Community resources docs

pull/1027/head
Kye Gomez 3 weeks ago
parent 7b0510bcd5
commit 92c9db48e1

@ -0,0 +1,36 @@
# Community Resources
Welcome to the Community Resources page! Here you'll find a curated collection of articles, tutorials, and guides created by the Swarms community and core contributors.
These resources cover a wide range of topics, including building your first agent, advanced multi-agent architectures, API integrations, and using Swarms with both Python and Rust. Whether you're a beginner or an experienced developer, these links will help you deepen your understanding and accelerate your development with the Swarms framework.
## Python
| Title | Description | Link |
|-------|-------------|------|
| **Build Your First Swarms Agent in Under 10 Minutes** | Step-by-step beginner guide to creating your first Swarms agent quickly. | [Read Article](https://medium.com/@devangvashistha/build-your-first-swarms-agent-in-under-10-minutes-ddff23b6c703) |
| **Building Multi-Agent Systems with GPT-5 and The Swarms Framework** | Learn how to leverage GPT-5 with Swarms for advanced multi-agent system design. | [Read Article](https://medium.com/@kyeg/building-multi-agent-systems-with-gpt-5-and-the-swarms-framework-e52ffaf0fa4f) |
| **Learn How to Build Production-Grade Agents with OpenAIs Latest Model: GPT-OSS Locally and in the Cloud** | Guide to building robust agents using OpenAIs GPT-OSS, both locally and in cloud environments. | [Read Article](https://medium.com/@kyeg/learn-how-to-build-production-grade-agents-with-openais-latest-model-gpt-oss-locally-and-in-the-c5826c7cca7c) |
| **Building Gemini 2.5 Agents with Swarms Framework** | Tutorial on integrating Gemini 2.5 models into Swarms agents for enhanced capabilities. | [Read Article](https://medium.com/@kyeg/building-gemini-2-5-agents-with-swarms-framework-20abdcf82cac) |
| **Enterprise Developer Guide: Leveraging OpenAIs o3 and o4-mini Models with The Swarms Framework** | Enterprise-focused guide to using OpenAIs o3 and o4-mini models within Swarms. | [Read Article](https://medium.com/@kyeg/enterprise-developer-guide-leveraging-openais-o3-and-o4-mini-models-with-the-swarms-framework-89490c57820a) |
| **Enneagram of Thoughts Using the Swarms Framework: A Multi-Agent Approach to Holistic Problem Solving** | Explores using Swarms for holistic, multi-perspective problem solving via the Enneagram model. | [Read Article](https://medium.com/@kyeg/enneagram-of-thoughts-using-the-swarms-framework-a-multi-agent-approach-to-holistic-problem-c26c7df5e7eb) |
| **Building Production-Grade Financial Agents with tickr-agent: An Enterprise Solution for Comprehensive Stock Analysis** | How to build advanced financial analysis agents using tickr-agent and Swarms. | [Read Article](https://medium.com/@kyeg/building-production-grade-financial-agents-with-tickr-agent-an-enterprise-solution-for-db867ec93193) |
| **Automating Your Startups Financial Analysis Using AI Agents: A Comprehensive Guide** | Comprehensive guide to automating your startups financial analysis with AI agents using Swarms. | [Read Article](https://medium.com/@kyeg/automating-your-startups-financial-analysis-using-ai-agents-a-comprehensive-guide-b2fa0e2c09d5) |
| **Managing Thousands of Agent Outputs at Scale with The Spreadsheet Swarm: All-New Multi-Agent Architecture** | Learn how to manage and scale thousands of agent outputs efficiently using the Spreadsheet Swarm architecture. | [Read Article](https://medium.com/@kyeg/managing-thousands-of-agent-outputs-at-scale-with-the-spreadsheet-swarm-all-new-multi-agent-f16f5f40fd5a) |
| **Introducing GPT-4o Mini: The Future of Cost-Efficient AI Intelligence** | Discover the capabilities and advantages of GPT-4o Mini for building cost-effective, intelligent agents. | [Read Article](https://medium.com/@kyeg/introducing-gpt-4o-mini-the-future-of-cost-efficient-ai-intelligence-a3e3fe78d939) |
### API
| Title | Description | Link |
|-------|-------------|------|
| **Specialized Healthcare Agents with Swarms Agent Completions API** | Guide to building healthcare-focused agents using the Swarms API. | [Read Article](https://medium.com/@kyeg/specialized-healthcare-agents-with-swarms-agent-completions-api-b56d067e3b11) |
| **Building Multi-Agent Systems for Finance & Accounting with the Swarms API: A Technical Guide** | Technical walkthrough for creating finance and accounting multi-agent systems with the Swarms API. | [Read Article](https://medium.com/@kyeg/building-multi-agent-systems-for-finance-accounting-with-the-swarms-api-a-technical-guide-bf6f7005b708) |
### Swarms Rust
| Title | Description | Link |
|-------|-------------|------|
| **Building Medical Multi-Agent Systems with Swarms Rust: A Comprehensive Tutorial** | Comprehensive tutorial for developing medical multi-agent systems using Swarms Rust. | [Read Article](https://medium.com/@kyeg/building-medical-multi-agent-systems-with-swarms-rust-a-comprehensive-tutorial-1e8e060601f9) |
| **Building Production-Grade Agentic Applications with Swarms Rust: A Comprehensive Tutorial** | Learn to build robust, production-ready agentic applications with Swarms Rust. | [Read Article](https://medium.com/@kyeg/building-production-grade-agentic-applications-with-swarms-rust-a-comprehensive-tutorial-bb567c02340f) |

