diff --git a/dao_swarm.py b/new_features_examples/dao_swarm.py
similarity index 100%
rename from dao_swarm.py
rename to new_features_examples/dao_swarm.py
diff --git a/deepseek_r1.py b/new_features_examples/deepseek_r1.py
similarity index 100%
rename from deepseek_r1.py
rename to new_features_examples/deepseek_r1.py
diff --git a/litellm_tool_example.py b/new_features_examples/litellm_tool_example.py
similarity index 100%
rename from litellm_tool_example.py
rename to new_features_examples/litellm_tool_example.py
diff --git a/pyproject.toml b/pyproject.toml
index c2802359..32b9a531 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
 
 [tool.poetry]
 name = "swarms"
-version = "6.9.9"
+version = "7.0.0"
 description = "Swarms - TGSC"
 license = "MIT"
 authors = ["Kye Gomez <kye@apac.ai>"]
@@ -78,25 +78,11 @@ rich = "*"
 # sentence-transformers = "*"
 
 
-# [tool.poetry.extras]
-# # Extra for NLP-related functionalities
-# nlp = [
-#     "torch>=2.1.1,<3.0",
-#     "transformers>=4.39.0,<5.0.0",
-#     "sentence-transformers",
-#     "swarm-models",
-# ]
-
-# # Extra for database-related functionalities
-# db = ["chromadb"]
-
 # # All optional dependencies for convenience
 # all = [
-#     "torch>=2.1.1,<3.0",
-#     "transformers>=4.39.0,<5.0.0",
-#     "sentence-transformers",
-#     "chromadb",
-#     "swarm-models"
+#     "torch",
+#     "transformers",
+#     "litellm"
 # ]
 
