speech to text tool

pull/55/head
Kye 1 year ago
parent db93e3f9f2
commit 903eeeb1a0

@ -8,7 +8,6 @@ class MultiModalVisualAgent:
agent: MultiModalVisualAgent
):
self.agent = agent
self.plan = plan
async def run(self, text: str) -> str:
#run the multi-modal visual agent with the give task

@ -0,0 +1,116 @@
#speech to text
import os
from pydub import AudioSegment
from pytube import YouTube
import whisperx
class SpeechToText:
def __init__(
self,
video_url,
audio_format='mp3',
device='cuda',
batch_size = 16,
compute_type = "float16",
hf_api_key = None
):
"""
# Example usage
video_url = "url"
speech_to_text = SpeechToText(video_url)
transcription = speech_to_text.transcribe_youtube_video()
print(transcription)
"""
self.video_url = video_url
self.audio_format = audio_format
self.device = device
self.batch_size = batch_size
self.compute_type = compute_type
self.hf_api_key = hf_api_key
def download_youtube_video(self):
audio_file = f'video.{self.audio_format}'
# Download video 📥
yt = YouTube(self.video_url)
yt_stream = yt.streams.filter(only_audio=True).first()
yt_stream.download(filename='video.mp4')
# Convert video to audio 🎧
video = AudioSegment.from_file("video.mp4", format="mp4")
video.export(audio_file, format=self.audio_format)
os.remove("video.mp4")
return audio_file
def transcribe_youtube_video(self):
audio_file = self.download_youtube_video()
device = "cuda"
batch_size = 16
compute_type = "float16"
# 1. Transcribe with original Whisper (batched) 🗣️
model = whisperx.load_model("large-v2", device, compute_type=compute_type)
audio = whisperx.load_audio(audio_file)
result = model.transcribe(audio, batch_size=batch_size)
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
use_auth_token=self.hf_api_key,
device=device
)
diarize_segments = diarize_model(audio_file)
try:
segments = result["segments"]
transcription = " ".join(segment['text'] for segment in segments)
return transcription
except KeyError:
print("The key 'segments' is not found in the result.")
def transcribe(self, audio_file):
model = whisperx.load_model(
"large-v2",
self.device,
self.compute_type
)
audio = whisperx.load_audio(audio_file)
result = model.transcribe(
audio,
batch_size=self.batch_size
)
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(
result["segments"],
model_a,
metadata,
audio,
self.device,
return_char_alignments=False
)
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
use_auth_token=self.hf_api_key,
device=self.device
)
diarize_segments = diarize_model(audio_file)
try:
segments = result["segments"]
transcription = " ".join(segment['text'] for segment in segments)
return transcription
except KeyError:
print("The key 'segments' is not found in the result.")
Loading…
Cancel
Save