pull/210/head
parent
df59d3642e
commit
a443666501
@ -0,0 +1,291 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from transformers import SamImageProcessor, SamModel, SamProcessor, pipeline
|
||||
|
||||
try:
|
||||
import cv2
|
||||
import supervision as sv
|
||||
except ImportError:
|
||||
print("Please install supervision and cv")
|
||||
|
||||
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class FeatureType(Enum):
|
||||
"""
|
||||
An enumeration to represent the types of features for mask adjustment in image
|
||||
segmentation.
|
||||
"""
|
||||
|
||||
ISLAND = "ISLAND"
|
||||
HOLE = "HOLE"
|
||||
|
||||
@classmethod
|
||||
def list(cls):
|
||||
return list(map(lambda c: c.value, cls))
|
||||
|
||||
|
||||
def compute_mask_iou_vectorized(masks: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Vectorized computation of the Intersection over Union (IoU) for all pairs of masks.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array of shape `(N, N)` where each element `[i, j]` is
|
||||
the IoU between masks `i` and `j`.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the masks is found to be empty.
|
||||
"""
|
||||
if np.any(masks.sum(axis=(1, 2)) == 0):
|
||||
raise ValueError(
|
||||
"One or more masks are empty. Please filter out empty masks before"
|
||||
" using `compute_iou_vectorized` function."
|
||||
)
|
||||
|
||||
masks_bool = masks.astype(bool)
|
||||
masks_flat = masks_bool.reshape(masks.shape[0], -1)
|
||||
intersection = np.logical_and(masks_flat[:, None], masks_flat[None, :]).sum(
|
||||
axis=2
|
||||
)
|
||||
union = np.logical_or(masks_flat[:, None], masks_flat[None, :]).sum(axis=2)
|
||||
iou_matrix = intersection / union
|
||||
return iou_matrix
|
||||
|
||||
|
||||
def mask_non_max_suppression(
|
||||
masks: np.ndarray, iou_threshold: float = 0.6
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Performs Non-Max Suppression on a set of masks by prioritizing larger masks and
|
||||
removing smaller masks that overlap significantly.
|
||||
|
||||
When the IoU between two masks exceeds the specified threshold, the smaller mask
|
||||
(in terms of area) is discarded. This process is repeated for each pair of masks,
|
||||
effectively filtering out masks that are significantly overlapped by larger ones.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
iou_threshold (float): The IoU threshold for determining significant overlap.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array of filtered masks.
|
||||
"""
|
||||
num_masks = masks.shape[0]
|
||||
areas = masks.sum(axis=(1, 2))
|
||||
sorted_idx = np.argsort(-areas)
|
||||
keep_mask = np.ones(num_masks, dtype=bool)
|
||||
iou_matrix = compute_mask_iou_vectorized(masks)
|
||||
for i in range(num_masks):
|
||||
if not keep_mask[sorted_idx[i]]:
|
||||
continue
|
||||
|
||||
overlapping_masks = iou_matrix[sorted_idx[i]] > iou_threshold
|
||||
overlapping_masks[sorted_idx[i]] = False
|
||||
keep_mask[sorted_idx] = np.logical_and(
|
||||
keep_mask[sorted_idx], ~overlapping_masks
|
||||
)
|
||||
|
||||
return masks[keep_mask]
|
||||
|
||||
|
||||
def filter_masks_by_relative_area(
|
||||
masks: np.ndarray, minimum_area: float = 0.01, maximum_area: float = 1.0
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Filters masks based on their relative area within the total area of each mask.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
minimum_area (float): The minimum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
maximum_area (float): The maximum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array containing masks that fall within the specified
|
||||
relative area range.
|
||||
|
||||
Raises:
|
||||
ValueError: If `minimum_area` or `maximum_area` are outside the `0` to `1`
|
||||
range, or if `minimum_area` is greater than `maximum_area`.
|
||||
"""
|
||||
|
||||
if not (isinstance(masks, np.ndarray) and masks.ndim == 3):
|
||||
raise ValueError("Input must be a 3D numpy array.")