 
diff --git a/swarms/tools/__init__.py b/swarms/tools/__init__.py
index 18ac51ac..3bb4c5ad 100644
--- a/swarms/tools/__init__.py
+++ b/swarms/tools/__init__.py
@@ -2,7 +2,6 @@ from swarms.tools.tool_utils import (
     scrape_tool_func_docs,
     tool_find_by_name,
 )
-from swarms.tools.func_calling_executor import openai_tool_executor
 from swarms.tools.pydantic_to_json import (
     _remove_a_key,
     base_model_to_openai_function,
@@ -34,7 +33,6 @@ from swarms.tools.json_utils import base_model_to_json
 __all__ = [
     "scrape_tool_func_docs",
     "tool_find_by_name",
-    "openai_tool_executor",
     "_remove_a_key",
     "base_model_to_openai_function",
     "multi_base_model_to_openai_function",
diff --git a/swarms/tools/func_calling_executor.py b/swarms/tools/func_calling_executor.py
deleted file mode 100644
index 65d95a73..00000000
--- a/swarms/tools/func_calling_executor.py
+++ /dev/null
@@ -1,238 +0,0 @@
-import concurrent.futures
-from typing import Callable, Any, Dict, List
-from swarms.utils.loguru_logger import initialize_logger
-
-logger = initialize_logger(log_folder="func_calling_executor")
-
-# def openai_tool_executor(
-#     tools: List[Dict[str, Any]],
-#     function_map: Dict[str, Callable],
-#     verbose: bool = True,
-#     return_as_string: bool = False,
-#     *args,
-#     **kwargs,
-# ) -> Callable:
-#     """
-#     Creates a function that dynamically and concurrently executes multiple functions based on parameters specified
-#     in a list of tool dictionaries, with extensive error handling and validation.
-
-#     Args:
-#         tools (List[Dict[str, Any]]): A list of dictionaries, each containing configuration for a tool, including parameters.
-#         function_map (Dict[str, Callable]): A dictionary mapping function names to their corresponding callable functions.
-#         verbose (bool): If True, enables verbose logging.
-#         return_as_string (bool): If True, returns the results as a concatenated string.
-
-#     Returns:
-#         Callable: A function that, when called, executes the specified functions concurrently with the parameters given.
-
-#     Examples:
-#     >>> def test_function(param1: int, param2: str) -> str:
-#     ...     return f"Test function called with parameters: {param1}, {param2}"
-
-#     >>> tool_executor = openai_tool_executor(
-#     ...     tools=[
-#     ...         {
-#     ...             "type": "function",
-#     ...             "function": {
-#     ...                 "name": "test_function",
-#     ...                 "parameters": {
-#     ...                     "param1": 1,
-#     ...                     "param2": "example"
-#     ...                 }
-#     ...             }
-#     ...         }
-#     ...     ],
-#     ...     function_map={
-#     ...         "test_function": test_function
-#     ...     },
-#     ...     return_as_string=True
-#     ... )
-#     >>> results = tool_executor()
-#     >>> print(results)
-#     """
-
-#     def tool_executor():
-#         # Prepare tasks for concurrent execution
-#         results = []
-#         logger.info(f"Executing {len(tools)} tools concurrently.")
-#         with concurrent.futures.ThreadPoolExecutor() as executor:
-#             futures = []
-#             for tool in tools:
-#                 if tool.get("type") != "function":
-#                     continue  # Skip non-function tool entries
-
-#                 function_info = tool.get("function", {})
-#                 func_name = function_info.get("name")
-#                 logger.info(f"Executing function: {func_name}")
-
-#                 # Check if the function name is mapped to an actual function
-#                 if func_name not in function_map:
-#                     error_message = f"Function '{func_name}' not found in function map."
-#                     logger.error(error_message)
-#                     results.append(error_message)
-#                     continue
-
-#                 # Validate parameters
-#                 params = function_info.get("parameters", {})
-#                 if not params:
-#                     error_message = f"No parameters specified for function '{func_name}'."
-#                     logger.error(error_message)
-#                     results.append(error_message)
-#                     continue
-
-#                 # Submit the function for execution
-#                 try:
-#                     future = executor.submit(
-#                         function_map[func_name], **params
-#                     )
-#                     futures.append((func_name, future))
-#                 except Exception as e:
-#                     error_message = f"Failed to submit the function '{func_name}' for execution: {e}"
-#                     logger.error(error_message)
-#                     results.append(error_message)
-
-#             # Gather results from all futures
-#             for func_name, future in futures:
-#                 try:
-#                     result = future.result()  # Collect result from future
-#                     results.append(f"{func_name}: {result}")
-#                 except Exception as e:
-#                     error_message = f"Error during execution of function '{func_name}': {e}"
-#                     logger.error(error_message)
-#                     results.append(error_message)
-
-#         if return_as_string:
-#             return "\n".join(results)
-
-#         logger.info(f"Results: {results}")
-
-#         return results
-
-#     return tool_executor
-
-
-def openai_tool_executor(
-    tools: List[Dict[str, Any]],
-    function_map: Dict[str, Callable],
-    verbose: bool = True,
-    return_as_string: bool = False,
-    *args,
-    **kwargs,
-) -> Callable:
-    def tool_executor():
-        results = []
-        logger.info(f"Executing {len(tools)} tools concurrently.")
-        with concurrent.futures.ThreadPoolExecutor() as executor:
-            futures = []
-            for tool in tools:
-                if tool.get("type") != "function":
-                    continue
-
-                function_info = tool.get("function", {})
-                func_name = function_info.get("name")
-                logger.info(f"Executing function: {func_name}")
-
-                if func_name not in function_map:
-                    error_message = f"Function '{func_name}' not found in function map."
-                    logger.error(error_message)
-                    results.append(error_message)
-                    continue
-
-                params = function_info.get("parameters", {})
-                if not params:
-                    error_message = f"No parameters specified for function '{func_name}'."
-                    logger.error(error_message)
-                    results.append(error_message)
-                    continue
-
-                if (
-                    "name" in params
-                    and params["name"] in function_map
-                ):
-                    try:
-                        result = function_map[params["name"]](
-                            **params
-                        )
-                        results.append(f"{params['name']}: {result}")
-                    except Exception as e:
-                        error_message = f"Failed to execute the function '{params['name']}': {e}"
-                        logger.error(error_message)
-                        results.append(error_message)
-                    continue
-
-                try:
-                    future = executor.submit(
-                        function_map[func_name], **params
-                    )
-                    futures.append((func_name, future))
-                except Exception as e:
-                    error_message = f"Failed to submit the function '{func_name}' for execution: {e}"
-                    logger.error(error_message)
-                    results.append(error_message)
-
-            for func_name, future in futures:
-                try:
-                    result = future.result()
-                    results.append(f"{func_name}: {result}")
-                except Exception as e:
-                    error_message = f"Error during execution of function '{func_name}': {e}"
-                    logger.error(error_message)
-                    results.append(error_message)
-
-        if return_as_string:
-            return "\n".join(results)
-
-        logger.info(f"Results: {results}")
-
-        return results
-
-    return tool_executor
-
-
-# function_schema = {
-#     "name": "execute",
-#     "description": "Executes code on the user's machine **in the users local environment** and returns the output",
-#     "parameters": {
-#         "type": "object",
-#         "properties": {
-#             "language": {
-#                 "type": "string",
-#                 "description": "The programming language (required parameter to the `execute` function)",
-#                 "enum": [
-#                     # This will be filled dynamically with the languages OI has access to.
-#                 ],
-#             },
-#             "code": {
-#                 "type": "string",
-#                 "description": "The code to execute (required)",
-#             },
-#         },
-#         "required": ["language", "code"],
-#     },
-# }
-
-
-# def execute(language: str, code: str):
-#     """
-#     Executes code on the user's machine **in the users local environment** and returns the output
-
-#     Args:
-#         language (str): The programming language (required parameter to the `execute` function)
-#         code (str): The code to execute (required)
-
-#     Returns:
-#         str: The output of the code execution
-#     """
-#     # This function will be implemented by the user
-#     return "Code execution not implemented yet"
-
-
-# # Example execution
-# out = openai_tool_executor(
-#     tools=[function_schema],
-#     function_map={
-#         "execute": execute,
-#     },
-#     return_as_string=True,
-# )
-# print(out)
diff --git a/swarms/tools/function_util.py b/swarms/tools/function_util.py
index de0ec97a..731584fb 100644
--- a/swarms/tools/function_util.py
+++ b/swarms/tools/function_util.py
@@ -1,16 +1,24 @@
 import inspect
+from typing import Callable, Type, Union
 
