|
|
|
@ -2,12 +2,13 @@ from langchain.chains import LLMChain
|
|
|
|
|
from langchain.prompts import PromptTemplate
|
|
|
|
|
from langchain.memory import ConversationBufferWindowMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MetaPrompterAgent:
|
|
|
|
|
"""
|
|
|
|
|
Meta Prompting Agent
|
|
|
|
|
The Meta Prompting Agent has 1 purpose: to create better prompts for an agent.
|
|
|
|
|
|
|
|
|
|
The meta prompting agent would be used in this flow:
|
|
|
|
|
The meta prompting agent would be used in this flow:
|
|
|
|
|
user task -> MetaPrompterAgent -> Agent
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
@ -21,7 +22,7 @@ class MetaPrompterAgent:
|
|
|
|
|
memory (ConversationBufferWindowMemory, optional): Memory to be used in the meta prompt. Defaults to None.
|
|
|
|
|
meta_template (str, optional): Template to be used in the meta prompt. Defaults to None.
|
|
|
|
|
human_input (bool, optional): Whether to use human input. Defaults to False.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
str: Response from the agent
|
|
|
|
|
|
|
|
|
@ -44,13 +45,14 @@ class MetaPrompterAgent:
|
|
|
|
|
task = "Create a feedforward in pytorch"
|
|
|
|
|
|
|
|
|
|
#optimize the prompt
|
|
|
|
|
optimized_prompt = meta_optimizer.run(task)
|
|
|
|
|
optimized_prompt = meta_optimizer.run(task)
|
|
|
|
|
|
|
|
|
|
#run the optimized prompt with detailed instructions
|
|
|
|
|
result = worker.run(optimized_prompt)
|
|
|
|
|
|
|
|
|
|
print(result)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
llm,
|
|
|
|
@ -60,7 +62,7 @@ class MetaPrompterAgent:
|
|
|
|
|
success_phrase: str = "task succeeded",
|
|
|
|
|
instructions: str = "None",
|
|
|
|
|
template: str = None,
|
|
|
|
|
memory = None,
|
|
|
|
|
memory=None,
|
|
|
|
|
meta_template: str = None,
|
|
|
|
|
human_input: bool = False,
|
|
|
|
|
):
|
|
|
|
@ -71,7 +73,7 @@ class MetaPrompterAgent:
|
|
|
|
|
self.success_phrase = success_phrase
|
|
|
|
|
self.instructions = instructions
|
|
|
|
|
self.template = template
|
|
|
|
|
self.memory = memory
|
|
|
|
|
self.memory = memory
|
|
|
|
|
self.meta_template = meta_template
|
|
|
|
|
self.human_input = human_input
|
|
|
|
|
|
|
|
|
@ -108,7 +110,7 @@ class MetaPrompterAgent:
|
|
|
|
|
delimiter = "Instructions: "
|
|
|
|
|
new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter):]
|
|
|
|
|
return new_instructions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run(self, task: str):
|
|
|
|
|
"""
|
|
|
|
|
Run the MetaPrompterAgent
|
|
|
|
@ -132,28 +134,26 @@ class MetaPrompterAgent:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
output = chain.predict(human_input=task)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for j in range(self.max_iters):
|
|
|
|
|
print(f"(Step {j+1}/{self.max_iters})")
|
|
|
|
|
print(f"Assistant: {output}")
|
|
|
|
|
print(f"Human: ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.human_input:
|
|
|
|
|
human_input = input()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if any(
|
|
|
|
|
phrase in human_input.lower() for phrase in key_phrases
|
|
|
|
|
):
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
output = chain.predict(human_input.lower)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.success_phrase in human_input.lower():
|
|
|
|
|
print(f"You succeed! Thanks for using!")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meta_chain = self.initialize_meta_chain()
|
|
|
|
|
meta_output = meta_chain.predict(chat_history=self.get_chat_history(chain.memory))
|
|
|
|
|
print(f"Feedback: {meta_output}")
|
|
|
|
@ -161,5 +161,3 @@ class MetaPrompterAgent:
|
|
|
|
|
self.instructions = self.get_new_instructions(meta_output)
|
|
|
|
|
print(f"New Instruction: {self.instructions}")
|
|
|
|
|
print("\n" + "#" * 80 + "\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|