|
||||
|
||||
if not (0 <= minimum_area <= 1) or not (0 <= maximum_area <= 1):
|
||||
raise ValueError(
|
||||
"`minimum_area` and `maximum_area` must be between 0 and 1."
|
||||
)
|
||||
|
||||
if minimum_area > maximum_area:
|
||||
raise ValueError(
|
||||
"`minimum_area` must be less than or equal to `maximum_area`."
|
||||
)
|
||||
|
||||
total_area = masks.shape[1] * masks.shape[2]
|
||||
relative_areas = masks.sum(axis=(1, 2)) / total_area
|
||||
return masks[
|
||||
(relative_areas >= minimum_area) & (relative_areas <= maximum_area)
|
||||
]
|
||||
|
||||
|
||||
def adjust_mask_features_by_relative_area(
|
||||
mask: np.ndarray,
|
||||
area_threshold: float,
|
||||
feature_type: FeatureType = FeatureType.ISLAND,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Adjusts a mask by removing small islands or filling small holes based on a relative
|
||||
area threshold.
|
||||
|
||||
!!! warning
|
||||
|
||||
Running this function on a mask with small islands may result in empty masks.
|
||||
|
||||
Parameters:
|
||||
mask (np.ndarray): A 2D numpy array with shape `(H, W)`, where `H` is the
|
||||
height, and `W` is the width.
|
||||
area_threshold (float): Threshold for relative area to remove or fill features.
|
||||
feature_type (FeatureType): Type of feature to adjust (`ISLAND` for removing
|
||||
islands, `HOLE` for filling holes).
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array containing mask.
|
||||
"""
|
||||
height, width = mask.shape
|
||||
total_area = width * height
|
||||
|
||||
mask = np.uint8(mask * 255)
|
||||
operation = (
|
||||
cv2.RETR_EXTERNAL
|
||||
if feature_type == FeatureType.ISLAND
|
||||
else cv2.RETR_CCOMP
|
||||
)
|
||||
contours, _ = cv2.findContours(mask, operation, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
for contour in contours:
|
||||
area = cv2.contourArea(contour)
|
||||
relative_area = area / total_area
|
||||
if relative_area < area_threshold:
|
||||
cv2.drawContours(
|
||||
image=mask,
|
||||
contours=[contour],
|
||||
contourIdx=-1,
|
||||
color=(0 if feature_type == FeatureType.ISLAND else 255),
|
||||
thickness=-1,
|
||||
)
|
||||
return np.where(mask > 0, 1, 0).astype(bool)
|
||||
|
||||
|
||||
def masks_to_marks(masks: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Converts a set of masks to a marks (sv.Detections) object.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
return sv.Detections(mask=masks, xyxy=sv.mask_to_xyxy(masks=masks))
|
||||
|
||||
|
||||
def refine_marks(
|
||||
marks: sv.Detections,
|
||||
maximum_hole_area: float = 0.01,
|
||||
maximum_island_area: float = 0.01,
|
||||
minimum_mask_area: float = 0.02,
|
||||
maximum_mask_area: float = 1.0,
|
||||
) -> sv.Detections:
|
||||
"""
|
||||
Refines a set of masks by removing small islands and holes, and filtering by mask
|
||||
area.
|
||||
|
||||
Parameters:
|
||||
marks (sv.Detections): An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
maximum_hole_area (float): The maximum relative area of holes to be filled in
|
||||
each mask.
|
||||
maximum_island_area (float): The maximum relative area of islands to be removed
|
||||
from each mask.
|
||||
minimum_mask_area (float): The minimum relative area for a mask to be retained.
|
||||
maximum_mask_area (float): The maximum relative area for a mask to be retained.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
result_masks = []
|
||||
for mask in marks.mask:
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_island_area,
|
||||
feature_type=FeatureType.ISLAND,
|
||||
)
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_hole_area,
|
||||
feature_type=FeatureType.HOLE,
|
||||
)
|
||||
if np.any(mask):
|
||||
result_masks.append(mask)
|
||||
result_masks = np.array(result_masks)
|
||||
result_masks = filter_masks_by_relative_area(
|
||||
masks=result_masks,
|
||||
minimum_area=minimum_mask_area,
|
||||
maximum_area=maximum_mask_area,
|
||||
)
|
||||
return sv.Detections(
|
||||
mask=result_masks, xyxy=sv.mask_to_xyxy(masks=result_masks)
|
||||
)
|
||||
|
||||
|
||||
class SegmentAnythingMarkGenerator:
|
||||
"""
|
||||
A class for performing image segmentation using a specified model.
