diff --git a/README.md b/README.md index 70b31e6e..09020e0d 100644 --- a/README.md +++ b/README.md @@ -1840,6 +1840,86 @@ result = mixture_router.run("Evaluate the potential acquisition of TechStartup I ``` +------- + +## GroupChat + +A production-grade multi-agent system enabling sophisticated group conversations between AI agents with customizable speaking patterns, parallel processing capabilities, and comprehensive conversation tracking. + + +````python + +import os +from dotenv import load_dotenv +from swarm_models import OpenAIChat +from swarms import Agent, GroupChat, expertise_based + + +if __name__ == "__main__": + + load_dotenv() + + # Get the OpenAI API key from the environment variable + api_key = os.getenv("OPENAI_API_KEY") + + # Create an instance of the OpenAIChat class + model = OpenAIChat( + openai_api_key=api_key, + model_name="gpt-4o-mini", + temperature=0.1, + ) + + # Example agents + agent1 = Agent( + agent_name="Financial-Analysis-Agent", + system_prompt="You are a financial analyst specializing in investment strategies.", + llm=model, + max_loops=1, + autosave=False, + dashboard=False, + verbose=True, + dynamic_temperature_enabled=True, + user_name="swarms_corp", + retry_attempts=1, + context_length=200000, + output_type="string", + streaming_on=False, + ) + + agent2 = Agent( + agent_name="Tax-Adviser-Agent", + system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.", + llm=model, + max_loops=1, + autosave=False, + dashboard=False, + verbose=True, + dynamic_temperature_enabled=True, + user_name="swarms_corp", + retry_attempts=1, + context_length=200000, + output_type="string", + streaming_on=False, + ) + + agents = [agent1, agent2] + + chat = GroupChat( + name="Investment Advisory", + description="Financial and tax analysis group", + agents=agents, + speaker_fn=expertise_based, + ) + + history = chat.run( + "How to optimize tax strategy for investments?" + ) + print(history.model_dump_json(indent=2)) + +``` + +-------- + ---------- diff --git a/group_chat_example.py b/group_chat_example.py new file mode 100644 index 00000000..dbe508bb --- /dev/null +++ b/group_chat_example.py @@ -0,0 +1,67 @@ + +import os +from dotenv import load_dotenv +from swarm_models import OpenAIChat +from swarms import Agent, GroupChat, expertise_based + + +if __name__ == "__main__": + + load_dotenv() + + # Get the OpenAI API key from the environment variable + api_key = os.getenv("OPENAI_API_KEY") + + # Create an instance of the OpenAIChat class + model = OpenAIChat( + openai_api_key=api_key, + model_name="gpt-4o-mini", + temperature=0.1, + ) + + # Example agents + agent1 = Agent( + agent_name="Financial-Analysis-Agent", + system_prompt="You are a financial analyst specializing in investment strategies.", + llm=model, + max_loops=1, + autosave=False, + dashboard=False, + verbose=True, + dynamic_temperature_enabled=True, + user_name="swarms_corp", + retry_attempts=1, + context_length=200000, + output_type="string", + streaming_on=False, + ) + + agent2 = Agent( + agent_name="Tax-Adviser-Agent", + system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.", + llm=model, + max_loops=1, + autosave=False, + dashboard=False, + verbose=True, + dynamic_temperature_enabled=True, + user_name="swarms_corp", + retry_attempts=1, + context_length=200000, + output_type="string", + streaming_on=False, + ) + + agents = [agent1, agent2] + + chat = GroupChat( + name="Investment Advisory", + description="Financial and tax analysis group", + agents=agents, + speaker_fn=expertise_based, + ) + + history = chat.run( + "How to optimize tax strategy for investments?" + ) + print(history.model_dump_json(indent=2))