] --> B[Strategic Planning] - A --> C[Execution Oversight] - A --> D[Performance Management] - A --> E[Strategic Initiatives] - - B --> F[Vision Development] - B --> G[Goal Setting] - B --> H[Strategy Formulation] - - C --> I[Implementation Monitoring] - C --> J[Progress Tracking] - C --> K[Issue Resolution] - - D --> L[KPI Definition] - D --> M[Performance Measurement] - D --> N[Improvement Planning] - - E --> O[Innovation Leadership] - E --> P[Change Management] - E --> Q[Strategic Partnerships] -``` - -**Diagram Explanation:** -This diagram illustrates the Executive Director's strategic role, showing four main areas of responsibility. Strategic Planning includes vision development, goal setting, and strategy formulation. Execution Oversight involves implementation monitoring, progress tracking, and issue resolution. Performance Management covers KPI definition, performance measurement, and improvement planning. Strategic Initiatives includes innovation leadership, change management, and strategic partnerships. - -**Technical Implementation:** -```python -# Example: Executive Director role implementation -class ExecutiveDirector: - def __init__(self, name, config): - self.name = name - self.config = config - self.authority_level = "SENIOR" - self.voting_weight = 1.5 - self.strategic_authority = True - self.performance_metrics = {} - self.strategic_initiatives = [] - - async def develop_strategic_plan(self, task, board_context): - """Develop strategic plan for task execution""" - strategic_plan = { - "vision": await self.develop_vision(task), - "goals": await self.set_goals(task), - "strategy": await self.formulate_strategy(task, board_context), - "timeline": await self.create_strategic_timeline(task), - "resources": await self.plan_strategic_resources(task) - } - - return strategic_plan - - async def oversee_execution(self, execution_plan): - """Oversee execution of strategic plans""" - oversight_result = { - "implementation_monitoring": await self.monitor_implementation(execution_plan), - "progress_tracking": await self.track_progress(execution_plan), - "issue_resolution": await self.resolve_issues(execution_plan) - } - - return oversight_result - - async def manage_performance(self, execution_results): - """Manage performance and define KPIs""" - performance_management = { - "kpi_definition": await self.define_kpis(execution_results), - "performance_measurement": await self.measure_performance(execution_results), - "improvement_planning": await self.plan_improvements(execution_results) - } - - return performance_management - - async def lead_strategic_initiatives(self, task): - """Lead strategic initiatives and innovation""" - strategic_initiatives = { - "innovation_leadership": await self.lead_innovation(task), - "change_management": await self.manage_change(task), - "strategic_partnerships": await self.develop_partnerships(task) - } - - self.strategic_initiatives.append({ - "task": task, - "initiatives": strategic_initiatives, - "timestamp": datetime.now().isoformat() - }) - - return strategic_initiatives -``` - -## Secretary Role - -### Administrative Responsibilities - -```mermaid -graph TD - A[Secretary] --> B[Documentation] - A --> C[Record Keeping] - A --> D[Communication] - A --> E[Administrative Support] - - B --> F[Meeting Minutes] - B --> G[Decision Records] - B --> H[Policy Documentation] - - C --> I[File Management] - C --> J[Record Maintenance] - C --> K[Archive Management] - - D --> L[Internal Communication] - D --> M[External Communication] - D --> N[Stakeholder Updates] - - E --> O[Meeting Coordination] - E --> P[Agenda Preparation] - E --> Q[Follow-up Actions] -``` - -**Diagram Explanation:** -This diagram shows the Secretary's administrative role structure, highlighting four main areas of responsibility. Documentation includes meeting minutes, decision records, and policy documentation. Record Keeping involves file management, record maintenance, and archive management. Communication covers internal communication, external communication, and stakeholder updates. Administrative Support includes meeting coordination, agenda preparation, and follow-up actions. - -**Technical Implementation:** -```python -# Example: Secretary role implementation -class Secretary: - def __init__(self, name, config): - self.name = name - self.config = config - self.authority_level = "STANDARD" - self.voting_weight = 1.0 - self.administrative_authority = True - self.documentation_repository = {} - self.communication_log = [] - - async def document_meeting(self, meeting_data): - """Document board meeting proceedings""" - meeting_documentation = { - "meeting_id": meeting_data["meeting_id"], - "date": meeting_data["timestamp"], - "participants": meeting_data["participants"], - "agenda": meeting_data["agenda"], - "minutes": await self.create_meeting_minutes(meeting_data), - "decisions": meeting_data["decisions"], - "action_items": await self.extract_action_items(meeting_data) - } - - # Store in documentation repository - self.documentation_repository[meeting_data["meeting_id"]] = meeting_documentation - - return meeting_documentation - - async def maintain_records(self, record_type, data): - """Maintain various types of records""" - record_entry = { - "type": record_type, - "data": data, - "timestamp": datetime.now().isoformat(), - "secretary": self.name - } - - if record_type not in self.documentation_repository: - self.documentation_repository[record_type] = [] - - self.documentation_repository[record_type].append(record_entry) - - return record_entry - - async def manage_communication(self, communication_type, content, recipients): - """Manage internal and external communication""" - communication = { - "type": communication_type, - "content": content, - "recipients": recipients, - "timestamp": datetime.now().isoformat(), - "secretary": self.name - } - - self.communication_log.append(communication) - - # Send communication based on type - if communication_type == "internal": - await self.send_internal_communication(communication) - elif communication_type == "external": - await self.send_external_communication(communication) - elif communication_type == "stakeholder_update": - await self.send_stakeholder_update(communication) - - return communication - - async def provide_administrative_support(self, board_members, task): - """Provide administrative support to board members""" - administrative_support = { - "meeting_coordination": await self.coordinate_meetings(board_members, task), - "agenda_preparation": await self.prepare_agendas(task), - "follow_up_actions": await self.manage_follow_up_actions(task) - } - - return administrative_support -``` - -## Treasurer Role - -### Financial Responsibilities - -```mermaid -graph TD - A[Treasurer] --> B[Financial Oversight] - A --> C[Resource Management] - A --> D[Budget Control] - A --> E[Financial Reporting] - - B --> F[Financial Analysis] - B --> G[Risk Assessment] - B --> H[Compliance Monitoring] - - C --> I[Resource Allocation] - C --> J[Cost Management] - C --> K[Efficiency Optimization] - - D --> L[Budget Planning] - D --> M[Expense Monitoring] - D --> N[Budget Adjustments] - - E --> O[Financial Statements] - E --> P[Performance Reports] - E --> Q[Stakeholder Reports] -``` - -**Diagram Explanation:** -This diagram illustrates the Treasurer's financial role structure, showing four main areas of responsibility. Financial Oversight includes financial analysis, risk assessment, and compliance monitoring. Resource Management involves resource allocation, cost management, and efficiency optimization. Budget Control covers budget planning, expense monitoring, and budget adjustments. Financial Reporting includes financial statements, performance reports, and stakeholder reports. - -**Technical Implementation:** -```python -# Example: Treasurer role implementation -class Treasurer: - def __init__(self, name, config): - self.name = name - self.config = config - self.authority_level = "STANDARD" - self.voting_weight = 1.0 - self.financial_authority = True - self.financial_records = {} - self.budget_tracking = {} - - async def provide_financial_oversight(self, task, budget): - """Provide financial oversight for task execution""" - financial_oversight = { - "financial_analysis": await self.analyze_financial_implications(task, budget), - "risk_assessment": await self.assess_financial_risks(task, budget), - "compliance_monitoring": await self.monitor_compliance(task, budget) - } - - return financial_oversight - - async def manage_resources(self, task, available_resources): - """Manage resource allocation and optimization""" - resource_management = { - "resource_allocation": await self.allocate_resources(task, available_resources), - "cost_management": await self.manage_costs(task), - "efficiency_optimization": await self.optimize_efficiency(task) - } - - return resource_management - - async def control_budget(self, task, budget_limits): - """Control budget and monitor expenses""" - budget_control = { - "budget_planning": await self.plan_budget(task, budget_limits), - "expense_monitoring": await self.monitor_expenses(task), - "budget_adjustments": await self.adjust_budget(task) - } - - # Track budget usage - self.budget_tracking[task["id"]] = budget_control - - return budget_control - - async def generate_financial_reports(self, task, financial_data): - """Generate financial reports and statements""" - financial_reports = { - "financial_statements": await self.create_financial_statements(financial_data), - "performance_reports": await self.create_performance_reports(financial_data), - "stakeholder_reports": await self.create_stakeholder_reports(financial_data) - } - - # Store financial records - self.financial_records[task["id"]] = financial_reports - - return financial_reports -``` - -## Member Role - -### General Responsibilities - -```mermaid -graph TD - A[Member] --> B[Expertise Contribution] - A --> C[Analysis] - A --> D[Voting] - A --> E[Specialized Input] - - B --> F[Domain Knowledge] - B --> G[Technical Expertise] - B --> H[Industry Experience] - - C --> I[Data Analysis] - C --> J[Impact Assessment] - C --> K[Feasibility Study] - - D --> L[Informed Voting] - D --> M[Proposal Evaluation] - D --> N[Consensus Building] - - E --> O[Specialized Recommendations] - E --> P[Risk Identification] - E --> Q[Opportunity