|
||||
|
||||
Parameters:
|
||||
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
|
||||
model_name (str): The name of the model to be loaded. Defaults to
|
||||
'facebook/sam-vit-huge'.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, device: str = "cpu", model_name: str = "facebook/sam-vit-huge"
|
||||
):
|
||||
self.model = SamModel.from_pretrained(model_name).to(device)
|
||||
self.processor = SamProcessor.from_pretrained(model_name)
|
||||
self.image_processor = SamImageProcessor.from_pretrained(model_name)
|
||||
self.pipeline = pipeline(
|
||||
task="mask-generation",
|
||||
model=self.model,
|
||||
image_processor=self.image_processor,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def run(self, image: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Generate image segmentation marks.
|
||||
|
||||
Parameters:
|
||||
image (np.ndarray): The image to be marked in BGR format.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the segmentation masks and their
|
||||
corresponding bounding box coordinates.
|
||||
"""
|
||||
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
||||
outputs = self.pipeline(image, points_per_batch=64)
|
||||
masks = np.array(outputs["masks"])
|
||||
return masks_to_marks(masks=masks)
|
@ -0,0 +1,13 @@
|
||||
|
||||
|
||||
# System prompt
|
||||
FLOW_SYSTEM_PROMPT = """
|
||||
You are an autonomous agent granted autonomy in a autonomous loop structure.
|
||||
Your role is to engage in multi-step conversations with your self or the user,
|
||||
generate long-form content like blogs, screenplays, or SOPs,
|
||||
and accomplish tasks bestowed by the user.
|
||||
|
||||
You can have internal dialogues with yourself or can interact with the user
|
||||
to aid in these complex tasks. Your responses should be coherent, contextually relevant, and tailored to the task at hand.
|
||||
|
||||
"""
|
@ -0,0 +1,61 @@
|
||||
|
||||
# Prompts
|
||||
DYNAMIC_STOP_PROMPT = """
|
||||
|
||||
Now, when you 99% sure you have completed the task, you may follow the instructions below to escape the autonomous loop.
|
||||
|
||||
When you have finished the task from the Human, output a special token: <DONE>
|
||||
This will enable you to leave the autonomous loop.
|
||||
"""
|
||||
|
||||
|
||||
# Make it able to handle multi input tools
|
||||
DYNAMICAL_TOOL_USAGE = """
|
||||
You have access to the following tools:
|
||||
Output a JSON object with the following structure to use the tools
|
||||
commands: {
|
||||
"tools": {
|
||||
tool1: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
"tool2: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
"tool3: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
-------------TOOLS---------------------------
|
||||
{tools}
|
||||
"""
|
||||
|
||||
SCENARIOS = """
|
||||
commands: {
|
||||
"tools": {
|
||||
tool1: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
"tool2: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
"tool3: "tool_name",
|
||||
"params": {
|
||||
"tool1": "inputs",
|
||||
"tool1": "inputs"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
"""
|
@ -1,97 +0,0 @@
|
||||
from swarms.models import OpenAIChat
|
||||
from swarms.structs.agent import Agent
|
||||
|
||||
import concurrent.futures
|
||||
from typing import Callable, List, Dict, Any, Sequence
|
||||
|
||||
|
||||
class Task:
|
||||
def __init__(
|
||||
self,
|
||||
id: str,
|
||||
task: str,
|
||||
flows: Sequence[Agent],
|
||||
dependencies: List[str] = [],
|
||||
):
|
||||
self.id = id
|
||||
self.task = task
|
||||
self.flows = flows
|
||||
self.dependencies = dependencies
|
||||
self.results = []
|
||||
|
||||
def execute(self, parent_results: Dict[str, Any]):
