diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index 33a37ac5..e8d6f196 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -5,6 +5,7 @@ import logging import random import re import time +import uuid from typing import Any, Callable, Dict, List, Optional, Tuple from termcolor import colored @@ -69,6 +70,11 @@ def parse_done_token(response: str) -> bool: return "" in response +def agent_id(): + """Generate an agent id""" + return str(uuid.uuid4()) + + class Agent: """ Agent is the structure that provides autonomy to any llm in a reliable and effective fashion. @@ -94,52 +100,47 @@ class Agent: **kwargs (Any): Any additional keyword arguments Methods: - run: Run the autonomous agent loop - run_concurrent: Run the autonomous agent loop concurrently - bulk_run: Run the autonomous agent loop in bulk - save: Save the agent history to a file - load: Load the agent history from a file - validate_response: Validate the response based on certain criteria - print_history_and_memory: Print the history and memory of the agent - step: Execute a single step in the agent interaction - graceful_shutdown: Gracefully shutdown the system saving the state - run_with_timeout: Run the loop but stop if it takes longer than the timeout - analyze_feedback: Analyze the feedback for issues - undo_last: Response the last response and return the previous state - add_response_filter: Add a response filter to filter out certain words from the response - apply_reponse_filters: Apply the response filters to the response - filtered_run: Filter the response - interactive_run: Interactive run mode - streamed_generation: Stream the generation of the response - get_llm_params: Extracts and returns the parameters of the llm object for serialization. - agent_history_prompt: Generate the agent history prompt - add_task_to_memory: Add the task to the memory - add_message_to_memory: Add the message to the memory - add_message_to_memory_and_truncate: Add the message to the memory and truncate - print_dashboard: Print dashboard - activate_autonomous_agent: Print the autonomous agent activation message - _check_stopping_condition: Check if the stopping condition is met - format_prompt: Format the prompt - get_llm_init_params: Get the llm init params - provide_feedback: Allow users to provide feedback on the responses - truncate_history: Take the history and truncate it to fit into the model context length - agent_history_prompt: Generate the agent history prompt - extract_tool_commands: Extract the tool commands from the text - parse_and_execute_tools: Parse and execute the tools - execute_tools: Execute the tool with the provided parameters - construct_dynamic_prompt: Construct the dynamic prompt - get_tool_description: Get the tool description - find_tool_by_name: Find a tool by name - parse_tool_command: Parse the text for tool usage - dynamic_temperature: Dynamically change the temperature - _run: Generate a result using the provided keyword args. - from_llm_and_template: Create AgentStream from LLM and a string template. - from_llm_and_template_file: Create AgentStream from LLM and a template file. - save_state: Save the state of the agent - load_state: Load the state of the agent - run_async: Run the agent asynchronously - arun: Run the agent asynchronously - run_code: Run the code in the response + run(task: str, **kwargs: Any): Run the agent on a task + run_concurrent(tasks: List[str], **kwargs: Any): Run the agent on a list of tasks concurrently + bulk_run(inputs: List[Dict[str, Any]]): Run the agent on a list of inputs + from_llm_and_template(llm: Any, template: str): Create AgentStream from LLM and a string template. + from_llm_and_template_file(llm: Any, template_file: str): Create AgentStream from LLM and a template file. + save(file_path): Save the agent history to a file + load(file_path): Load the agent history from a file + validate_response(response: str): Validate the response based on certain criteria + print_history_and_memory(): Print the entire history and memory of the agent + step(task: str, **kwargs): Executes a single step in the agent interaction, generating a response from the language model based on the given input text. + graceful_shutdown(): Gracefully shutdown the system saving the state + run_with_timeout(task: str, timeout: int): Run the loop but stop if it takes longer than the timeout + analyze_feedback(): Analyze the feedback for issues + undo_last(): Response the last response and return the previous state + add_response_filter(filter_word: str): Add a response filter to filter out certain words from the response + apply_reponse_filters(response: str): Apply the response filters to the response + filtered_run(task: str): Filtered run + interactive_run(max_loops: int): Interactive run mode + streamed_generation(prompt: str): Stream the generation of the response + get_llm_params(): Extracts and returns the parameters of the llm object for serialization. + save_state(file_path: str): Saves the current state of the agent to a JSON file, including the llm parameters. + load_state(file_path: str): Loads the state of the agent from a json file and restores the configuration and memory. + retry_on_failure(function, retries: int = 3, retry_delay: int = 1): Retry wrapper for LLM calls. + run_code(response: str): Run the code in the response + construct_dynamic_prompt(): Construct the dynamic prompt + extract_tool_commands(text: str): Extract the tool commands from the text + parse_and_execute_tools(response: str): Parse and execute the tools + execute_tools(tool_name, params): Execute the tool with the provided params + truncate_history(): Take the history and truncate it to fit into the model context length + add_task_to_memory(task: str): Add the task to the memory + add_message_to_memory(message: str): Add the message to the memory + add_message_to_memory_and_truncate(message: str): Add the message to the memory and truncate + print_dashboard(task: str): Print dashboard + activate_autonomous_agent(): Print the autonomous agent activation message + dynamic_temperature(): Dynamically change the temperature + _check_stopping_condition(response: str): Check if the stopping condition is met + format_prompt(template, **kwargs: Any): Format the template with the provided kwargs using f-string interpolation. + get_llm_init_params(): Get LLM init params + get_tool_description(): Get the tool description + find_tool_by_name(name: str): Find a tool by name + Example: >>> from swarms.models import OpenAIChat @@ -159,7 +160,8 @@ class Agent: def __init__( self, - llm: Any, + id: str = agent_id, + llm: Any = None, template: Optional[str] = None, max_loops=5, stopping_condition: Optional[Callable[[str], bool]] = None, @@ -191,6 +193,7 @@ class Agent: *args, **kwargs: Any, ): + self.id = id self.llm = llm self.template = template self.max_loops = max_loops @@ -403,6 +406,7 @@ class Agent: ---------------------------------------- Agent Configuration: + Agent ID: {self.id} Name: {self.agent_name} Description: {self.agent_description} Standard Operating Procedure: {self.sop} @@ -451,6 +455,45 @@ class Agent: ) ) print(error) + + def loop_count_print(self, loop_count, max_loops): + """loop_count_print summary + + Args: + loop_count (_type_): _description_ + max_loops (_type_): _description_ + """ + print( + colored(f"\nLoop {loop_count} of {max_loops}", "cyan") + ) + print("\n") + + def _history(self, user_name: str, task: str) -> str: + """Generate the history for the history prompt + + Args: + user_name (str): _description_ + task (str): _description_ + + Returns: + str: _description_ + """ + history = [f"{user_name}: {task}"] + return history + + def _dynamic_prompt_setup(self, dynamic_prompt: str, task: str) -> str: + """_dynamic_prompt_setup summary + + Args: + dynamic_prompt (str): _description_ + task (str): _description_ + + Returns: + str: _description_ + """ + dynamic_prompt = dynamic_prompt or self.construct_dynamic_prompt() + combined_prompt = f"{dynamic_prompt}\n{task}" + return combined_prompt def run(self, task: Optional[str], img: Optional[str] = None, **kwargs): """ @@ -468,14 +511,11 @@ class Agent: """ try: - # dynamic_prompt = self.construct_dynamic_prompt() - # combined_prompt = f"{dynamic_prompt}\n{task}" - # Activate Autonomous agent message self.activate_autonomous_agent() response = task # or combined_prompt - history = [f"{self.user_name}: {task}"] + history = self._history(self.user_name, task) # If dashboard = True then print the dashboard if self.dashboard: @@ -487,9 +527,7 @@ class Agent: while self.max_loops == "auto" or loop_count < self.max_loops: # Loop count loop_count += 1 - print( - colored(f"\nLoop {loop_count} of {self.max_loops}", "blue") - ) + self.loop_count_print(loop_count, self.max_loops) print("\n") # Check to see if stopping token is in the output to stop the loop @@ -1129,14 +1167,14 @@ class Agent: ‘‘‘ """ - def self_healing(self, **kwargs): - """ - Self healing by debugging errors and refactoring its own code + # def self_healing(self, **kwargs): + # """ + # Self healing by debugging errors and refactoring its own code - Args: - **kwargs (Any): Any additional keyword arguments - """ - pass + # Args: + # **kwargs (Any): Any additional keyword arguments + # """ + # pass # def refactor_code( # self, @@ -1161,29 +1199,29 @@ class Agent: # # Sort the changes in reverse line order # # explanations.sort(key=lambda x: x["line", reverse=True]) - # # def error_prompt_inject( - # # self, - # # file_path: str, - # # args: List, - # # error: str, - # # ): - # # with open(file_path, "r") as f: - # # file_lines = f.readlines() - - # # file_with_lines = [] - # # for i, line in enumerate(file_lines): - # # file_with_lines.append(str(i + 1) + "" + line) - # # file_with_lines = "".join(file_with_lines) - - # # prompt = f""" - # # Here is the script that needs fixing:\n\n - # # {file_with_lines}\n\n - # # Here are the arguments it was provided:\n\n - # # {args}\n\n - # # Here is the error message:\n\n - # # {error}\n - # # "Please provide your suggested changes, and remember to stick to the " - # # exact format as described above. - # # """ - - # # # Print(prompt) + # def error_prompt_inject( + # self, + # file_path: str, + # args: List, + # error: str, + # ): + # with open(file_path, "r") as f: + # file_lines = f.readlines() + + # file_with_lines = [] + # for i, line in enumerate(file_lines): + # file_with_lines.append(str(i + 1) + "" + line) + # file_with_lines = "".join(file_with_lines) + + # prompt = f""" + # Here is the script that needs fixing:\n\n + # {file_with_lines}\n\n + # Here are the arguments it was provided:\n\n + # {args}\n\n + # Here is the error message:\n\n + # {error}\n + # "Please provide your suggested changes, and remember to stick to the " + # exact format as described above. + # """ + + # print(prompt)