Assessment] -``` - -**Diagram Explanation:** -This diagram shows the general Member role structure, highlighting four main areas of responsibility. Expertise Contribution includes domain knowledge, technical expertise, and industry experience. Analysis involves data analysis, impact assessment, and feasibility study. Voting covers informed voting, proposal evaluation, and consensus building. Specialized Input includes specialized recommendations, risk identification, and opportunity assessment. - -**Technical Implementation:** -```python -# Example: Member role implementation -class BoardMember: - def __init__(self, name, expertise_areas, config): - self.name = name - self.expertise_areas = expertise_areas - self.config = config - self.authority_level = "STANDARD" - self.voting_weight = 1.0 - self.specialized_expertise = True - self.analysis_history = [] - self.voting_history = [] - - async def contribute_expertise(self, task, expertise_areas): - """Contribute specialized expertise to task analysis""" - expertise_contribution = { - "domain_knowledge": await self.apply_domain_knowledge(task, expertise_areas), - "technical_expertise": await self.apply_technical_expertise(task, expertise_areas), - "industry_experience": await self.apply_industry_experience(task, expertise_areas) - } - - return expertise_contribution - - async def perform_analysis(self, task, data): - """Perform comprehensive analysis of task and data""" - analysis_result = { - "data_analysis": await self.analyze_data(task, data), - "impact_assessment": await self.assess_impact(task, data), - "feasibility_study": await self.study_feasibility(task, data) - } - - # Store analysis in history - self.analysis_history.append({ - "task": task, - "analysis": analysis_result, - "timestamp": datetime.now().isoformat() - }) - - return analysis_result - - async def vote_on_proposals(self, proposals, context): - """Vote on proposals based on analysis and expertise""" - voting_decision = { - "proposal_evaluations": await self.evaluate_proposals(proposals, context), - "informed_vote": await self.make_informed_vote(proposals, context), - "rationale": await self.provide_voting_rationale(proposals, context) - } - - # Store voting decision in history - self.voting_history.append({ - "proposals": proposals, - "decision": voting_decision, - "timestamp": datetime.now().isoformat() - }) - - return voting_decision - - async def provide_specialized_input(self, task, context): - """Provide specialized input based on expertise areas""" - specialized_input = { - "specialized_recommendations": await self.make_specialized_recommendations(task, context), - "risk_identification": await self.identify_risks(task, context), - "opportunity_assessment": await self.assess_opportunities(task, context) - } - - return specialized_input -``` - -## Role Interaction Patterns - -### Communication Flow - -```mermaid -graph TD - A[Chairman] --> B[Vice Chairman] - A --> C[Executive Director] - A --> D[Secretary] - A --> E[Treasurer] - A --> F[Members] - - B --> G[Operational Coordination] - C --> H[Strategic Alignment] - D --> I[Documentation Flow] - E --> J[Financial Oversight] - F --> K[Expertise Input] - - G --> L[Implementation] - H --> M[Strategic Execution] - I --> N[Record Keeping] - J --> O[Budget Control] - K --> P[Decision Support] -``` - -**Diagram Explanation:** -This diagram shows the communication flow and interaction patterns between different board roles. The Chairman serves as the central communication hub, coordinating with all other board members. Each role has specific communication channels and responsibilities: Vice Chairman handles operational coordination, Executive Director manages strategic alignment, Secretary manages documentation flow, Treasurer oversees financial matters, and Members provide expertise input. These interactions support implementation, strategic execution, record keeping, budget control, and decision support. - -**Technical Implementation:** -```python -# Example: Role interaction system -class RoleInteractionSystem: - def __init__(self, board_members): - self.board_members = board_members - self.communication_channels = {} - self.interaction_patterns = {} - - async def establish_communication_flow(self): - """Establish communication flow between board members""" - communication_flow = { - "chairman_communications": await self.setup_chairman_communications(), - "operational_coordination": await self.setup_operational_coordination(), - "strategic_alignment": await self.setup_strategic_alignment(), - "documentation_flow": await self.setup_documentation_flow(), - "financial_oversight": await self.setup_financial_oversight(), - "expertise_input": await self.setup_expertise_input() - } - - return communication_flow - - async def coordinate_role_interactions(self, task): - """Coordinate interactions between different roles""" - interactions = { - "chairman_vice_chairman": await self.coordinate_chairman_vice_chairman(task), - "chairman_executive_director": await self.coordinate_chairman_executive_director(task), - "secretary_documentation": await self.coordinate_secretary_documentation(task), - "treasurer_financial": await self.coordinate_treasurer_financial(task), - "member_expertise": await self.coordinate_member_expertise(task) - } - - return interactions -``` - -## Best Practices for Role Management - -### 1. Clear Role Definition -- Define specific responsibilities for each role -- Establish clear authority boundaries -- Document role interactions and communication protocols - -### 2. Balanced Voting Weights -- Ensure fair representation while maintaining leadership hierarchy -- Consider expertise and experience in weight assignment -- Regularly review and adjust weights based on performance - -### 3. Effective Communication -- Establish clear communication channels -- Implement regular reporting mechanisms -- Ensure transparency in decision-making processes - -### 4. Continuous Improvement -- Regularly assess role effectiveness -- Gather feedback from board members -- Implement improvements based on lessons learned - -### 5. Conflict Resolution -- Establish clear conflict resolution procedures -- Provide mediation mechanisms -- Ensure fair and impartial resolution processes \ No newline at end of file diff --git a/docs/swarms/structs/board_of_directors/board_of_directors_swarm.md b/docs/swarms/structs/board_of_directors/board_of_directors_swarm.md deleted file mode 100644 index 20223c49..00000000 --- a/docs/swarms/structs/board_of_directors/board_of_directors_swarm.md +++ /dev/null @@ -1,704 +0,0 @@ -# `BoardOfDirectorsSwarm` - -The `BoardOfDirectorsSwarm` is a sophisticated multi-agent orchestration system that implements a collective decision-making approach as an alternative to the single Director pattern. It consists of a board of directors that convenes to discuss, vote, and reach consensus on task distribution and execution strategies. - -## Overview - -The Board of Directors Swarm follows a democratic workflow pattern that mimics real-world corporate governance structures: - -1. **Task Reception**: User provides a task to the swarm -2. **Board Meeting**: Board of Directors convenes to discuss and create a plan -3. **Voting & Consensus**: Board members vote and reach consensus on task distribution -4. **Order Distribution**: Board distributes orders to specialized worker agents -5. **Execution**: Individual agents execute their assigned tasks -6. **Feedback Loop**: Board evaluates results and issues new orders if needed (up to `max_loops`) -7. **Context Preservation**: All conversation history and context is maintained throughout the process - -## Architecture - -### High-Level Workflow - -```mermaid -graph TD - A[User Task] --> B[Board of Directors] - B --> C[Board Meeting & Discussion] - C --> D[Voting & Consensus] - D --> E[Create Plan & Orders] - E --> F[Distribute to Agents] - F --> G[Agent 1] - F --> H[Agent 2] - F --> I[Agent N] - G --> J[Execute Task] - H --> J - I --> J - J --> K[Report Results] - K --> L[Board Evaluation] - L --> M{More Loops?} - M -->|Yes| C - M -->|No| N[Final Output] -``` - -**Diagram Explanation:** -This diagram illustrates the complete lifecycle of a task through the Board of Directors Swarm system. The workflow begins when a user submits a task, which triggers the board to convene for discussion and planning. The board then votes on the approach and creates detailed execution orders. These orders are distributed to multiple specialized agents who execute their tasks in parallel. Results are collected and evaluated by the board, which can trigger additional refinement loops if needed. The process continues until the board is satisfied with the results or the maximum number of loops is reached. - -**Key Technical Points:** -- **Parallel Execution**: Multiple agents can work simultaneously on different aspects of the task -- **Iterative Refinement**: The system supports multiple feedback loops for continuous improvement -- **Centralized Coordination**: The board maintains control over the entire process while delegating execution -- **Result Aggregation**: All agent outputs are collected and evaluated before proceeding - -### Detailed Decision-Making Process - -```mermaid -flowchart TD - A[Task Received] --> B[Board Convenes] - B --> C[Chairman Opens Meeting] - C --> D[Task Analysis Phase] - D --> E[Expertise Assignment] - E --> F[Individual Member Analysis] - F --> G[Discussion & Debate] - G --> H[Proposal Generation] - H --> I[Voting Process] - I --> J{Consensus Reached?} - J -->|No| K[Reconciliation Phase] - K --> G - J -->|Yes| L[Plan Finalization] - L --> M[Order Creation] - M --> N[Agent Assignment] - N --> O[Execution Phase] - O --> P[Result Collection] - P --> Q[Board Review] - Q --> R{Approval?