|
||||
args = [parent_results[dep] for dep in self.dependencies]
|
||||
for agent in self.flows:
|
||||
result = agent.run(self.task, *args)
|
||||
self.results.append(result)
|
||||
args = [
|
||||
result
|
||||
] # The output of one agent becomes the input to the next
|
||||
|
||||
|
||||
class Workflow:
|
||||
def __init__(self):
|
||||
self.tasks: Dict[str, Task] = {}
|
||||
self.executor = concurrent.futures.ThreadPoolExecutor()
|
||||
|
||||
def add_task(self, task: Task):
|
||||
self.tasks[task.id] = task
|
||||
|
||||
def run(self):
|
||||
completed_tasks = set()
|
||||
while len(completed_tasks) < len(self.tasks):
|
||||
futures = []
|
||||
for task in self.tasks.values():
|
||||
if task.id not in completed_tasks and all(
|
||||
dep in completed_tasks for dep in task.dependencies
|
||||
):
|
||||
future = self.executor.submit(
|
||||
task.execute,
|
||||
{
|
||||
dep: self.tasks[dep].results
|
||||
for dep in task.dependencies
|
||||
},
|
||||
)
|
||||
futures.append((future, task.id))
|
||||
|
||||
for future, task_id in futures:
|
||||
future.result() # Wait for task completion
|
||||
completed_tasks.add(task_id)
|
||||
|
||||
def get_results(self):
|
||||
return {task_id: task.results for task_id, task in self.tasks.items()}
|
||||
|
||||
|
||||
# create flows
|
||||
llm = OpenAIChat(openai_api_key="sk-")
|
||||
|
||||
flow1 = Agent(llm, max_loops=1)
|
||||
flow2 = Agent(llm, max_loops=1)
|
||||
flow3 = Agent(llm, max_loops=1)
|
||||
flow4 = Agent(llm, max_loops=1)
|
||||
|
||||
|
||||
# Create tasks with their respective Agents and task strings
|
||||
task1 = Task("task1", "Generate a summary on Quantum field theory", [flow1])
|
||||
task2 = Task(
|
||||
"task2",
|
||||
"Elaborate on the summary of topic X",
|
||||
[flow2, flow3],
|
||||
dependencies=["task1"],
|
||||
)
|
||||
task3 = Task(
|
||||
"task3", "Generate conclusions for topic X", [flow4], dependencies=["task1"]
|
||||
)
|
||||
|
||||
# Create a workflow and add tasks
|
||||
workflow = Workflow()
|
||||
workflow.add_task(task1)
|
||||
workflow.add_task(task2)
|
||||
workflow.add_task(task3)
|
||||
|
||||
# Run the workflow
|
||||
workflow.run()
|
||||
|
||||
# Get results
|
||||
results = workflow.get_results()
|
||||
print(results)
|
@ -0,0 +1,49 @@
|
||||
from swarms.structs.agent import Agent
|
||||
|
||||
from typing import List, Dict, Any, Sequence
|
||||
|
||||
|
||||
class Task:
|
||||
"""
|
||||
Task is a unit of work that can be executed by a set of agents.
|
||||
|
||||
A task is defined by a task name and a set of agents that can execute the task.
|
||||
The task can also have a set of dependencies, which are the names of other tasks
|
||||
that must be executed before this task can be executed.
|
||||
|
||||
Args:
|
||||
id (str): A unique identifier for the task
|
||||
task (str): The name of the task
|
||||
agents (Sequence[Agent]): A list of agents that can execute the task
|
||||
dependencies (List[str], optional): A list of task names that must be executed before this task can be executed. Defaults to [].
|
||||
|
||||
Methods:
|
||||
execute(parent_results: Dict[str, Any]): Executes the task by passing the results of the parent tasks to the agents.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id: str,
|
||||
task: str,
|
||||
agents: Sequence[Agent],
|
||||
dependencies: List[str] = [],
|
||||
):
|
||||
self.id = id
|
||||
self.task = task
|
||||
self.agents = agents
|
||||
self.dependencies = dependencies
|
||||
self.results = []
|
||||
|
||||
def execute(self, parent_results: Dict[str, Any]):
|
||||
"""Executes the task by passing the results of the parent tasks to the agents.