 
-def process_tool_docs(item):
+def process_tool_docs(item: Union[Callable, Type]) -> str:
     """
-    Process the documentation for a given item.
+    Process the documentation for a given item, which can be a function or a class.
 
     Args:
-        item: The item to process the documentation for.
+        item: The item to process the documentation for. It can be a function or a class.
 
     Returns:
-        metadata: The processed metadata containing the item's name, documentation, and source code.
+        str: The processed metadata containing the item's name, documentation, and source code.
+
+    Raises:
+        TypeError: If the item is not a function or a class.
     """
+    # Check if item is a function or a class
+    if not inspect.isfunction(item) and not inspect.isclass(item):
+        raise TypeError("Item must be a function or a class.")
+
     # If item is an instance of a class, get its class
     if not inspect.isclass(item) and hasattr(item, "__class__"):
         item = item.__class__
diff --git a/swarms/utils/lazy_loader.py b/swarms/utils/lazy_loader.py
deleted file mode 100644
index c9725e51..00000000
--- a/swarms/utils/lazy_loader.py
+++ /dev/null
@@ -1,263 +0,0 @@
-"""
-Lazy Package Loader
-
-This module provides utilities for lazy loading Python packages to improve startup time
-and reduce memory usage by only importing packages when they are actually used.
-
-Features:
-- Type-safe lazy loading of packages
-- Support for nested module imports
-- Auto-completion support in IDEs
-- Thread-safe implementation
-- Comprehensive test coverage
-"""
-
-from types import ModuleType
-from typing import (
-    Optional,
-    Dict,
-    Any,
-    Callable,
-    Type,
-    TypeVar,
-    Union,
-    cast,
-)
-import importlib
-import functools
-import threading
-from importlib.util import find_spec
-from swarms.utils.auto_download_check_packages import (
-    auto_check_and_download_package,
-)
-
-
-T = TypeVar("T")
-C = TypeVar("C")
-
-
-class ImportError(Exception):
-    """Raised when a lazy import fails."""
-
-    pass
-
-
-class LazyLoader:
-    """
-    A thread-safe lazy loader for Python packages that only imports them when accessed.
-
-    Attributes:
-        _module_name (str): The name of the module to be lazily loaded
-        _module (Optional[ModuleType]): The cached module instance once loaded
-        _lock (threading.Lock): Thread lock for safe concurrent access
-
-    Examples:
-        >>> np = LazyLoader('numpy')
-        >>> # numpy is not imported yet
-        >>> result = np.array([1, 2, 3])
-        >>> # numpy is imported only when first used
-    """
-
-    def __init__(self, module_name: str) -> None:
-        """
-        Initialize the lazy loader with a module name.
-
-        Args:
-            module_name: The fully qualified name of the module to lazily load
-
-        Raises:
-            ImportError: If the module cannot be found in sys.path
-        """
-        self._module_name = module_name
-        self._module: Optional[ModuleType] = None
-        self._lock = threading.Lock()
-
-        auto_check_and_download_package(
-            module_name, package_manager="pip"
-        )
-
-        # Verify module exists without importing it
-        if find_spec(module_name) is None:
-            raise ImportError(
-                f"Module '{module_name}' not found in sys.path"
-            )
-
-    def _load_module(self) -> ModuleType:
-        """
-        Thread-safe module loading.
-
-        Returns:
-            ModuleType: The loaded module
-
-        Raises:
-            ImportError: If module import fails
-        """
-        if self._module is None:
-            with self._lock:
-                # Double-check pattern
-                if self._module is None:
-                    try:
-                        self._module = importlib.import_module(
-                            self._module_name
-                        )
-                    except Exception as e:
-                        raise ImportError(
-                            f"Failed to import '{self._module_name}': {str(e)}"
-                        )
-        return cast(ModuleType, self._module)
-
-    def __getattr__(self, name: str) -> Any:
-        """
-        Intercepts attribute access to load the module if needed.
-
-        Args:
-            name: The attribute name being accessed
-
-        Returns:
-            Any: The requested attribute from the loaded module
-
-        Raises:
-            AttributeError: If the attribute doesn't exist in the module
-        """
-        module = self._load_module()
-        try:
-            return getattr(module, name)
-        except AttributeError:
-            raise AttributeError(
-                f"Module '{self._module_name}' has no attribute '{name}'"
-            )
-
-    def __dir__(self) -> list[str]:
-        """
-        Returns list of attributes for autocomplete support.
-
-        Returns:
-            List[str]: Available attributes in the module
-        """
-        return dir(self._load_module())
-
-    def is_loaded(self) -> bool:
-        """
-        Check if the module has been loaded.
-
-        Returns:
-            bool: True if module is loaded, False otherwise
-        """
-        return self._module is not None
-
-
-class LazyLoaderMetaclass(type):
-    """Metaclass to handle lazy loading behavior"""
-
-    def __call__(cls, *args, **kwargs):
-        if hasattr(cls, "_lazy_loader"):
-            return super().__call__(*args, **kwargs)
-        return super().__call__(*args, **kwargs)
-
-
-class LazyClassLoader:
-    """
-    A descriptor that creates the actual class only when accessed,
-    with proper inheritance support.
-    """
-
-    def __init__(
-        self, class_name: str, bases: tuple, namespace: Dict[str, Any]
-    ):
-        self.class_name = class_name
-        self.bases = bases
-        self.namespace = namespace
-        self._real_class: Optional[Type] = None
-        self._lock = threading.Lock()
-
-    def _create_class(self) -> Type:
-        """Creates the actual class if it hasn't been created yet."""
-        if self._real_class is None:
-            with self._lock:
-                if self._real_class is None:
-                    # Update namespace to include metaclass
-                    namespace = dict(self.namespace)
-                    namespace["__metaclass__"] = LazyLoaderMetaclass
-
-                    # Create the class with metaclass
-                    new_class = LazyLoaderMetaclass(
-                        self.class_name, self.bases, namespace
-                    )
-
-                    # Store reference to this loader
-                    new_class._lazy_loader = self
-                    self._real_class = new_class
-
-        return cast(Type, self._real_class)
-
-    def __call__(self, *args: Any, **kwargs: Any) -> Any:
-        """Creates an instance of the lazy loaded class."""
-        real_class = self._create_class()
-        # Use the metaclass __call__ method
-        return real_class(*args, **kwargs)
-
-    def __instancecheck__(self, instance: Any) -> bool:
-        """Support for isinstance() checks"""
-        real_class = self._create_class()
-        return isinstance(instance, real_class)
-
-    def __subclasscheck__(self, subclass: Type) -> bool:
-        """Support for issubclass() checks"""
-        real_class = self._create_class()
-        return issubclass(subclass, real_class)
-
-
-def lazy_import(*names: str) -> Dict[str, LazyLoader]:
-    """
-    Create multiple lazy loaders at once.
-
-    Args:
-        *names: Module names to create lazy loaders for
-
-    Returns:
-        Dict[str, LazyLoader]: Dictionary mapping module names to their lazy loaders
-
-    Examples:
-        >>> modules = lazy_import('numpy', 'pandas', 'matplotlib.pyplot')
-        >>> np = modules['numpy']
-        >>> pd = modules['pandas']
-        >>> plt = modules['matplotlib.pyplot']
-    """
-    return {name.split(".")[-1]: LazyLoader(name) for name in names}
-
-
-def lazy_import_decorator(
-    target: Union[Callable[..., T], Type[C]]
-) -> Union[Callable[..., T], Type[C], LazyClassLoader]:
-    """
-    Enhanced decorator that supports both lazy imports and lazy class loading.
-    """
-    if isinstance(target, type):
-        # Store the original class details
-        namespace = {
-            name: value
-            for name, value in target.__dict__.items()
-            if not name.startswith("__")
-            or name in ("__init__", "__new__")
-        }
-
-        # Create lazy loader
-        loader = LazyClassLoader(
-            target.__name__, target.__bases__, namespace
-        )
-
-        # Preserve class metadata
-        loader.__module__ = target.__module__
-        loader.__doc__ = target.__doc__
-
-        # Add reference to original class
-        loader._original_class = target
-
-        return loader
-    else:
-        # Handle function decoration
-        @functools.wraps(target)
-        def wrapper(*args: Any, **kwargs: Any) -> T:
-            return target(*args, **kwargs)
-
-        return wrapper
diff --git a/swarms/utils/litellm_tokenizer.py b/swarms/utils/litellm_tokenizer.py
index 1db46aee..2d7cae4c 100644
--- a/swarms/utils/litellm_tokenizer.py
+++ b/swarms/utils/litellm_tokenizer.py
@@ -1,5 +1,6 @@
 import subprocess
 