} - R -->|No| S[Refinement Loop] - S --> G - R -->|Yes| T[Final Delivery] -``` - -**Diagram Explanation:** -This detailed flowchart shows the internal decision-making process within the board. The process begins with task reception and board convening, followed by a structured analysis phase where each board member contributes based on their expertise. The discussion and debate phase allows for thorough consideration of different approaches, leading to proposal generation and voting. If consensus isn't reached, the system enters a reconciliation phase to resolve conflicts. Once consensus is achieved, the plan is finalized and orders are created for agent assignment. The execution phase is followed by result collection and board review, with the option to enter refinement loops if the results don't meet approval criteria. - -**Technical Implementation Details:** -- **Expertise Assignment**: Board members are assigned tasks based on their specialized knowledge areas -- **Voting Mechanisms**: Configurable voting weights and decision thresholds ensure fair representation -- **Conflict Resolution**: Built-in reconciliation mechanisms handle disagreements among board members -- **Quality Gates**: Approval checkpoints ensure output quality before final delivery - -### Board Member Interaction Flow - -```mermaid -sequenceDiagram - participant User - participant Chairman - participant ViceChair - participant Secretary - participant Treasurer - participant ExecDir - participant Agents - - User->>Chairman: Submit Task - Chairman->>ViceChair: Notify Board Meeting - Chairman->>Secretary: Request Meeting Setup - Chairman->>Treasurer: Resource Assessment - Chairman->>ExecDir: Strategic Planning - - Note over Chairman,ExecDir: Board Discussion Phase - - Chairman->>ViceChair: Lead Discussion - ViceChair->>Secretary: Document Decisions - Secretary->>Treasurer: Budget Considerations - Treasurer->>ExecDir: Resource Allocation - ExecDir->>Chairman: Strategic Recommendations - - Note over Chairman,ExecDir: Voting & Consensus - - Chairman->>ViceChair: Call for Vote - ViceChair->>Secretary: Record Votes - Secretary->>Treasurer: Financial Approval - Treasurer->>ExecDir: Resource Approval - ExecDir->>Chairman: Final Decision - - Note over Chairman,Agents: Execution Phase - - Chairman->>Agents: Distribute Orders - Agents->>Chairman: Execute Tasks - Agents->>ViceChair: Progress Reports - Agents->>Secretary: Documentation - Agents->>Treasurer: Resource Usage - Agents->>ExecDir: Strategic Updates - - Note over Chairman,ExecDir: Review & Feedback - - Chairman->>User: Deliver Results -``` - -**Diagram Explanation:** -This sequence diagram shows the detailed interaction patterns between different board members and agents throughout the entire process. The interaction begins with the Chairman receiving a task from the user and immediately coordinating with other board members. Each board member has specific responsibilities: the Vice Chairman leads discussions, the Secretary documents decisions, the Treasurer handles resource assessment, and the Executive Director provides strategic planning. During the voting phase, each member contributes their expertise and votes are recorded systematically. In the execution phase, the Chairman distributes orders to agents while maintaining communication channels with all board members for progress monitoring and strategic updates. - -**Technical Communication Patterns:** -- **Hierarchical Communication**: Chairman serves as the central coordinator -- **Specialized Reporting**: Each agent reports to the appropriate board member based on their role -- **Parallel Coordination**: Multiple board members can work simultaneously on different aspects -- **Feedback Channels**: Continuous communication ensures real-time monitoring and adjustment - -### Agent Execution and Feedback Loop - -```mermaid -graph LR - subgraph "Board of Directors" - A[Chairman] - B[Vice Chairman] - C[Secretary] - D[Treasurer] - E[Executive Director] - end - - subgraph "Worker Agents" - F[Research Agent] - G[Analysis Agent] - H[Technical Agent] - I[Financial Agent] - J[Strategy Agent] - end - - subgraph "Execution Flow" - K[Task Distribution] - L[Parallel Execution] - M[Result Aggregation] - N[Quality Assessment] - O[Feedback Loop] - end - - A --> K - B --> K - C --> K - D --> K - E --> K - - K --> L - L --> F - L --> G - L --> H - L --> I - L --> J - - F --> M - G --> M - H --> M - I --> M - J --> M - - M --> N - N --> O - O --> K -``` - -**Diagram Explanation:** -This diagram illustrates the relationship between the Board of Directors and Worker Agents, showing how tasks flow from decision-making to execution and back through feedback loops. The Board of Directors collectively participates in task distribution, ensuring that all perspectives are considered. Worker agents execute tasks in parallel, each specializing in different areas (research, analysis, technical implementation, financial considerations, and strategic planning). Results are aggregated and assessed for quality before determining whether additional feedback loops are needed. - -**Technical Architecture Benefits:** -- **Separation of Concerns**: Clear distinction between decision-making (Board) and execution (Agents) -- **Scalability**: Additional agents can be added without changing the board structure -- **Fault Tolerance**: If one agent fails, others can continue working -- **Quality Control**: Centralized assessment ensures consistent output quality - -## Technical Implementation - -### Core Components - -The `BoardOfDirectorsSwarm` consists of several key components: - -1. **Board Members**: Specialized agents with specific roles and voting weights -2. **Worker Agents**: Execution agents that perform the actual tasks -3. **Voting System**: Configurable voting mechanisms for decision-making -4. **Communication Protocol**: Structured communication between board members and agents -5. **Feedback Loop Controller**: Manages iterative refinement processes - -### Configuration Options - -```python -# Example configuration for BoardOfDirectorsSwarm -board_config = { - "max_loops": 3, # Maximum number of refinement loops - "voting_threshold": 0.7, # Consensus threshold (70%) - "enable_voting_weights": True, # Use weighted voting - "consensus_method": "majority", # Voting method: "majority" or "unanimous" - "board_size": 5, # Number of board members - "enable_feedback_loops": True, # Enable iterative refinement - "output_format": "structured", # Output format: "structured", "text", "json" - "enable_logging": True, # Enable detailed logging - "parallel_execution": True, # Enable parallel agent execution - "quality_gates": True, # Enable quality checkpoints -} -``` - -### Voting Mechanisms - -The system supports multiple voting mechanisms: - -1. **Majority Voting**: Simple majority of votes required -2. **Weighted Voting**: Votes weighted by board member importance -3. **Unanimous Consensus**: All board members must agree -4. **Threshold-based**: Configurable percentage of agreement required - -```python -# Example voting configuration -voting_config = { - "method": "weighted_majority", - "threshold": 0.75, - "weights": { - "CHAIRMAN": 1.5, - "VICE_CHAIRMAN": 1.2, - "SECRETARY": 1.0, - "TREASURER": 1.0, - "EXECUTIVE_DIRECTOR": 1.5 - }, - "tie_breaker": "CHAIRMAN", # Chairman breaks ties - "allow_abstention": True, # Allow board members to abstain -} -``` - -### Communication Protocols - -The system uses structured communication protocols: - -1. **Task Distribution Protocol**: Standardized format for distributing tasks to agents -2. **Progress Reporting Protocol**: Regular status updates from agents to board -3. **Decision Communication Protocol**: Clear communication of board decisions -4. **Feedback Protocol**: Structured feedback for iterative improvement - -```python -# Example communication message format -message_format = { - "sender": "CHAIRMAN", - "recipient": "RESEARCH_AGENT", - "message_type": "TASK_DISTRIBUTION", - "content": { - "task_id": "task_123", - "task_description": "Research market trends for Q4", - "deadline": "2024-01-15T10:00:00Z", - "priority": "HIGH", - "resources": ["market_data", "analytics_tools"], - "expected_output": "structured_report" - }, - "metadata": { - "timestamp": "2024-01-10T09:00:00Z", - "session_id": "session_456", - "board_decision_id": "decision_789" - } -} -``` - -## Usage Examples - -### Basic Usage - -```python -from swarms import BoardOfDirectorsSwarm, Agent - -# Create specialized agents -research_agent = Agent( - name="Research Agent", - system_prompt="You are a research specialist focused on market analysis and data gathering.", - llm="gpt-4" -) - -analysis_agent = Agent( - name="Analysis Agent", - system_prompt="You are an analysis expert who interprets data and provides insights.", - llm="gpt-4" -) - -technical_agent = Agent( - name="Technical Agent", - system_prompt="You are a technical specialist who handles implementation and technical details.", - llm="gpt-4" -) - -# Create the Board of Directors Swarm -board_swarm = BoardOfDirectorsSwarm( - agents=[research_agent, analysis_agent, technical_agent], - max_loops=3, - voting_threshold=0.7, - enable_voting_weights=True -) - -# Execute a task -task = "Analyze the current market trends in AI and provide strategic recommendations for our company." -result = board_swarm.run(task) -print(result) -``` - -### Advanced Configuration - -```python -from swarms import BoardOfDirectorsSwarm, Agent -from swarms.structs.board_of_directors import BoardConfig - -# Create a custom board configuration -custom_config = BoardConfig( - max_loops=5, - voting_threshold=0.8, - consensus_method="unanimous", - enable_feedback_loops=True, - output_format="structured", - board_roles={ - "CHAIRMAN": {"weight": 1.5, "responsibilities": ["leadership", "final_decision"]}, - "VICE_CHAIRMAN": {"weight": 1.2, "responsibilities": ["operations", "coordination"]}, - "SECRETARY": {"weight": 1.0, "responsibilities": ["documentation", "record_keeping"]}, - "TREASURER": {"weight": 1.0, "responsibilities": ["financial_oversight", "resource_allocation"]}, - "EXECUTIVE_DIRECTOR": {"weight": 1.5, "responsibilities": ["strategic_planning", "execution"]} - } -) - -# Create specialized agents with custom prompts -agents = [ - Agent( - name="Market Research Agent", - system_prompt="""You are a market research specialist with expertise in: - - Competitive analysis - - Market sizing and segmentation - - Customer behavior analysis - - Industry trend identification - Provide detailed, data-driven insights.""", - llm="gpt-4" - ), - Agent( - name="Financial Analysis Agent", - system_prompt="""You are a financial analyst specializing in: - - Financial modeling and forecasting - - Risk assessment and mitigation - - Investment analysis - - Cost-benefit analysis - Provide comprehensive financial