|
||||
|
||||
Args:
|
||||
parent_results (Dict[str, Any]): _description_
|
||||
"""
|
||||
args = [parent_results[dep] for dep in self.dependencies]
|
||||
for agent in self.agents:
|
||||
result = agent.run(self.task, *args)
|
||||
self.results.append(result)
|
||||
args = [
|
||||
result
|
||||
] # The output of one agent becomes the input to the next
|
@ -0,0 +1,106 @@
|
||||
import os
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
||||
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
|
||||
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
||||
)
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.structs.task import Task
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def llm():
|
||||
return GPT4VisionAPI()
|
||||
|
||||
|
||||
def test_agent_run_task(llm):
|
||||
task = (
|
||||
"Analyze this image of an assembly line and identify any issues such as"
|
||||
" misaligned parts, defects, or deviations from the standard assembly"
|
||||
" process. IF there is anything unsafe in the image, explain why it is"
|
||||
" unsafe and how it could be improved."
|
||||
)
|
||||
img = "assembly_line.jpg"
|
||||
|
||||
agent = Agent(
|
||||
llm=llm,
|
||||
max_loops="auto",
|
||||
sop=MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
||||
dashboard=True,
|
||||
)
|
||||
|
||||
result = agent.run(task=task, img=img)
|
||||
|
||||
# Add assertions here to verify the expected behavior of the agent's run method
|
||||
assert isinstance(result, dict)
|
||||
assert "response" in result
|
||||
assert "dashboard_data" in result
|
||||
# Add more assertions as needed
|
||||
|
||||
@pytest.fixture
|
||||
def task():
|
||||
agents = [Agent(llm=llm, id=f"Agent_{i}") for i in range(5)]
|
||||
return Task(id="Task_1", task="Task_Name", agents=agents, dependencies=[])
|
||||
|
||||
|
||||
# Basic tests
|
||||
|
||||
|
||||
def test_task_init(task):
|
||||
assert task.id == "Task_1"
|
||||
assert task.task == "Task_Name"
|
||||
assert isinstance(task.agents, list)
|
||||
assert len(task.agents) == 5
|
||||
assert isinstance(task.dependencies, list)
|
||||
|
||||
|
||||
def test_task_execute(task, mocker):
|
||||
mocker.patch.object(Agent, "run", side_effect=[1, 2, 3, 4, 5])
|
||||
parent_results = {}
|
||||
task.execute(parent_results)
|
||||
assert isinstance(task.results, list)
|
||||
assert len(task.results) == 5
|
||||
for result in task.results:
|
||||
assert isinstance(result, int)
|
||||
|
||||
|
||||
# Parameterized tests
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_agents", [1, 3, 5, 10])
|
||||
def test_task_num_agents(task, num_agents, mocker):
|
||||
task.agents = [Agent(id=f"Agent_{i}") for i in range(num_agents)]
|
||||
mocker.patch.object(Agent, "run", return_value=1)
|
||||
parent_results = {}
|
||||
task.execute(parent_results)
|
||||
assert len(task.results) == num_agents
|
||||
|
||||
|
||||
# Exception testing
|
||||
|
||||
|
||||
def test_task_execute_with_dependency_error(task, mocker):
|
||||
task.dependencies = ["NonExistentTask"]
|
||||
mocker.patch.object(Agent, "run", return_value=1)
|
||||
parent_results = {}
|
||||
with pytest.raises(KeyError):
|
||||
task.execute(parent_results)
|
||||
|
||||
|
||||
# Mocking and monkeypatching tests
|
||||
|
||||
|
||||
def test_task_execute_with_mocked_agents(task, mocker):
|
||||
mock_agents = [Mock(spec=Agent) for _ in range(5)]
|
||||
mocker.patch.object(task, "agents", mock_agents)
|
||||
for mock_agent in mock_agents:
|
||||
mock_agent.run.return_value = 1
|
||||
parent_results = {}
|
||||
task.execute(parent_results)
|
||||
assert len(task.results) == 5
|
Loading…
Reference in new issue