@ -354,6 +354,7 @@ nav:
- CookBook Index: "examples/cookbook_index.md"
- Paper Implementations: "examples/paper_implementations.md"
- Templates & Applications: "examples/templates.md"
- Community Resources: "examples/community_resources.md"
- Basic Examples:
- Individual Agents:
- Basic Agent: "swarms/examples/basic_agent.md"

@ -0,0 +1,20 @@
from swarms import Agent
# Initialize the agent
agent = Agent(
agent_name="Quantitative-Trading-Agent",
agent_description="Quantitative trading and analysis agent",
system_prompt="You are an expert quantitative trading agent. Answer concisely and accurately using your knowledge of trading strategies, risk management, and financial markets.",
model_name="mistral/mistral-tiny",
dynamic_temperature_enabled=True,
output_type="str-all-except-first",
max_loops="auto",
interactive=True,
no_reasoning_prompt=True,
streaming_on=True,
)
out = agent.run(
task="What are the best top 3 etfs for gold coverage?"
)
print(out)

@ -6,13 +6,14 @@ each with detailed backgrounds, political positions, and comprehensive system pr
that reflect their real-world characteristics, voting patterns, and policy priorities.
"""
from functools import lru_cache
from typing import Dict, List, Optional
from swarms import Agent
from swarms.structs.multi_agent_exec import run_agents_concurrently
from functools import lru_cache
from loguru import logger
from swarms.structs.agent import Agent
from swarms.structs.conversation import Conversation
from swarms.structs.multi_agent_exec import run_agents_concurrently
@lru_cache(maxsize=1)

@ -96,7 +96,6 @@ from swarms.structs.swarming_architectures import (
star_swarm,
)
__all__ = [
"Agent",
"BaseStructure",