insights.""", - llm="gpt-4" - ), - Agent( - name="Technical Strategy Agent", - system_prompt="""You are a technical strategist focused on: - - Technology roadmap planning - - Technical feasibility assessment - - Implementation strategy - - Technology risk evaluation - Provide strategic technical guidance.""", - llm="gpt-4" - ) -] - -# Create the swarm with custom configuration -board_swarm = BoardOfDirectorsSwarm( - agents=agents, - config=custom_config -) - -# Execute a complex task -complex_task = """ -Analyze the feasibility of launching a new AI-powered product in the healthcare sector. -Consider: -1. Market opportunity and competitive landscape -2. Financial viability and investment requirements -3. Technical implementation challenges and timeline -4. Regulatory compliance requirements -5. Risk assessment and mitigation strategies - -Provide a comprehensive report with recommendations for next steps. -""" - -result = board_swarm.run(complex_task) -print(result) -``` - -### Real-World Use Cases - -#### 1. Strategic Business Planning - -```python -# Example: Strategic business planning with multiple stakeholders -business_planning_task = """ -Develop a comprehensive 5-year strategic plan for our technology company. -Include: -- Market analysis and competitive positioning -- Product development roadmap -- Financial projections and funding requirements -- Operational scaling strategy -- Risk management framework -- Success metrics and KPIs -""" - -# Configure board for strategic planning -strategic_config = BoardConfig( - max_loops=4, - voting_threshold=0.8, - consensus_method="weighted_majority", - enable_feedback_loops=True, - output_format="structured" -) - -strategic_swarm = BoardOfDirectorsSwarm( - agents=[market_agent, financial_agent, technical_agent, strategy_agent], - config=strategic_config -) - -strategic_plan = strategic_swarm.run(business_planning_task) -``` - -#### 2. Product Development Decision Making - -```python -# Example: Product development decision making -product_decision_task = """ -Evaluate the feasibility of developing a new AI-powered customer service chatbot. -Consider: -- Technical requirements and development timeline -- Market demand and competitive analysis -- Cost-benefit analysis and ROI projections -- Implementation challenges and resource requirements -- Success criteria and measurement metrics - -Provide a go/no-go recommendation with detailed rationale. -""" - -# Configure board for product decisions -product_config = BoardConfig( - max_loops=3, - voting_threshold=0.75, - consensus_method="majority", - enable_feedback_loops=True, - output_format="structured" -) - -product_swarm = BoardOfDirectorsSwarm( - agents=[technical_agent, market_agent, financial_agent], - config=product_config -) - -product_recommendation = product_swarm.run(product_decision_task) -``` - -#### 3. Crisis Management and Response - -```python -# Example: Crisis management and response planning -crisis_task = """ -Our company is facing a major data breach. Develop an immediate response plan. -Include: -- Immediate containment and mitigation steps -- Communication strategy for stakeholders -- Legal and regulatory compliance requirements -- Financial impact assessment -- Long-term recovery and prevention measures -- Timeline and resource allocation -""" - -# Configure board for crisis management -crisis_config = BoardConfig( - max_loops=2, # Faster response needed - voting_threshold=0.6, # Lower threshold for urgent decisions - consensus_method="majority", - enable_feedback_loops=False, # No time for multiple iterations - output_format="structured" -) - -crisis_swarm = BoardOfDirectorsSwarm( - agents=[security_agent, legal_agent, communications_agent, financial_agent], - config=crisis_config -) - -crisis_response = crisis_swarm.run(crisis_task) -``` - -## Performance Optimization - -### Parallel Execution Strategies - -The Board of Directors Swarm supports various parallel execution strategies: - -1. **Task-Level Parallelism**: Multiple agents work on different aspects simultaneously -2. **Board-Level Parallelism**: Board members can analyze different aspects in parallel -3. **Iteration-Level Parallelism**: Multiple refinement loops can run concurrently - -```python -# Example: Optimizing for parallel execution -parallel_config = BoardConfig( - max_loops=3, - parallel_execution=True, - max_concurrent_agents=5, - enable_async_processing=True, - timeout_per_agent=300, # 5 minutes per agent - enable_agent_pooling=True -) - -# Create agent pool for better resource utilization -agent_pool = [ - Agent(name=f"Research_Agent_{i}", system_prompt="...", llm="gpt-4") - for i in range(3) -] + [ - Agent(name=f"Analysis_Agent_{i}", system_prompt="...", llm="gpt-4") - for i in range(2) -] - -parallel_swarm = BoardOfDirectorsSwarm( - agents=agent_pool, - config=parallel_config -) -``` - -### Quality Control Mechanisms - -```python -# Example: Quality control configuration -quality_config = BoardConfig( - max_loops=3, - quality_gates=True, - quality_threshold=0.8, - enable_peer_review=True, - review_required=True, - output_validation=True, - enable_metrics_tracking=True -) - -# Define quality metrics -quality_metrics = { - "completeness": 0.9, # 90% completeness required - "accuracy": 0.85, # 85% accuracy required - "relevance": 0.9, # 90% relevance required - "clarity": 0.8 # 80% clarity required -} - -quality_swarm = BoardOfDirectorsSwarm( - agents=agents, - config=quality_config, - quality_metrics=quality_metrics -) -``` - -## Monitoring and Debugging - -### Logging and Observability - -```python -import logging -from swarms import BoardOfDirectorsSwarm - -# Configure detailed logging -logging.basicConfig( - level=logging.DEBUG, - format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' -) - -# Create swarm with logging enabled -logging_swarm = BoardOfDirectorsSwarm( - agents=agents, - config=BoardConfig( - enable_logging=True, - log_level="DEBUG", - enable_metrics=True, - enable_tracing=True - ) -) - -# Execute with detailed logging -result = logging_swarm.run(task) -``` - -### Performance Metrics - -```python -# Example: Performance monitoring -from swarms.metrics import SwarmMetrics - -# Create metrics collector -metrics = SwarmMetrics() - -# Configure swarm with metrics -monitored_swarm = BoardOfDirectorsSwarm( - agents=agents, - config=BoardConfig(enable_metrics=True), - metrics_collector=metrics -) - -# Execute and collect metrics -result = monitored_swarm.run(task) - -# Analyze performance -performance_report = metrics.generate_report() -print(f"Total execution time: {performance_report['total_time']}") -print(f"Average agent response time: {performance_report['avg_agent_time']}") -print(f"Number of voting rounds: {performance_report['voting_rounds']}") -print(f"Consensus achieved: {performance_report['consensus_achieved']}") -``` - -## Best Practices - -### 1. Agent Design - -- **Specialized Expertise**: Design agents with specific, complementary expertise -- **Clear Responsibilities**: Define clear boundaries for each agent's responsibilities -- **Consistent Communication**: Use standardized communication protocols -- **Error Handling**: Implement robust error handling and recovery mechanisms - -### 2. Board Configuration - -- **Appropriate Voting Thresholds**: Set thresholds based on decision criticality -- **Balanced Voting Weights**: Ensure fair representation while maintaining leadership hierarchy -- **Flexible Consensus Methods**: Choose consensus methods based on decision type -- **Reasonable Loop Limits**: Balance quality with efficiency - -### 3. Task Design - -- **Clear Objectives**: Define clear, measurable objectives -- **Structured Requirements**: Provide structured, detailed requirements -- **Appropriate Scope**: Ensure tasks are appropriately scoped for the board size -- **Context Provision**: Provide sufficient context for informed decision-making - -### 4. Performance Optimization - -- **Parallel Execution**: Leverage parallel execution where possible -- **Resource Management**: Monitor and optimize resource usage -- **Quality Gates**: Implement appropriate quality control mechanisms -- **Continuous Monitoring**: Monitor performance and adjust configurations as needed - -## Troubleshooting - -### Common Issues and Solutions - -1. **Consensus Not Reached** - - **Issue**: Board cannot reach consensus within loop limit - - **Solution**: Lower voting threshold, increase max_loops, or adjust voting weights - -2. **Agent Timeout** - - **Issue**: Individual agents take too long to respond - - **Solution**: Increase timeout settings or optimize agent prompts - -3. **Poor Quality Output** - - **Issue**: Final output doesn't meet quality standards - - **Solution**: Enable quality gates, increase max_loops, or improve agent prompts - -4. **Resource Exhaustion** - - **Issue**: System runs out of resources during execution - - **Solution**: Implement resource limits, use agent pooling, or optimize parallel execution - -### Debugging Techniques - -```python -# Example: Debugging configuration -debug_config = BoardConfig( - max_loops=1, # Limit loops for debugging - enable_logging=True, - log_level="DEBUG", - enable_tracing=True, - debug_mode=True -) - -# Create debug swarm -debug_swarm = BoardOfDirectorsSwarm( - agents=agents, - config=debug_config -) - -# Execute with debugging -try: - result = debug_swarm.run(task) -except Exception as e: - print(f"Error: {e}") - print(f"Debug info: {debug_swarm.get_debug_info()}") -``` \ No newline at end of file diff --git a/docs/swarms/structs/board_of_directors/board_of_directors_workflow.md b/docs/swarms/structs/board_of_directors/board_of_directors_workflow.md deleted file mode 100644 index 3e913ea7..00000000 --- a/docs/swarms/structs/board_of_directors/board_of_directors_workflow.md +++ /dev/null @@ -1,908 +0,0 @@ -# Board of Directors Workflow - -The Board of Directors workflow is a sophisticated multi-stage process that ensures comprehensive task analysis, collaborative decision-making, and effective execution through specialized agents. This workflow implements a corporate governance model that balances efficiency with thoroughness, ensuring high-quality outcomes through structured collaboration. - -## Workflow Overview - -```mermaid -graph TD - A[Task Input] --> B[Initial Assessment] - B --> C[Board Assembly] - C --> D[Meeting Phase] - D --> E[Decision Phase] - E --> F[Execution Phase] - F --> G[Review Phase] - G --> H{Approval?