+
 def count_tokens(text: str, model: str = "gpt-4o") -> int:
     """Count the number of tokens in the given text."""
     try:
@@ -8,10 +9,8 @@ def count_tokens(text: str, model: str = "gpt-4o") -> int:
         subprocess.run(["pip", "install", "litellm"])
         from litellm import encode
 
-    
     return len(encode(model=model, text=text))
 
 
-
 # if __name__ == "__main__":
 #     print(count_tokens("Hello, how are you?"))
diff --git a/swarms/utils/wrapper_clusterop.py b/swarms/utils/wrapper_clusterop.py
index 646383c6..7dc6d855 100644
--- a/swarms/utils/wrapper_clusterop.py
+++ b/swarms/utils/wrapper_clusterop.py
@@ -1,3 +1,4 @@
+import platform
 from typing import Any
 
 
@@ -53,6 +54,14 @@ def exec_callable_with_clusterops(
             logger.info(f"Attempting to run on device: {device}")
         device = device.lower()
 
+        # Check if the platform is Windows and do nothing if true
+        if platform.system() == "Windows":
+            if enable_logging:
+                logger.info(
+                    "Platform is Windows, not executing on device."
+                )
+            return None
+
         if device == "cpu":
             if enable_logging:
                 logger.info("Device set to CPU")
diff --git a/tests/utils/test_auto_check_download.py b/tests/utils/test_auto_check_download.py
index 0a4ad157..ac8fee3d 100644
--- a/tests/utils/test_auto_check_download.py
+++ b/tests/utils/test_auto_check_download.py
@@ -1,65 +1,104 @@
-from swarms.utils.auto_download_check_packages import auto_check_and_download_package, check_and_install_package
+from swarms.utils.auto_download_check_packages import (
+    auto_check_and_download_package,
+    check_and_install_package,
+)
+
 
 def test_check_and_install_package_pip():
     result = check_and_install_package("numpy", package_manager="pip")
     print(f"Test result for 'numpy' installation using pip: {result}")
     assert result, "Failed to install or verify 'numpy' using pip"
 
