diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 90f07e37..bbf4763f 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -143,6 +143,7 @@ nav: - Agent Architecture: "swarms/framework/agents_explained.md" - Build Custom Agents: "swarms/structs/diy_your_own_agent.md" - Complete Agent API: "swarms/structs/agent.md" + - Integrating External Agents from Griptape, Langchain, etc: "swarms/agents/external_party_agents.md" - Tools: - Overview: "swarms/tools/main.md" - What are tools?: "swarms/tools/build_tool.md" diff --git a/docs/swarms/agents/external_party_agents.md b/docs/swarms/agents/external_party_agents.md new file mode 100644 index 00000000..e1598d20 --- /dev/null +++ b/docs/swarms/agents/external_party_agents.md @@ -0,0 +1,365 @@ + + +# **Swarms External Agent Integration** + +Integrating external agents from other frameworks like **Langchain**, **Griptape**, and more is straightforward using **Swarms**. Below are step-by-step guides on how to bring these agents into Swarms by creating a new class, implementing the required methods, and ensuring compatibility. + +--- + +## **Quick Overview** + +- **Step 1**: Create a new class that inherits the `Agent` class from Swarms. +- **Step 2**: Override the `.run(task: str) -> str` method that will execute the agent and return a string response. +- **Step 3**: Optionally, add methods to save outputs to other formats like JSON, logs, or databases. + +### **Agent Class** + +The primary structure you'll need to integrate any external agent is the `Agent` class from **Swarms**. Here’s a template for how your new agent class should be structured: + +```python +from swarms import Agent + +class ExternalAgent(Agent): + def run(self, task: str) -> str: + # Implement logic to run external agent + pass + + def save_to_json(self, output: str, filepath: str): + # Optionally save the result to a JSON file + with open(filepath, "w") as file: + json.dump({"response": output}, file) +``` + +--- + +## **Griptape Agent Integration Example** + +In this example, we will create a **Griptape** agent by inheriting from the Swarms `Agent` class and implementing the `run` method. + +### **Griptape Integration Steps**: + +1. **Inherit from Swarms Agent**: Inherit from the `SwarmsAgent` class. +2. **Create Griptape Agent**: Initialize the **Griptape** agent inside your class and provide it with the necessary tools. +3. **Override the `run()` method**: Implement logic to process a task string and execute the Griptape agent. + +#### **Griptape Example Code**: + +```python +from swarms import ( + Agent as SwarmsAgent, +) # Import the base Agent class from Swarms +from griptape.structures import Agent as GriptapeAgent +from griptape.tools import ( + WebScraperTool, + FileManagerTool, + PromptSummaryTool, +) + +# Create a custom agent class that inherits from SwarmsAgent +class GriptapeSwarmsAgent(SwarmsAgent): + def __init__(self, *args, **kwargs): + # Initialize the Griptape agent with its tools + self.agent = GriptapeAgent( + input="Load {{ args[0] }}, summarize it, and store it in a file called {{ args[1] }}.", + tools=[ + WebScraperTool(off_prompt=True), + PromptSummaryTool(off_prompt=True), + FileManagerTool(), + ], + *args, + **kwargs, + ) + + # Override the run method to take a task and execute it using the Griptape agent + def run(self, task: str) -> str: + # Extract URL and filename from task + url, filename = task.split(",") # Example task string: "https://example.com, output.txt" + # Execute the Griptape agent + result = self.agent.run(url.strip(), filename.strip()) + # Return the final result as a string + return str(result) + + +# Example usage: +griptape_swarms_agent = GriptapeSwarmsAgent() +output = griptape_swarms_agent.run("https://griptape.ai, griptape.txt") +print(output) +``` + +### **Explanation**: +1. **GriptapeSwarmsAgent**: The custom class that integrates **Griptape** into **Swarms**. +2. **run(task: str)**: This method extracts inputs from the task string and runs the agent using **Griptape** tools. +3. **Tools**: The **Griptape** agent is equipped with web scraping, summarization, and file management tools. + + +## **Additional Features**: +You can enhance your external agents with additional features such as: +- **Saving outputs** to JSON, databases, or logs. +- **Handling errors** and retry mechanisms for robustness. +- **Custom logging** with tools like **Loguru** for extensive debugging. + +--- + +## **Langchain Agent Integration Example** + +Next, we demonstrate how to integrate a **Langchain** agent with **Swarms** by following similar steps. + +### **Langchain Integration Steps**: + +1. **Inherit from Swarms Agent**: Inherit from the `SwarmsAgent` class. +2. **Create Langchain Agent**: Initialize a Langchain agent with the necessary components (like language models or memory modules). +3. **Override the `run()` method**: Pass tasks to the Langchain agent and return the response. + +#### **Langchain Example Code**: + +```python +from swarms import Agent as SwarmsAgent +from langchain import LLMChain +from langchain.llms import OpenAI +from langchain.prompts import PromptTemplate + +# Create a custom agent class that inherits from SwarmsAgent +class LangchainSwarmsAgent(SwarmsAgent): + def __init__(self, *args, **kwargs): + # Initialize the Langchain agent with LLM and prompt + prompt_template = PromptTemplate(template="Answer the question: {question}") + llm = OpenAI(model="gpt-3.5-turbo") + self.chain = LLMChain(llm=llm, prompt=prompt_template) + super().__init__(*args, **kwargs) + + # Override the run method to take a task and execute it using the Langchain agent + def run(self, task: str) -> str: + # Pass the task to the Langchain agent + result = self.chain.run({"question": task}) + # Return the final result as a string + return result + +# Example usage: +langchain_swarms_agent = LangchainSwarmsAgent() +output = langchain_swarms_agent.run("What is the capital of France?") +print(output) +``` + +### **Explanation**: +1. **LangchainSwarmsAgent**: The custom class integrates **Langchain** into **Swarms**. +2. **run(task: str)**: The task is passed to a language model via Langchain and returns a result. + + +### Additional Examples from other providers + + +### 1. **OpenAI Function Calling Agents** +- **Description**: OpenAI models like GPT-4 can now call functions programmatically. This makes it possible to create agents that execute external functions, APIs, or code snippets. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + import openai + + # Custom OpenAI Function Calling Agent + class OpenAIFunctionAgent(SwarmsAgent): + def __init__(self, *args, **kwargs): + # Initialize OpenAI API credentials and settings + self.api_key = "your_openai_api_key" + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + # Example task: "summarize, 'Provide a short summary of this text...'" + command, input_text = task.split(", ") + response = openai.Completion.create( + model="gpt-4", + prompt=f"{command}: {input_text}", + temperature=0.5, + max_tokens=100, + ) + return response.choices[0].text.strip() + + # Example usage: + openai_agent = OpenAIFunctionAgent() + output = openai_agent.run("summarize, Provide a short summary of this text...") + print(output) + ``` + +### 2. **Rasa Agents** +- **Description**: **Rasa** is a popular open-source framework for building conversational AI agents. You can integrate **Rasa** to build dialogue-based agents with **Swarms**. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + from rasa.core.agent import Agent as RasaAgent + from rasa.core.interpreter import RasaNLUInterpreter + + # Custom Rasa Swarms Agent + class RasaSwarmsAgent(SwarmsAgent): + def __init__(self, model_path: str, *args, **kwargs): + # Initialize the Rasa agent with a pre-trained model + self.agent = RasaAgent.load(model_path) + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + # Pass user input to the Rasa agent + result = self.agent.handle_text(task) + # Return the final response from the agent + return result[0]["text"] if result else "No response." + + # Example usage: + rasa_swarms_agent = RasaSwarmsAgent("path/to/rasa_model") + output = rasa_swarms_agent.run("Hello, how can I get a refund?") + print(output) + ``` + +### 3. **Hugging Face Transformers** +- **Description**: **Hugging Face** offers a variety of pre-trained models, including transformers for NLP tasks. These can be easily integrated into **Swarms** for various tasks like text generation, question answering, and more. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + from transformers import pipeline + + # Custom Hugging Face Agent + class HuggingFaceSwarmsAgent(SwarmsAgent): + def __init__(self, model_name: str, *args, **kwargs): + # Initialize a pre-trained pipeline from Hugging Face + self.pipeline = pipeline("text-generation", model=model_name) + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + # Generate text based on the task input + result = self.pipeline(task, max_length=50) + return result[0]["generated_text"] + + # Example usage: + hf_swarms_agent = HuggingFaceSwarmsAgent("gpt2") + output = hf_swarms_agent.run("Once upon a time in a land far, far away...") + print(output) + ``` + +### 4. **AutoGPT or BabyAGI** +- **Description**: **AutoGPT** and **BabyAGI** are agent frameworks designed to be autonomous, where agents can recursively execute tasks and create new tasks based on previous outputs. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + from autogpt import AutoGPT + + # Custom AutoGPT Agent + class AutoGPTSwarmsAgent(SwarmsAgent): + def __init__(self, config, *args, **kwargs): + # Initialize AutoGPT with configuration + self.agent = AutoGPT(config) + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + # Execute task recursively using AutoGPT + result = self.agent.run(task) + return result + + # Example usage: + autogpt_swarms_agent = AutoGPTSwarmsAgent({"goal": "Solve world hunger"}) + output = autogpt_swarms_agent.run("Develop a plan to solve world hunger.") + print(output) + ``` + +### 5. **DialogFlow Agents** +- **Description**: **DialogFlow** by Google is used to build conversational agents. These agents can process user intents and deliver responses based on predefined conversation flows. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + from google.cloud import dialogflow + + # Custom DialogFlow Agent + class DialogFlowSwarmsAgent(SwarmsAgent): + def __init__(self, project_id: str, session_id: str, *args, **kwargs): + # Initialize DialogFlow session client + self.session_client = dialogflow.SessionsClient() + self.project_id = project_id + self.session_id = session_id + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + session = self.session_client.session_path(self.project_id, self.session_id) + text_input = dialogflow.TextInput(text=task, language_code="en-US") + query_input = dialogflow.QueryInput(text=text_input) + response = self.session_client.detect_intent( + request={"session": session, "query_input": query_input} + ) + return response.query_result.fulfillment_text + + # Example usage: + dialogflow_swarms_agent = DialogFlowSwarmsAgent("your_project_id", "your_session_id") + output = dialogflow_swarms_agent.run("Book me a flight to Paris.") + print(output) + ``` + +### 6. **ChatterBot Agents** +- **Description**: **ChatterBot** is a Python-based machine-learning conversational agent. It learns from previous conversations to generate intelligent responses. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + from chatterbot import ChatBot + + # Custom ChatterBot Agent + class ChatterBotSwarmsAgent(SwarmsAgent): + def __init__(self, name: str, *args, **kwargs): + # Initialize ChatterBot + self.agent = ChatBot(name) + super().__init__(*args, **kwargs) + + def run(self, task: str) -> str: + # Get a response from ChatterBot based on user input + response = self.agent.get_response(task) + return str(response) + + # Example usage: + chatterbot_swarms_agent = ChatterBotSwarmsAgent("Assistant") + output = chatterbot_swarms_agent.run("What is the capital of Italy?") + print(output) + ``` + +### 7. **Custom APIs as Agents** +- **Description**: You can create agents that integrate with any REST or GraphQL API by defining them as a task runner within Swarms. This allows for interaction with third-party services. + + #### Example Integration: + ```python + from swarms import Agent as SwarmsAgent + import requests + + # Custom API Agent + class APIAgent(SwarmsAgent): + def run(self, task: str) -> str: + # Parse task for API endpoint and parameters + endpoint, params = task.split(", ") + response = requests.get(endpoint, params={"q": params}) + return response.text + + # Example usage: + api_swarms_agent = APIAgent() + output = api_swarms_agent.run("https://api.example.com/search, python") + print(output) + ``` + +--- + +### **Summary of Integrations**: +- **Griptape**: Integrate with tools for web scraping, summarization, etc. +- **Langchain**: Use powerful language model orchestration. +- **OpenAI Function Calling**: Directly run OpenAI API-based agents. +- **Rasa**: Build and integrate conversational agents. +- **Hugging Face**: Leverage transformer models. +- **AutoGPT/BabyAGI**: Recursive, autonomous task execution. +- **DialogFlow**: Integrate conversational flows for voice/chat-based systems. +- **ChatterBot**: Machine-learning conversational agents. +- **Custom APIs**: Leverage external APIs as agents for custom workflows. + + +--- + + +## **Conclusion**: + +By following the steps outlined above, you can seamlessly integrate external agent frameworks like **Griptape** and **Langchain** into **Swarms**. This makes Swarms a highly versatile platform for orchestrating various agentic workflows and leveraging the unique capabilities of different frameworks. + +For more examples and use cases, please refer to the official Swarms documentation site. +