} - H -->|No| I[Refinement] - I --> D - H -->|Yes| J[Final Delivery] - - style A fill:#e1f5fe - style J fill:#c8e6c9 - style H fill:#fff3e0 -``` - -**Diagram Explanation:** -This high-level workflow diagram shows the complete lifecycle of a task through the Board of Directors system. The process begins with task input, followed by an initial assessment to understand requirements and complexity. The board then assembles with appropriate members, conducts a structured meeting phase for analysis and discussion, makes decisions through voting and consensus, executes the plan through specialized agents, reviews results, and either approves for final delivery or returns to refinement loops for improvement. - -**Technical Implementation Details:** -- **Task Input Validation**: System validates task format, requirements, and constraints -- **Dynamic Board Assembly**: Board members are selected based on task requirements and availability -- **Structured Meeting Protocol**: Follows corporate governance best practices -- **Iterative Refinement**: Quality gates ensure output meets standards before final delivery - -## Phase 1: Initial Assessment - -### Task Analysis and Board Preparation - -```mermaid -flowchart LR - A[Task Received] --> B[Complexity Assessment] - B --> C[Resource Requirements] - C --> D[Expertise Mapping] - D --> E[Board Member Selection] - E --> F[Meeting Scheduling] - - subgraph "Assessment Criteria" - G[Task Complexity] - H[Time Constraints] - I[Resource Availability] - J[Expertise Requirements] - end - - B --> G - B --> H - C --> I - D --> J -``` - -**Diagram Explanation:** -This flowchart illustrates the systematic approach to task analysis and board preparation. When a task is received, the system performs a comprehensive assessment including complexity evaluation, resource requirement analysis, expertise mapping, and board member selection. The assessment criteria include task complexity, time constraints, resource availability, and specific expertise requirements needed for successful completion. - -**Technical Implementation:** -```python -# Example: Task assessment implementation -class TaskAssessment: - def __init__(self): - self.complexity_metrics = { - "scope": 0.0, # Task scope (0-1) - "technical_depth": 0.0, # Technical complexity (0-1) - "stakeholder_count": 0, # Number of stakeholders - "timeline_constraints": 0.0, # Time pressure (0-1) - "resource_intensity": 0.0 # Resource requirements (0-1) - } - - def assess_task(self, task_description): - """Assess task complexity and requirements""" - assessment = { - "complexity_score": self.calculate_complexity(), - "required_expertise": self.identify_expertise_needs(), - "resource_requirements": self.estimate_resources(), - "timeline_estimate": self.estimate_timeline(), - "recommended_board_size": self.calculate_board_size() - } - return assessment - - def calculate_complexity(self): - """Calculate overall task complexity score""" - weights = { - "scope": 0.25, - "technical_depth": 0.3, - "stakeholder_count": 0.15, - "timeline_constraints": 0.2, - "resource_intensity": 0.1 - } - - complexity_score = sum( - self.complexity_metrics[key] * weights[key] - for key in weights - ) - return min(complexity_score, 1.0) - - def identify_expertise_needs(self): - """Identify required expertise areas""" - expertise_areas = [] - - if self.complexity_metrics["technical_depth"] > 0.5: - expertise_areas.append("technical") - - if self.complexity_metrics["stakeholder_count"] > 3: - expertise_areas.append("stakeholder_management") - - if self.complexity_metrics["resource_intensity"] > 0.5: - expertise_areas.append("resource_management") - - return expertise_areas -``` - -### Board Member Activation - -```mermaid -sequenceDiagram - participant System - participant Chairman - participant Members - participant Agents - - System->>Chairman: Notify New Task - Chairman->>System: Assess Task Requirements - System->>Members: Activate Relevant Members - Members->>Chairman: Confirm Availability - Chairman->>Agents: Prepare Agent Pool - Agents->>Chairman: Confirm Readiness - Chairman->>System: Board Ready for Meeting -``` - -**Diagram Explanation:** -This sequence diagram shows the systematic process of board member activation and preparation. The system notifies the Chairman of a new task, who then assesses requirements and determines which board members are needed. The system activates relevant members, who confirm their availability. The Chairman prepares the agent pool and confirms readiness before declaring the board ready for the meeting. - -**Technical Implementation:** -```python -# Example: Board member activation system -class BoardActivation: - def __init__(self, board_members, agents): - self.board_members = board_members - self.agents = agents - self.activation_status = {} - - async def activate_board(self, task_assessment): - """Activate board members based on task requirements""" - # Determine required members - required_members = self.select_required_members(task_assessment) - - # Activate members - activation_results = [] - for member in required_members: - status = await self.activate_member(member, task_assessment) - activation_results.append(status) - - # Prepare agent pool - agent_pool = self.prepare_agent_pool(task_assessment) - - # Confirm readiness - readiness_status = await self.confirm_readiness(activation_results, agent_pool) - - return { - "board_ready": readiness_status["ready"], - "active_members": readiness_status["active_members"], - "agent_pool": readiness_status["agent_pool"], - "estimated_start_time": readiness_status["start_time"] - } - - def select_required_members(self, assessment): - """Select board members based on task requirements""" - required_members = ["CHAIRMAN"] # Chairman always required - - if assessment["complexity_score"] > 0.7: - required_members.extend(["VICE_CHAIRMAN", "EXECUTIVE_DIRECTOR"]) - - if "technical" in assessment["required_expertise"]: - required_members.append("TECHNICAL_DIRECTOR") - - if "financial" in assessment["required_expertise"]: - required_members.append("TREASURER") - - if assessment["stakeholder_count"] > 5: - required_members.append("SECRETARY") - - return list(set(required_members)) # Remove duplicates - - async def activate_member(self, member_role, assessment): - """Activate individual board member""" - member = self.board_members.get(member_role) - if not member: - return {"status": "error", "message": f"Member {member_role} not found"} - - # Check availability - availability = await member.check_availability() - if not availability["available"]: - return {"status": "unavailable", "member": member_role, "reason": availability["reason"]} - - # Prepare member for task - preparation_status = await member.prepare_for_task(assessment) - - return { - "status": "activated", - "member": member_role, - "preparation_time": preparation_status["preparation_time"], - "expertise_areas": preparation_status["expertise_areas"] - } -``` - -## Phase 2: Board Meeting - -### Meeting Structure - -```mermaid -graph TD - A[Meeting Opens] --> B[Agenda Review] - B --> C[Task Presentation] - C --> D[Expertise Assignment] - D --> E[Individual Analysis] - E --> F[Group Discussion] - F --> G[Proposal Development] - G --> H[Voting Process] - H --> I[Consensus Building] - I --> J[Plan Finalization] - - subgraph "Meeting Components" - K[Time Management] - L[Documentation] - M[Conflict Resolution] - N[Decision Recording] - end - - A --> K - F --> L - I --> M - J --> N -``` - -**Diagram Explanation:** -This diagram shows the structured meeting process that follows corporate governance best practices. The meeting begins with agenda review and task presentation, followed by expertise assignment where board members are given specific areas to analyze. Individual analysis leads to group discussion, proposal development, voting, consensus building, and plan finalization. Throughout the process, time management, documentation, conflict resolution, and decision recording ensure effective governance. - -**Technical Implementation:** -```python -# Example: Meeting management system -class BoardMeeting: - def __init__(self, board_members, task, config): - self.board_members = board_members - self.task = task - self.config = config - self.meeting_phases = [] - self.decisions = [] - self.documentation = {} - - async def conduct_meeting(self): - """Conduct the board meeting following structured phases""" - meeting_result = { - "phases": [], - "decisions": [], - "documentation": {}, - "consensus_achieved": False, - "final_plan": None - } - - # Phase 1: Meeting Opening and Agenda Review - opening_phase = await self.conduct_opening_phase() - meeting_result["phases"].append(opening_phase) - - # Phase 2: Task Presentation and Expertise Assignment - presentation_phase = await self.conduct_presentation_phase() - meeting_result["phases"].append(presentation_phase) - - # Phase 3: Individual Analysis - analysis_phase = await self.conduct_analysis_phase() - meeting_result["phases"].append(analysis_phase) - - # Phase 4: Group Discussion - discussion_phase = await self.conduct_discussion_phase() - meeting_result["phases"].append(discussion_phase) - - # Phase 5: Proposal Development - proposal_phase = await self.conduct_proposal_phase() - meeting_result["phases"].append(proposal_phase) - - # Phase 6: Voting and Consensus - voting_phase = await self.conduct_voting_phase() - meeting_result["phases"].append(voting_phase) - - # Phase 7: Plan Finalization - finalization_phase = await self.conduct_finalization_phase() - meeting_result["phases"].append(finalization_phase) - - meeting_result["decisions"] = self.decisions - meeting_result["documentation"] = self.documentation - meeting_result["consensus_achieved"] = voting_phase["consensus_achieved"] - meeting_result["final_plan"] = finalization_phase["final_plan"] - - return meeting_result - - async def conduct_opening_phase(self): - """Conduct meeting opening and agenda review""" - chairman = self.board_members["CHAIRMAN"] - - # Open meeting - opening_statement = await chairman.open_meeting(self.task) - - # Review agenda - agenda_review = await chairman.review_agenda(self.task) - - # Set meeting parameters - meeting_params = { - "time_limit": self.config.get("meeting_time_limit", 3600), # 1 hour default - "voting_threshold": self.config.get("voting_threshold", 0.7), - "consensus_method": self.config.get("consensus_method", "majority") - } - - return { - "phase": "opening", - "opening_statement": opening_statement, - "agenda_review": agenda_review, - "meeting_params": meeting_params, - "timestamp": datetime.now().isoformat() - } - - async def conduct_presentation_phase(self): - """Conduct task presentation and expertise assignment""" - chairman = self.board_members["CHAIRMAN"] - - # Present task details - task_presentation = await chairman.present_task(self.task) - - # Assign expertise areas - expertise_assignments = await chairman.assign_expertise_areas( - self.board_members, self.task - ) - - return { - "phase": "presentation", - "task_presentation": task_presentation, - "expertise_assignments": expertise_assignments, - "timestamp": datetime.now().isoformat() - } -``` - -### Discussion and Debate Process - -```mermaid -flowchart TD - A[Discussion Opens] --> B[Expertise-Based Input] - B --> C[Cross-Examination] - C --> D[Alternative Proposals] - D --> E[Impact Analysis] - E --> F[Risk Assessment] - F --> G[Stakeholder Consideration] - G --> H[Resource Evaluation] - H --> I[Timeline Assessment] - I --> J[Consensus Check] - J -->|No Consensus| K[Conflict Resolution] - K --> L[Mediation Process] - L --> J - J -->|Consensus| M[Proposal Finalization] - - subgraph "Discussion Elements" - N[Evidence-Based Arguments] - O[Stakeholder Perspectives] - P[Risk-Benefit Analysis] - Q[Implementation Feasibility] - end - - B --> N - G --> O - E --> P - H --> Q -``` - -**Diagram Explanation:** -This flowchart details the discussion and debate process that ensures thorough consideration of all aspects before decision-making. The process begins with expertise-based input from each board member, followed by cross-examination to validate claims. Alternative proposals are considered, and comprehensive impact analysis, risk assessment, stakeholder consideration, resource evaluation, and timeline assessment are conducted. If consensus isn't reached, conflict resolution and mediation processes are employed until agreement is achieved. - -**Technical Implementation:** -```python -# Example: Discussion and debate management -class DiscussionManager: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.discussion_points = [] - self.conflicts = [] - self.consensus_status = False - - async def conduct_discussion(self, task, expertise_assignments): - """Conduct structured discussion and debate""" - discussion_result = { - "phases": [], - "consensus_achieved": False, - "final_proposal": None, - "conflicts_resolved": [] - } - - # Phase 1: Expertise-based input - expertise_input = await self.gather_expertise_input(task, expertise_assignments) - discussion_result["phases"].append(expertise_input) - - # Phase 2: Cross-examination - cross_examination = await self.conduct_cross_examination(expertise_input) - discussion_result["phases"].append(cross_examination) - - # Phase 3: Alternative proposals - alternatives = await self.generate_alternatives(task, expertise_input) - discussion_result["phases"].append(alternatives) - - # Phase 4: Comprehensive analysis - analysis = await self.conduct_comprehensive_analysis(task, alternatives) - discussion_result["phases"].append(analysis) - - # Phase 5: Consensus building - consensus = await self.build_consensus(analysis) - discussion_result["phases"].append(consensus) - - discussion_result["consensus_achieved"] = consensus["achieved"] - discussion_result["final_proposal"] = consensus["final_proposal"] - discussion_result["conflicts_resolved"] = consensus["conflicts_resolved"] - - return discussion_result - - async def gather_expertise_input(self, task, expertise_assignments): - """Gather input from each board member based on their expertise""" - expertise_inputs = {} - - for member_role, expertise_areas in expertise_assignments.items(): - member = self.board_members[member_role] - - # Generate expertise-based analysis - analysis = await member.analyze_task_areas(task, expertise_areas) - - expertise_inputs[member_role] = { - "expertise_areas": expertise_areas, - "analysis": analysis, - "recommendations": analysis.get("recommendations", []), - "concerns": analysis.get("concerns", []), - "proposals": analysis.get("proposals", []) - } - - return { - "phase": "expertise_input", - "inputs": expertise_inputs, - "timestamp": datetime.now().isoformat() - } - - async def conduct_cross_examination(self, expertise_input): - """Conduct cross-examination of expertise inputs""" - cross_examination_results = {} - - for member_role, input_data in expertise_input["inputs"].items(): - member = self.board_members[member_role] - - # Other members examine this member's input - examinations = [] - for examiner_role, examiner in self.board_members.items(): - if examiner_role != member_role: - examination = await examiner.examine_input( - input_data, member_role - ) - examinations.append({ - "examiner": examiner_role, - "examination": examination - }) - - cross_examination_results[member_role] = { - "original_input": input_data, - "examinations": examinations, - "validation_status": self.assess_validation_status(examinations) - } - - return { - "phase": "cross_examination", - "results": cross_examination_results, - "timestamp": datetime.now().isoformat() - } - - async def generate_alternatives(self, task, expertise_input): - """Generate alternative proposals based on expertise input""" - alternatives = [] - - # Generate alternatives from each expertise area - for member_role, input_data in expertise_input["inputs"].items(): - member = self.board_members[member_role] - - member_alternatives = await member.generate_alternatives( - task, input_data - ) - - alternatives.extend(member_alternatives) - - # Combine and synthesize alternatives - synthesized_alternatives = await self.synthesize_alternatives(alternatives) - - return { - "phase": "alternatives", - "individual_alternatives": alternatives, - "synthesized_alternatives": synthesized_alternatives, - "timestamp": datetime.now().isoformat() - } -``` - -## Phase 3: Decision Making - -### Voting and Consensus Process - -```mermaid -graph TD - A[Proposal Review] --> B[Voting Preparation] - B --> C[Individual Voting] - C --> D[Vote Aggregation] - D --> E[Threshold Check] - E -->|Below Threshold| F[Consensus Building] - F --> G[Proposal Refinement] - G --> C - E -->|Above Threshold| H[Decision Finalization] - H --> I[Plan Creation] - I --> J[Execution Orders] - - subgraph "Voting Components" - K[Weighted Voting] - L[Secret Ballot] - M[Transparent Process] - N[Conflict Resolution] - end - - C --> K - C --> L - D --> M - F --> N -``` - -**Diagram Explanation:** -This diagram shows the structured voting and consensus process that ensures fair and transparent decision-making. The process begins with proposal review and voting preparation, followed by individual voting where each board member casts their vote. Votes are aggregated and checked against the consensus threshold. If the threshold isn't met, consensus building and proposal refinement processes are initiated. Once the threshold is achieved, the decision is finalized, a plan is created, and execution orders are generated. - -**Technical Implementation:** -```python -# Example: Voting and consensus system -class VotingSystem: - def __init__(self, board_members, config): - self.board_members = board_members - self.config = config - self.voting_history = [] - self.consensus_threshold = config.get("voting_threshold", 0.7) - self.voting_weights = config.get("voting_weights", {}) - - async def conduct_voting(self, proposals): - """Conduct voting on proposals""" - voting_result = { - "rounds": [], - "final_decision": None, - "consensus_achieved": False, - "voting_summary": {} - } - - current_proposals = proposals - round_number = 1 - - while round_number <= self.config.get("max_voting_rounds", 3): - # Conduct voting round - round_result = await self.conduct_voting_round( - current_proposals, round_number - ) - voting_result["rounds"].append(round_result) - - # Check if consensus achieved - if round_result["consensus_achieved"]: - voting_result["final_decision"] = round_result["winning_proposal"] - voting_result["consensus_achieved"] = True - break - - # Refine proposals for next round - current_proposals = await self.refine_proposals( - current_proposals, round_result - ) - - round_number += 1 - - # Generate voting summary - voting_result["voting_summary"] = self.generate_voting_summary( - voting_result["rounds"] - ) - - return voting_result - - async def conduct_voting_round(self, proposals, round_number): - """Conduct a single voting round""" - round_result = { - "round": round_number, - "proposals": proposals, - "votes": {}, - "aggregated_results": {}, - "consensus_achieved": False, - "winning_proposal": None - } - - # Collect votes from each board member - for member_role, member in self.board_members.items(): - vote = await member.vote_on_proposals(proposals, round_number) - round_result["votes"][member_role] = vote - - # Aggregate votes - aggregated_results = self.aggregate_votes( - round_result["votes"], proposals - ) - round_result["aggregated_results"] = aggregated_results - - # Check consensus - consensus_check = self.check_consensus(aggregated_results) - round_result["consensus_achieved"] = consensus_check["achieved"] - round_result["winning_proposal"] = consensus_check["winning_proposal"] - - return round_result - - def aggregate_votes(self, votes, proposals): - """Aggregate votes using weighted voting system""" - aggregated_results = {} - - for proposal_id in [p["id"] for p in proposals]: - total_weighted_score = 0 - total_weight = 0 - vote_counts = {} - - for member_role, vote in votes.items(): - member_weight = self.voting_weights.get(member_role, 1.0) - - if proposal_id in vote["scores"]: - score = vote["scores"][proposal_id] - weighted_score = score * member_weight - total_weighted_score += weighted_score - total_weight += member_weight - - # Track vote distribution - vote_counts[member_role] = { - "score": score, - "weight": member_weight, - "weighted_score": weighted_score - } - - # Calculate final score - final_score = total_weighted_score / total_weight if total_weight > 0 else 0 - - aggregated_results[proposal_id] = { - "final_score": final_score, - "total_weight": total_weight, - "vote_counts": vote_counts, - "consensus_percentage": final_score - } - - return aggregated_results - - def check_consensus(self, aggregated_results): - """Check if consensus threshold is met""" - best_proposal = None - best_score = 0 - - for proposal_id, result in aggregated_results.items(): - if result["final_score"] > best_score: - best_score = result["final_score"] - best_proposal = proposal_id - - consensus_achieved = best_score >= self.consensus_threshold - - return { - "achieved": consensus_achieved, - "winning_proposal": best_proposal if consensus_achieved else None, - "best_score": best_score, - "threshold": self.consensus_threshold - } -``` - -## Phase 4: Execution and Monitoring - -### Agent Execution Management - -```mermaid -graph TD - A[Execution Orders] --> B[Agent Assignment] - B --> C[Task Distribution] - C --> D[Parallel Execution] - D --> E[Progress Monitoring] - E --> F[Result Collection] - F --> G[Quality Assessment] - G --> H{Quality Met?