diff --git a/docs/examples/query-webpage.md b/docs/examples/query-webpage.md deleted file mode 100644 index 0ca76747..00000000 --- a/docs/examples/query-webpage.md +++ /dev/null @@ -1,23 +0,0 @@ -```python -from swarms.artifacts import BaseArtifact -from swarms.drivers import LocalVectorStoreDriver -from swarms.loaders import WebLoader - - -vector_store = LocalVectorStoreDriver() - -[ - vector_store.upsert_text_artifact(a, namespace="swarms") - for a in WebLoader(max_tokens=100).load("https://www.swarms.ai") -] - -results = vector_store.query( - "creativity", - count=3, - namespace="swarms" -) - -values = [BaseArtifact.from_json(r.meta["artifact"]).value for r in results] - -print("\n\n".join(values)) -``` \ No newline at end of file diff --git a/docs/examples/worker.md b/docs/examples/worker.md index bcfaacdc..8fe2bf75 100644 --- a/docs/examples/worker.md +++ b/docs/examples/worker.md @@ -53,14 +53,33 @@ Voila! You’re now ready to summon your Worker. Here’s a simple way to invoke the Worker and give it a task: ```python +from swarms.models import OpenAIChat from swarms import Worker -node = Worker(ai_name="Optimus Prime") +llm = OpenAIChat( + #enter your api key + openai_api_key="", + temperature=0.5, +) + +node = Worker( + llm=llm, + ai_name="Optimus Prime", + openai_api_key="", + ai_role="Worker in a swarm", + external_tools=None, + human_in_the_loop=False, + temperature=0.5, +) + task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times." response = node.run(task) print(response) + + ``` + The result? An agent with elegantly integrated tools and long term memories --- diff --git a/docs/swarms/workers/index.md b/docs/swarms/workers/index.md index f1c9c789..9cf75e8b 100644 --- a/docs/swarms/workers/index.md +++ b/docs/swarms/workers/index.md @@ -49,28 +49,181 @@ Makes the Worker class callable. When an instance of the class is called, it wil ### **Example 1**: Basic usage with default parameters: ```python +from swarms.models import OpenAIChat from swarms import Worker -worker = Worker(model_name="gpt-4", openai_api_key="YOUR_API_KEY") -result = worker.run("Summarize the document.") +llm = OpenAIChat( + #enter your api key + openai_api_key="", + temperature=0.5, +) + +node = Worker( + llm=llm, + ai_name="Optimus Prime", + openai_api_key="", + ai_role="Worker in a swarm", + external_tools=None, + human_in_the_loop=False, + temperature=0.5, +) + +task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times." +response = node.run(task) +print(response) ``` ### **Example 2**: Usage with custom tools: ```python -from swarms import Worker, MyCustomTool +import os + +import interpreter + +from swarms.agents.hf_agents import HFAgent +from swarms.agents.omni_modal_agent import OmniModalAgent +from swarms.models import OpenAIChat +from swarms.tools.autogpt import tool +from swarms.workers import Worker + +# Initialize API Key +api_key = "" + + +# Initialize the language model, +# This model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC +llm = OpenAIChat( + openai_api_key=api_key, + temperature=0.5, +) + + +# wrap a function with the tool decorator to make it a tool, then add docstrings for tool documentation +@tool +def hf_agent(task: str = None): + """ + An tool that uses an openai model to call and respond to a task by search for a model on huggingface + It first downloads the model then uses it. + + Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech, etc + + """ + agent = HFAgent(model="text-davinci-003", api_key=api_key) + response = agent.run(task, text="¡Este es un API muy agradable!") + return response + + +# wrap a function with the tool decorator to make it a tool +@tool +def omni_agent(task: str = None): + """ + An tool that uses an openai Model to utilize and call huggingface models and guide them to perform a task. + + Rules: Don't call this model for simple tasks like generating a summary, only call this tool for multi modal tasks like generating images, videos, speech + The following tasks are what this tool should be used for: + + Tasks omni agent is good for: + -------------- + document-question-answering + image-captioning + image-question-answering + image-segmentation + speech-to-text + summarization + text-classification + text-question-answering + translation + huggingface-tools/text-to-image + huggingface-tools/text-to-video + text-to-speech + huggingface-tools/text-download + huggingface-tools/image-transformation + """ + agent = OmniModalAgent(llm) + response = agent.run(task) + return response + + +# Code Interpreter +@tool +def compile(task: str): + """ + Open Interpreter lets LLMs run code (Python, Javascript, Shell, and more) locally. + You can chat with Open Interpreter through a ChatGPT-like interface in your terminal + by running $ interpreter after installing. + + This provides a natural-language interface to your computer's general-purpose capabilities: + + Create and edit photos, videos, PDFs, etc. + Control a Chrome browser to perform research + Plot, clean, and analyze large datasets + ...etc. + ⚠️ Note: You'll be asked to approve code before it's run. + + Rules: Only use when given to generate code or an application of some kind + """ + task = interpreter.chat(task, return_messages=True) + interpreter.chat() + interpreter.reset(task) + + os.environ["INTERPRETER_CLI_AUTO_RUN"] = True + os.environ["INTERPRETER_CLI_FAST_MODE"] = True + os.environ["INTERPRETER_CLI_DEBUG"] = True + + +# Append tools to an list +tools = [hf_agent, omni_agent, compile] + + +# Initialize a single Worker node with previously defined tools in addition to it's +# predefined tools +node = Worker( + llm=llm, + ai_name="Optimus Prime", + openai_api_key=api_key, + ai_role="Worker in a swarm", + external_tools=tools, + human_in_the_loop=False, + temperature=0.5, +) + +# Specify task +task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times." + +# Run the node on the task +response = node.run(task) + +# Print the response +print(response) -worker = Worker(model_name="gpt-4", openai_api_key="YOUR_API_KEY", external_tools=[MyCustomTool()]) -result = worker.run("Perform a custom operation on the document.") ``` ### **Example 3**: Usage with human in the loop: ```python +from swarms.models import OpenAIChat from swarms import Worker -worker = Worker(model_name="gpt-4", openai_api_key="YOUR_API_KEY", human_in_the_loop=True) -result = worker.run("Translate this complex document, and ask for help if needed.") +llm = OpenAIChat( + #enter your api key + openai_api_key="", + temperature=0.5, +) + +node = Worker( + llm=llm, + ai_name="Optimus Prime", + openai_api_key="", + ai_role="Worker in a swarm", + external_tools=None, + human_in_the_loop=True, + temperature=0.5, +) + +task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times." +response = node.run(task) +print(response) + ``` ## **Mathematical Description**: diff --git a/mkdocs.yml b/mkdocs.yml index 2774ada1..3039520d 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -101,7 +101,7 @@ nav: - OmniAgent: "examples/omni_agent.md" - Worker: - Basic: "examples/worker.md" - - StackedWorker: "examplses" + - StackedWorker: "examples/stacked_worker.md" - Applications: - CustomerSupport: