The Iterative Reflective Expansion (IRE) Algorithm is a sophisticated reasoning framework that employs iterative hypothesis generation, simulation, and refinement to solve complex problems. It leverages a multi-step approach where an AI agent generates initial solution paths, evaluates their effectiveness through simulation, reflects on errors, and dynamically revises reasoning strategies. Through continuous cycles of hypothesis testing and meta-cognitive reflection, the algorithm progressively converges on optimal solutions by learning from both successful and unsuccessful reasoning attempts.
## Architecture
```
graph TD
Problem_Input["🧩 Problem Input"] --> Generate_Hypotheses