} - H -->|No| I[Refinement Request] - I --> J[Agent Re-execution] - J --> E - H -->|Yes| K[Result Aggregation] - K --> L[Board Review] - - subgraph "Execution Components" - M[Resource Allocation] - N[Deadline Management] - O[Error Handling] - P[Performance Tracking] - end - - B --> M - C --> N - D --> O - E --> P -``` - -**Diagram Explanation:** -This diagram illustrates the execution and monitoring phase where the board's decisions are implemented through specialized agents. Execution orders are created and distributed to appropriate agents, who execute tasks in parallel while being monitored for progress. Results are collected, assessed for quality, and either approved or sent back for refinement. Once quality standards are met, results are aggregated and presented to the board for final review. - -**Technical Implementation:** -```python -# Example: Execution management system -class ExecutionManager: - def __init__(self, agents, config): - self.agents = agents - self.config = config - self.execution_status = {} - self.performance_metrics = {} - - async def execute_plan(self, execution_plan): - """Execute the board's approved plan""" - execution_result = { - "phases": [], - "final_results": None, - "quality_metrics": {}, - "performance_summary": {} - } - - # Phase 1: Agent assignment and task distribution - assignment_phase = await self.assign_agents(execution_plan) - execution_result["phases"].append(assignment_phase) - - # Phase 2: Parallel execution with monitoring - execution_phase = await self.execute_tasks(assignment_phase["assignments"]) - execution_result["phases"].append(execution_phase) - - # Phase 3: Result collection and quality assessment - assessment_phase = await self.assess_results(execution_phase["results"]) - execution_result["phases"].append(assessment_phase) - - # Phase 4: Result aggregation and board review - review_phase = await self.prepare_board_review(assessment_phase) - execution_result["phases"].append(review_phase) - - execution_result["final_results"] = review_phase["final_results"] - execution_result["quality_metrics"] = assessment_phase["quality_metrics"] - execution_result["performance_summary"] = execution_phase["performance_summary"] - - return execution_result - - async def assign_agents(self, execution_plan): - """Assign agents to tasks based on execution plan""" - assignments = {} - - for task_id, task_details in execution_plan["tasks"].items(): - # Select appropriate agent based on task requirements - selected_agent = await self.select_agent_for_task(task_details) - - # Prepare task assignment - assignment = { - "task_id": task_id, - "agent": selected_agent, - "task_details": task_details, - "deadline": task_details.get("deadline"), - "priority": task_details.get("priority", "normal"), - "resources": task_details.get("resources", []), - "expected_output": task_details.get("expected_output") - } - - assignments[task_id] = assignment - - return { - "phase": "agent_assignment", - "assignments": assignments, - "timestamp": datetime.now().isoformat() - } - - async def execute_tasks(self, assignments): - """Execute tasks in parallel with monitoring""" - execution_tasks = [] - execution_results = {} - performance_metrics = {} - - # Create execution tasks - for task_id, assignment in assignments.items(): - task = self.create_execution_task(assignment) - execution_tasks.append(task) - - # Execute tasks in parallel - results = await asyncio.gather(*execution_tasks, return_exceptions=True) - - # Process results - for i, result in enumerate(results): - task_id = list(assignments.keys())[i] - - if isinstance(result, Exception): - execution_results[task_id] = { - "status": "error", - "error": str(result), - "retry_count": 0 - } - else: - execution_results[task_id] = { - "status": "completed", - "result": result, - "execution_time": result.get("execution_time"), - "quality_score": result.get("quality_score") - } - - # Collect performance metrics - performance_metrics[task_id] = self.collect_performance_metrics( - task_id, result - ) - - return { - "phase": "task_execution", - "results": execution_results, - "performance_summary": self.summarize_performance(performance_metrics), - "timestamp": datetime.now().isoformat() - } - - async def assess_results(self, execution_results): - """Assess quality of execution results""" - quality_metrics = {} - overall_quality_score = 0 - total_tasks = len(execution_results) - - for task_id, result in execution_results.items(): - if result["status"] == "completed": - # Assess individual task quality - task_quality = await self.assess_task_quality(result) - quality_metrics[task_id] = task_quality - overall_quality_score += task_quality["overall_score"] - else: - quality_metrics[task_id] = { - "overall_score": 0, - "completeness": 0, - "accuracy": 0, - "relevance": 0, - "issues": ["Task failed to execute"] - } - - # Calculate overall quality - overall_quality_score = overall_quality_score / total_tasks if total_tasks > 0 else 0 - - return { - "phase": "quality_assessment", - "quality_metrics": quality_metrics, - "overall_quality_score": overall_quality_score, - "quality_threshold_met": overall_quality_score >= self.config.get("quality_threshold", 0.8), - "timestamp": datetime.now().isoformat() - } -``` - -## Best Practices and Optimization - -### Performance Optimization Strategies - -1. **Parallel Execution**: Maximize parallel agent execution for faster results -2. **Resource Pooling**: Implement agent pooling for better resource utilization -3. **Caching**: Cache common analysis results to avoid redundant computation -4. **Load Balancing**: Distribute tasks evenly across available agents - -### Quality Assurance - -1. **Quality Gates**: Implement quality checkpoints throughout the process -2. **Peer Review**: Enable peer review mechanisms for critical decisions -3. **Validation**: Validate outputs against predefined criteria -4. **Continuous Improvement**: Learn from previous executions to improve future performance - -### Monitoring and Analytics - -```python -# Example: Performance monitoring system -class PerformanceMonitor: - def __init__(self): - self.metrics = { - "execution_times": [], - "quality_scores": [], - "consensus_rounds": [], - "error_rates": [] - } - - def track_execution_time(self, phase, duration): - """Track execution time for different phases""" - self.metrics["execution_times"].append({ - "phase": phase, - "duration": duration, - "timestamp": datetime.now().isoformat() - }) - - def track_quality_score(self, score): - """Track quality scores""" - self.metrics["quality_scores"].append({ - "score": score, - "timestamp": datetime.now().isoformat() - }) - - def generate_performance_report(self): - """Generate comprehensive performance report""" - return { - "average_execution_time": self.calculate_average_execution_time(), - "quality_trends": self.analyze_quality_trends(), - "consensus_efficiency": self.analyze_consensus_efficiency(), - "error_analysis": self.analyze_errors(), - "recommendations": self.generate_recommendations() - } -``` \ No newline at end of file diff --git a/docs/swarms/structs/board_of_directors/index.md b/docs/swarms/structs/board_of_directors/index.md deleted file mode 100644 index 136fdea8..00000000 --- a/docs/swarms/structs/board_of_directors/index.md +++ /dev/null @@ -1,291 +0,0 @@ -# Board of Directors - Multi-Agent Architecture - -The Board of Directors is a sophisticated multi-agent architecture that implements collective decision-making through democratic processes, voting mechanisms, and role-based leadership. This architecture provides an alternative to single-director patterns by enabling collaborative intelligence through structured governance. - -## 🏛️ Overview - -The Board of Directors architecture follows a democratic workflow pattern: - -1. **Task Reception**: User provides a task to the swarm -2. **Board Meeting**: Board of Directors convenes to discuss and create a plan -3. **Voting & Consensus**: Board members vote and reach consensus on task distribution -4. **Order Distribution**: Board distributes orders to specialized worker agents -5. **Execution**: Individual agents execute their assigned tasks -6. **Feedback Loop**: Board evaluates results and issues new orders if needed (up to `max_loops`) -7. **Context Preservation**: All conversation history and context is maintained throughout the process - -## 🏗️ Architecture Components - -### Core Components - -| Component | Description | Purpose | -|-----------|-------------|---------| -| **[BoardOfDirectorsSwarm](board_of_directors_swarm.md)** | Main orchestration class | Manages the entire board workflow and agent coordination | -| **[Board Member Roles](board_of_directors_roles.md)** | Role definitions and hierarchy | Defines responsibilities and voting weights for each board member | -| **[Decision Making Process](board_of_directors_decision_making.md)** | Voting and consensus mechanisms | Implements democratic decision-making with weighted voting | -| **[Workflow Management](board_of_directors_workflow.md)** | Process orchestration | Manages the complete lifecycle from task reception to final delivery | - -### Architecture Diagram - -```mermaid -graph TD - A[User Task] --> B[Board of Directors] - B --> C[Board Meeting & Discussion] - C --> D[Voting & Consensus] - D --> E[Create Plan & Orders] - E --> F[Distribute to Agents] - F --> G[Agent 1] - F --> H[Agent 2] - F --> I[Agent N] - G --> J[Execute Task] - H --> J - I --> J - J --> K[Report Results] - K --> L[Board Evaluation] - L --> M{More Loops?