+
 def test_check_and_install_package_conda():
-    result = check_and_install_package("numpy", package_manager="conda")
-    print(f"Test result for 'numpy' installation using conda: {result}")
+    result = check_and_install_package(
+        "numpy", package_manager="conda"
+    )
+    print(
+        f"Test result for 'numpy' installation using conda: {result}"
+    )
     assert result, "Failed to install or verify 'numpy' using conda"
 
+
 def test_check_and_install_specific_version():
-    result = check_and_install_package("numpy", package_manager="pip", version="1.21.0")
-    print(f"Test result for specific version of 'numpy' installation using pip: {result}")
-    assert result, "Failed to install or verify specific version of 'numpy' using pip"
+    result = check_and_install_package(
+        "numpy", package_manager="pip", version="1.21.0"
+    )
+    print(
+        f"Test result for specific version of 'numpy' installation using pip: {result}"
+    )
+    assert (
+        result
+    ), "Failed to install or verify specific version of 'numpy' using pip"
+
 
 def test_check_and_install_with_upgrade():
-    result = check_and_install_package("numpy", package_manager="pip", upgrade=True)
+    result = check_and_install_package(
+        "numpy", package_manager="pip", upgrade=True
+    )
     print(f"Test result for 'numpy' upgrade using pip: {result}")
     assert result, "Failed to upgrade 'numpy' using pip"
 
+
 def test_auto_check_and_download_single_package():
-    result = auto_check_and_download_package("scipy", package_manager="pip")
+    result = auto_check_and_download_package(
+        "scipy", package_manager="pip"
+    )
     print(f"Test result for 'scipy' installation using pip: {result}")
     assert result, "Failed to install or verify 'scipy' using pip"
 
+
 def test_auto_check_and_download_multiple_packages():
     packages = ["scipy", "pandas"]
-    result = auto_check_and_download_package(packages, package_manager="pip")
-    print(f"Test result for multiple packages installation using pip: {result}")
-    assert result, f"Failed to install or verify one or more packages in {packages} using pip"
+    result = auto_check_and_download_package(
+        packages, package_manager="pip"
+    )
+    print(
+        f"Test result for multiple packages installation using pip: {result}"
+    )
+    assert (
+        result
+    ), f"Failed to install or verify one or more packages in {packages} using pip"
+
 
 def test_auto_check_and_download_multiple_packages_with_versions():
     packages = ["numpy:1.21.0", "pandas:1.3.0"]
-    result = auto_check_and_download_package(packages, package_manager="pip")
-    print(f"Test result for multiple packages with versions installation using pip: {result}")
-    assert result, f"Failed to install or verify one or more packages in {packages} with specific versions using pip"
+    result = auto_check_and_download_package(
+        packages, package_manager="pip"
+    )
+    print(
+        f"Test result for multiple packages with versions installation using pip: {result}"
+    )
+    assert (
+        result
+    ), f"Failed to install or verify one or more packages in {packages} with specific versions using pip"
+
 
 # Example of running tests
 if __name__ == "__main__":
     try:
         test_check_and_install_package_pip()
         print("test_check_and_install_package_pip passed")
-        
+
         test_check_and_install_package_conda()
         print("test_check_and_install_package_conda passed")
-        
+
         test_check_and_install_specific_version()
         print("test_check_and_install_specific_version passed")
-        
+
         test_check_and_install_with_upgrade()
         print("test_check_and_install_with_upgrade passed")
-        
+
         test_auto_check_and_download_single_package()
         print("test_auto_check_and_download_single_package passed")
-        
+
         test_auto_check_and_download_multiple_packages()
         print("test_auto_check_and_download_multiple_packages passed")
-        
+
         test_auto_check_and_download_multiple_packages_with_versions()
-        print("test_auto_check_and_download_multiple_packages_with_versions passed")
-        
+        print(
+            "test_auto_check_and_download_multiple_packages_with_versions passed"
+        )
+
     except AssertionError as e:
         print(f"Test failed: {str(e)}")