@ -27,9 +27,12 @@ from pydantic import BaseModel
from swarms.agents.ape_agent import auto_generate_prompt
from swarms.artifacts.main_artifact import Artifact
from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3
from swarms.prompts.max_loop_prompt import generate_reasoning_prompt
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
)
from swarms.prompts.react_base_prompt import REACT_SYS_PROMPT
from swarms.prompts.safety_prompt import SAFETY_PROMPT
from swarms.prompts.tools import tool_sop_prompt
from swarms.schemas.agent_mcp_errors import (
AgentMCPConnectionError,
@ -41,19 +44,30 @@ from swarms.schemas.base_schemas import (
ChatCompletionResponseChoice,
ChatMessageResponse,
)
from swarms.schemas.conversation_schema import ConversationSchema
from swarms.schemas.llm_agent_schema import ModelConfigOrigin
from swarms.schemas.mcp_schemas import (
MCPConnection,
)
from swarms.structs.agent_rag_handler import (
RAGConfig,
AgentRAGHandler,
RAGConfig,
)
from swarms.structs.agent_roles import agent_roles
from swarms.structs.conversation import Conversation
from swarms.structs.ma_utils import set_random_models_for_agents
from swarms.structs.safe_loading import (
SafeLoaderUtils,
SafeStateManager,
)
from swarms.telemetry.main import log_agent_data
from swarms.tools.base_tool import BaseTool
from swarms.tools.mcp_client_call import (
execute_multiple_tools_on_multiple_mcp_servers_sync,
execute_tool_call_simple,
get_mcp_tools_sync,
get_tools_for_multiple_mcp_servers,
)
from swarms.tools.py_func_to_openai_func_str import (
convert_multiple_functions_to_openai_function_schema,
)
@ -64,28 +78,14 @@ from swarms.utils.generate_keys import generate_api_key
from swarms.utils.history_output_formatter import (
history_output_formatter,
)
from swarms.utils.litellm_tokenizer import count_tokens
from swarms.utils.litellm_wrapper import LiteLLM
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.prompts.react_base_prompt import REACT_SYS_PROMPT
from swarms.prompts.max_loop_prompt import generate_reasoning_prompt
from swarms.prompts.safety_prompt import SAFETY_PROMPT
from swarms.structs.ma_utils import set_random_models_for_agents
from swarms.tools.mcp_client_call import (
execute_multiple_tools_on_multiple_mcp_servers_sync,
execute_tool_call_simple,
get_mcp_tools_sync,
get_tools_for_multiple_mcp_servers,
)
from swarms.schemas.mcp_schemas import (
MCPConnection,
)
from swarms.utils.index import (
exists,
format_data_structure,
)
from swarms.schemas.conversation_schema import ConversationSchema
from swarms.utils.litellm_tokenizer import count_tokens
from swarms.utils.litellm_wrapper import LiteLLM
from swarms.utils.output_types import OutputType
from swarms.utils.pdf_to_text import pdf_to_text
def stop_when_repeats(response: str) -> bool:
@ -899,9 +899,9 @@ class Agent:
bool: True if model supports vision and image is provided, False otherwise.
"""
from litellm.utils import (
supports_vision,
supports_function_calling,
supports_parallel_function_calling,
supports_vision,
)
# Only check vision support if an image is provided
@ -1549,11 +1549,11 @@ class Agent:
raise
def reliability_check(self):
from litellm import model_list
from litellm.utils import (
supports_function_calling,
get_max_tokens,
supports_function_calling,
)
from litellm import model_list
if self.system_prompt is None:
logger.warning(

@ -5,12 +5,12 @@ from typing import Callable, List, Optional, Union
from swarms.structs.agent import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.structs.conversation import Conversation
from swarms.utils.formatter import formatter
from swarms.utils.get_cpu_cores import get_cpu_cores
from swarms.utils.history_output_formatter import (
history_output_formatter,
)
from swarms.utils.loguru_logger import initialize_logger
from swarms.utils.formatter import formatter
logger = initialize_logger(log_folder="concurrent_workflow")

@ -23,10 +23,6 @@ MAX_WORKERS = (
os.cpu_count() * 2
) # Optimal number of workers based on CPU cores
###############################################################################
# 1. System Prompts for Each Scientist Agent
###############################################################################
def exa_search(query: str, **kwargs: Any) -> str:
"""Performs web search using Exa.ai API and returns formatted results."""

@ -1,8 +1,8 @@
import os
import concurrent.futures
import functools
import inspect
import json
import os
from logging import getLogger
from typing import (
Any,

Loading…
Cancel
Save