} - M -->|Yes| C - M -->|No| N[Final Output] -``` - -## 🎯 Key Features - -### Democratic Decision Making -- **Collective Intelligence**: Multiple perspectives through board member collaboration -- **Weighted Voting**: Different voting weights based on roles and expertise -- **Consensus Building**: Support for both majority voting and consensus approaches -- **Conflict Resolution**: Structured processes for handling disagreements - -### Role-Based Leadership -- **Hierarchical Structure**: Clear roles with defined responsibilities -- **Specialized Expertise**: Each board member brings unique domain knowledge -- **Authority Distribution**: Balanced power distribution across roles -- **Accountability**: Clear lines of responsibility and decision ownership - -### Operational Excellence -- **Iterative Refinement**: Multiple feedback loops for improved results -- **Context Preservation**: Full conversation history maintained -- **Flexible Output Formats**: Support for various output types (dict, str, list) -- **Comprehensive Logging**: Detailed logging for debugging and monitoring - -## 👥 Board Member Roles - -The Board of Directors supports various roles with different responsibilities and voting weights: - -| Role | Description | Voting Weight | Responsibilities | -|------|-------------|---------------|------------------| -| `CHAIRMAN` | Primary leader responsible for board meetings and final decisions | 1.5 | Leading meetings, facilitating consensus, making final decisions | -| `VICE_CHAIRMAN` | Secondary leader who supports the chairman | 1.2 | Supporting chairman, coordinating operations | -| `SECRETARY` | Responsible for documentation and meeting minutes | 1.0 | Documenting meetings, maintaining records | -| `TREASURER` | Manages financial aspects and resource allocation | 1.0 | Financial oversight, resource management | -| `EXECUTIVE_DIRECTOR` | Executive-level board member with operational authority | 1.5 | Strategic planning, operational oversight | -| `MEMBER` | General board member with specific expertise | 1.0 | Contributing expertise, participating in decisions | - -## 🚀 Quick Start - -### Basic Setup - -```python -from swarms import Agent -from swarms.structs.board_of_directors_swarm import ( - BoardOfDirectorsSwarm, - BoardMember, - BoardMemberRole -) -from swarms.config.board_config import enable_board_feature - -# Enable the Board of Directors feature -enable_board_feature() - -# Create board members with specific roles -chairman = Agent( - agent_name="Chairman", - agent_description="Chairman of the Board responsible for leading meetings", - model_name="gpt-4o-mini", - system_prompt="You are the Chairman of the Board..." -) - -vice_chairman = Agent( - agent_name="Vice-Chairman", - agent_description="Vice Chairman who supports the Chairman", - model_name="gpt-4o-mini", - system_prompt="You are the Vice Chairman..." -) - -# Create BoardMember objects with roles and expertise -board_members = [ - BoardMember(chairman, BoardMemberRole.CHAIRMAN, 1.5, ["leadership", "strategy"]), - BoardMember(vice_chairman, BoardMemberRole.VICE_CHAIRMAN, 1.2, ["operations", "coordination"]), -] - -# Create worker agents -research_agent = Agent( - agent_name="Research-Specialist", - agent_description="Expert in market research and analysis", - model_name="gpt-4o", -) - -financial_agent = Agent( - agent_name="Financial-Analyst", - agent_description="Specialist in financial analysis and valuation", - model_name="gpt-4o", -) - -# Initialize the Board of Directors swarm -board_swarm = BoardOfDirectorsSwarm( - name="Executive_Board_Swarm", - description="Executive board with specialized roles for strategic decision-making", - board_members=board_members, - agents=[research_agent, financial_agent], - max_loops=2, - verbose=True, - decision_threshold=0.6, - enable_voting=True, - enable_consensus=True, -) - -# Execute a complex task with democratic decision-making -result = board_swarm.run(task="Analyze the market potential for Tesla (TSLA) stock") -print(result) -``` - -## 📋 Use Cases - -### Corporate Governance -- **Strategic Planning**: Long-term business strategy development -- **Risk Management**: Comprehensive risk assessment and mitigation -- **Resource Allocation**: Optimal distribution of company resources -- **Performance Oversight**: Monitoring and evaluating organizational performance - -### Financial Analysis -- **Portfolio Management**: Investment portfolio optimization and rebalancing -- **Market Analysis**: Comprehensive market research and trend analysis -- **Risk Assessment**: Financial risk evaluation and management -- **Compliance Monitoring**: Regulatory compliance and audit preparation - -### Research & Development -- **Technology Assessment**: Evaluation of emerging technologies -- **Product Development**: Strategic product planning and development -- **Innovation Management**: Managing innovation pipelines and initiatives -- **Quality Assurance**: Ensuring high standards across development processes - -### Project Management -- **Complex Project Planning**: Multi-faceted project strategy development -- **Resource Optimization**: Efficient allocation of project resources -- **Stakeholder Management**: Coordinating diverse stakeholder interests -- **Risk Mitigation**: Identifying and addressing project risks - -## ⚙️ Configuration - -### Decision Thresholds -- **Default Threshold**: 60% consensus required for decisions -- **Configurable**: Adjustable based on organizational needs -- **Role-Based**: Different thresholds for different types of decisions -- **Fallback Mechanisms**: Chairman can make final decisions when consensus fails - -### Voting Mechanisms -- **Weighted Voting**: Different voting weights based on roles -- **Consensus Building**: Support for both majority and consensus approaches -- **Conflict Resolution**: Structured processes for handling disagreements -- **Transparency**: Clear visibility into decision-making processes - -### Operational Settings -- **Meeting Duration**: Configurable board meeting time limits -- **Participation Requirements**: Minimum participation rates for valid decisions -- **Feedback Loops**: Multiple iterations for complex problem-solving -- **Documentation**: Comprehensive record-keeping of all decisions - -## 🔧 Advanced Features - -### Custom Board Templates -Pre-configured board templates for common use cases: - -```python -from swarms.config.board_config import get_default_board_template - -# Get a financial analysis board template -financial_board = get_default_board_template("financial_analysis") - -# Get a strategic planning board template -strategic_board = get_default_board_template("strategic_planning") -``` - -### Dynamic Role Assignment -Automatically assign roles based on task requirements: - -```python -# Board members are automatically assigned roles based on expertise -board_swarm = BoardOfDirectorsSwarm( - board_members=board_members, - auto_assign_roles=True, - role_mapping={ - "financial_analysis": ["Treasurer", "Financial_Member"], - "strategic_planning": ["Chairman", "Executive_Director"] - } -) -``` - -### Consensus Optimization -Advanced consensus-building mechanisms: - -```python -# Enable advanced consensus features -board_swarm = BoardOfDirectorsSwarm( - enable_consensus=True, - consensus_timeout=300, # 5 minutes - min_participation_rate=0.5, # 50% minimum participation - auto_fallback_to_chairman=True -) -``` - -## 📊 Performance Monitoring - -### Decision Metrics -- **Consensus Rate**: Percentage of decisions reached by consensus -- **Voting Participation**: Board member participation rates -- **Decision Quality**: Assessment of decision outcomes -- **Execution Efficiency**: Time from decision to implementation - -### Operational Metrics -- **Meeting Duration**: Average board meeting length -- **Agent Utilization**: How effectively worker agents are utilized -- **Feedback Loop Efficiency**: Speed of iterative improvements -- **Resource Optimization**: Efficient use of computational resources - -## 🛠️ Troubleshooting - -### Common Issues - -1. **Consensus Failures**: Lower decision threshold or increase timeout -2. **Role Conflicts**: Ensure clear role definitions and responsibilities -3. **Agent Coordination**: Verify agent communication and task distribution -4. **Performance Issues**: Monitor resource usage and optimize configurations - -### Best Practices - -1. **Role Clarity**: Define clear responsibilities for each board member -2. **Expertise Alignment**: Match board member expertise to task requirements -3. **Consensus Building**: Allow adequate time for discussion and consensus -4. **Documentation**: Maintain comprehensive records of all decisions -5. **Continuous Improvement**: Learn from each execution cycle - -## 📚 Documentation Sections - -- **[BoardOfDirectorsSwarm](board_of_directors_swarm.md)**: Complete API reference and implementation details -- **[Board Member Roles](board_of_directors_roles.md)**: Detailed role definitions and responsibilities -- **[Decision Making Process](board_of_directors_decision_making.md)**: Voting mechanisms and consensus building -- **[Workflow Management](board_of_directors_workflow.md)**: Complete process orchestration guide - -## 🎯 Success Criteria - -A successful Board of Directors implementation should demonstrate: - -- ✅ **Democratic Decision Making**: All board members contribute to decisions -- ✅ **Consensus Achievement**: Decisions reached through collaborative processes -- ✅ **Role Effectiveness**: Each board member fulfills their responsibilities -- ✅ **Agent Coordination**: Worker agents execute tasks efficiently -- ✅ **Quality Output**: High-quality results through collective intelligence -- ✅ **Process Transparency**: Clear visibility into decision-making processes - ---- - -The Board of Directors architecture represents a sophisticated approach to multi-agent collaboration, enabling organizations to leverage collective intelligence through structured governance and democratic decision-making processes. \ No newline at end of file